1
|
Qiao S, Shi Z, Tong A, Luo Y, Zhang Y, Wang M, Huang Z, Xu W, Chen F. Atomic layer deposition paves the way for next-generation smart and functional textiles. Adv Colloid Interface Sci 2025; 341:103500. [PMID: 40158416 DOI: 10.1016/j.cis.2025.103500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 02/18/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
As technology evolves and consumer needs diversify, textiles have become crucial to determining the future of fashion, sustainability, and functionality. Functional textiles, which not only provide comfort and aesthetics as traditional textiles but also endow textiles with special functions such as antibacterial, anti-odor, moisture absorption and perspiration, anti-ultraviolet (UV), flame-retardant, self-cleaning, and anti-static properties through technological innovation and upgrading, have attracted increasing attention because they satisfy the specific needs of people in different environments and occasions. However, functionality often occurs at the expense of comfort in existing functional products. Endowing textiles with excellent multi-functionality with marginal effects on comfort and wearability properties continues to be a challenge. Atomic layer deposition (ALD) paves the way for creating functional fabrics by enabling the formation of highly conforming inorganic/organic coatings over a large area with precise atomic-level film thickness control from a self-limiting reaction mechanism. Therefore, this paper introduces the reaction mechanism of ALD and the unique advantages of depositing inorganic nanofilms on fiber and textile surfaces. The factors influencing ALD and the commonly used ALD-derived technologies are then discussed. Subsequently, the research progress and breakthroughs in inorganic nanofilms prepared by ALD in conferring multifunctional properties on textile surfaces, such as antimicrobial, UV-resistant, heat-insulating, multifunctional wetting, structural coloring, thermoelectric elements, and flexible sensing, are reviewed. Finally, future developments and possible challenges of ALD for the large-scale production of multifunctional fabrics are proposed, which are expected to promote the development of next-generation advanced functional textiles.
Collapse
Affiliation(s)
- Sijie Qiao
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Hubei, Wuhan 430000, China
| | - Zhicheng Shi
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Hubei, Wuhan 430000, China
| | - Aixin Tong
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Hubei, Wuhan 430000, China
| | - Yuxin Luo
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Hubei, Wuhan 430000, China
| | - Yu Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Hubei, Wuhan 430000, China
| | - Mengqi Wang
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Hubei, Wuhan 430000, China
| | - Zhiyu Huang
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Hubei, Wuhan 430000, China
| | - Weilin Xu
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Hubei, Wuhan 430000, China
| | - Fengxiang Chen
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Hubei, Wuhan 430000, China.
| |
Collapse
|
2
|
Tang L, Zhao D, Wang B, Bai S, Fan B, Zhang L, Wang F. Adsorption and in vitro controlled-release properties of a soybean cellulose nanocrystal/polyacrylamide-based hydrogel as a carrier for different polyphenols. Food Chem 2025; 479:143843. [PMID: 40086390 DOI: 10.1016/j.foodchem.2025.143843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/17/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Polyphenols possessing low bioavailability require material carriers for controlling their release during digestion. This study used a soybean cellulose nanocrystal/polyacrylamide (CP) hydrogel as a carrier to explore the adsorption mechanism and release the properties of different polyphenols (gallic acid (GA), epigallocatechin gallate (EGCG) and tannic acid (TA)) during simulated digestion. Structural characterization revealed that the CP hydrogel interacted with polyphenols via strong non-covalent binding. The adsorption efficiency was considerably affected by the molecular structure and the number of hydroxyl groups of polyphenols (TA > EGCG > GA). The TA-loaded CP hydrogel demonstrated the finest mechanical properties, exhibiting the lowest anti-oxidant activity and anti-bacterial ability. The simulated digestion experiment revealed that the CP hydrogel effectively protected the polyphenols from degradation and controlled their release in the intestine, improving their bioavailability (TA < EGCG < GA). These results provide new insights for enhancing the stability and bioavailability of polyphenols in functional foods.
Collapse
Affiliation(s)
- Lu Tang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dan Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bo Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Hebei 061001, China
| | - Shiru Bai
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liang Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
3
|
Wang Z, Guo Y, Shen C, Jiang Y, Zhang H, Xie R. Fluorine-Free Multi-durable Superhydrophobic Cotton Fabrics Prepared by an Atomization Spraying Method for Self-Cleaning and Oil-Water Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4154-4164. [PMID: 39903906 DOI: 10.1021/acs.langmuir.4c04666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Superhydrophobic textiles have special applications in many fields such as medical treatment, military protection, oil-water separation, etc. In the large-scale pad-dry-cure process, a large number of polymer binders are often added to improve the superhydrophobic durability, resulting in a significant reduction in air permeability. To address this issue, a low-liquid atomization spray method was adopted to fabricate multi-durable superhydrophobic cotton fabrics using N1,N6-bis(2,3-epoxypropyl)hexane-1,6-diamine, a silica precursor, and fluorine-free hexadecyltrimethoxysilane as the main modifiers. The prepared fabric maintained excellent water repellency even after being subjected various harsh conditions tests such as 2000 cycles of friction, 40 washing cycles, ultrasonic treatment for 120 min, 200 tape peelings, and acid-alkali-salt corrosion for 24 h. The air permeability of the superhydrophobic fabric was measured to be 370.2 L m-2 s-1, which was merely 5% lower than that of the original fabric, indicating that the modified fabric retains satisfactory air permeability. The modified fabric exhibited an excellent self-cleaning effect with respect to various liquids. In addition, the prepared fabric showed good oil-water separation capability for both heavy and light oils. For heavy oil-water mixtures, the fabric sample exhibited a maintenance of 98.13% separation efficiency and a high flux of 18 032 L m-2 h-1 after 10 uses. These findings will help to promote the practical application of low-feed interface modification technology in the production of durable functional textiles.
Collapse
Affiliation(s)
- Zhenjie Wang
- College of Textiles & Clothing, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Laboratory for Manufacturing Low Carbon and Functionalized Textiles in the Universities of Shandong Province, Qingdao University, 308 Ningxia Road, Qingdao 266071, P. R. China
| | - Yuwei Guo
- College of Textiles & Clothing, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Laboratory for Manufacturing Low Carbon and Functionalized Textiles in the Universities of Shandong Province, Qingdao University, 308 Ningxia Road, Qingdao 266071, P. R. China
| | - Chuliang Shen
- Zhejiang Tonghui Textile Company, Ltd., Tongxiang 314500, P. R. China
| | - Yijun Jiang
- College of Textiles & Clothing, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Laboratory for Manufacturing Low Carbon and Functionalized Textiles in the Universities of Shandong Province, Qingdao University, 308 Ningxia Road, Qingdao 266071, P. R. China
| | - Hongjuan Zhang
- School of Textile and Fashion, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Ruyi Xie
- College of Textiles & Clothing, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Laboratory for Manufacturing Low Carbon and Functionalized Textiles in the Universities of Shandong Province, Qingdao University, 308 Ningxia Road, Qingdao 266071, P. R. China
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing Key Laboratory of High Performance Fibers & Products, Shaoxing University, Shaoxing 312000, P. R. China
- Zhejiang Tonghui Textile Company, Ltd., Tongxiang 314500, P. R. China
| |
Collapse
|
4
|
Wu J, Qin Y, Mei X, Cai L, Hao W, Fang G. Self-Enhanced Near-Infrared Copper Nanoscale Electrochemiluminescence Probe for the Sensitive Detection of Ciprofloxacin in Foods. Foods 2025; 14:538. [PMID: 39942131 PMCID: PMC11816994 DOI: 10.3390/foods14030538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Ciprofloxacin (CIP), a widely used broad-spectrum antibiotic, poses a serious threat to human health and environmental safety due to its residues. The complementary monomers molecularly imprinted electrochemiluminescence sensor (MIECLS) based on a polyvinylpyrrolidone-functionalized copper nanowires (CuNWs@PVP) luminescent probe was constructed for the ultra-sensitive detection of CIP. CuNWs with low cost and high conductivity exhibited near-infrared electrochemiluminescence (NIR ECL) properties, yet their self-aggregation and oxidation led to a weakened emission phenomenon. PVP with solvent affinity and large skeleton was in situ attached to CuNWs surface to avoid CuNWs sedimentation and aggregation, and self-enhanced ECL signals were achieved. The bifunctional monomers molecularly imprinted polymer (MIP) possessed complementary active centers that increased their affinity with CIP, enhancing the accurate and sensitive detection of the target substances. The linear range of CIP using MIECLS was 5.00 × 10-9-5.00 × 10-5 mol L-1 with a low limit of detection (LOD) of 2.59 × 10-9 mol L-1, while the recovery rates of CIP in the spiking recovery experiment were 84.39% to 92.48%. The combination of bifunctional monomer MIP and NIR copper-based nano-luminescent probe provides a new method for the detection of CIP in food.
Collapse
Affiliation(s)
| | | | | | | | | | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (J.W.); (Y.Q.); (X.M.); (L.C.); (W.H.)
| |
Collapse
|
5
|
Wang L, Dong H, Zheng K, Zeng N, Wu M, Wang X, Li H. Organofluorosilicon Modified Polyacrylate with the Unidirectional Migration Promotion of Disperse Dyes toward Polyester Fabric for Wash-Free Digital Inkjet Dyeing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40030-40045. [PMID: 39013080 DOI: 10.1021/acsami.4c08767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The printing and dyeing industry is currently accelerating toward a direction of high efficiency, energy conservation, environmental protection, and integration with digitalization. Disperse dye wash-free digital inkjet dyeing is a revolutionary breakthrough for cleaning and coloring polyester fabric. Based on the solubility parameters and the hot-melt dyeing characteristics of disperse dyes, soft, hard, and functional monomers of acrylate were used as the main body. Moreover, single-vinyl fluorinated polysiloxane and divinyl polysiloxane with low solubility parameters were used as modified monomers. A modified polyacrylate (PFSMA) adhesive containing silicon in the main chain and fluorine silicon in the side chain was prepared via miniemulsion polymerization. Using disperse digital inkjet dyeing of polyester fabric without washing can realize energy saving, emission reduction, and carbon reduction. Results showed that the optimum preparation conditions of PFSMA were as follows: DVFS molecular weight of 957 g/mol and DVFS content of 2.5 wt %. Compared with that of polyacrylate (PA), the glass-transition temperature of PFSMA film decreased, and its water resistance, toughness, and adhesion enhanced. When the PFSMA content in the wash-free disperse red ink was 8 wt %, the color yields of the front and back of the PFSMA jet-dyed polyester fabric were 18.86 and 13.28, respectively. Moreover, the color yield of the front of PFSMA jet-dyed polyester fabric was 39.9% higher than that of the pure liquid disperse red jet-dyed fabric. The simulated fixation rate was 87.9%, approximately 2.9 times higher than that of the PA wash-free jet-dyed fabric. The color fastness to dry rubbing reached level 4 and the color fastness to wet rubbing reached level 3-4, which was one level higher than that of pure liquid disperse red jet-dyed fabrics. The color fastness to soaping reached grade 5 and the color fastness to heat compression reached grades 4-5 and above. The fabric was a little firmer but smoother. The color properties, color fastness, and hand feeling of the PFSMA wash-free jet-dyed polyester fabric exceeded the levels of commercially available adhesives.
Collapse
Affiliation(s)
- Lili Wang
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles (Ministry of Education), College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Huixian Dong
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles (Ministry of Education), College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Keying Zheng
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles (Ministry of Education), College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Nasha Zeng
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles (Ministry of Education), College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Minghua Wu
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles (Ministry of Education), College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xi Wang
- Hangzhou Honghua Digital Technology Co., Ltd., Hangzhou 310052, PR China
| | - Huijun Li
- Hangzhou Huasi Xiasha Textile Technology Co., LTD., Hangzhou 311199, PR China
| |
Collapse
|
6
|
Yang S, Sha D, Li Y, Wang M, Zhu X, Wang X, Chen G, Li Y, Xing T. Preparation of Natural Plant Polyphenol Catechin Film for Structural Coloration of Silk Fabrics. Biomimetics (Basel) 2024; 9:15. [PMID: 38248589 PMCID: PMC10813428 DOI: 10.3390/biomimetics9010015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/24/2023] [Accepted: 12/04/2023] [Indexed: 01/23/2024] Open
Abstract
Traditional textile dyeing uses chemical pigments and dyes, which consumes a large amount of water and causes serious environmental pollution. Structural color is an essential means of achieving green dyeing of textiles, and thin-film interference is one of the principles of structural coloring. In the assembly of structural color films, it is necessary to introduce dark materials to suppress light scattering and improve the brightness of the fabric. In this study, the conditions for the generation of nanofilms of catechin (CC) at the gas-liquid interface were successfully investigated. At the same time, environmentally friendly colored silk fabrics were novelly prepared using polycatechin (PCC) structural color films. In addition, it was found that various structural colors were obtained on the surface of silk fabrics by adjusting the time. Meanwhile, the color fastness of the structural colored fabrics was improved by introducing polyvinylpyrrolidone (PVP) to form a strong hydrogen bond between the fabric and catechin. PCC film is uniform and smooth, with a special double-layer structure, and can be attached to the surface of silk fabrics, giving the fabrics special structural colors. Through the thin-film interference formed between the visible light and the PCC film, the silk fabrics obtain bright, controllable, and uniform structural colors. This method is easy to operate and provides a new way of thinking for environmental-protection-oriented coloring of fabrics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yichen Li
- College of Textile and Clothing Engineering, China National Textile and Apparel Council Key Laboratory of Natural Dyes, Soochow University, Suzhou 215123, China; (S.Y.); (D.S.); (Y.L.); (M.W.); (X.Z.); (X.W.); (G.C.)
| | - Tieling Xing
- College of Textile and Clothing Engineering, China National Textile and Apparel Council Key Laboratory of Natural Dyes, Soochow University, Suzhou 215123, China; (S.Y.); (D.S.); (Y.L.); (M.W.); (X.Z.); (X.W.); (G.C.)
| |
Collapse
|
7
|
Fu Y, Shi Q, Sun J, Li X, Pan C, Tang T, Peng T, Tan H. Construction of Wash-Resistant Photonic Crystal-Coated Fabrics based on Hydrogen Bonds and a Dynamically Cross-Linking Double-Network Structure. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8480-8491. [PMID: 36748731 DOI: 10.1021/acsami.2c20581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Structural coloration as the most possible way to realize the ecofriendly dying process for textiles or fabrics has attracted significant attention in the past decades. However, photonic crystals (PCs) are a typical example of materials with structural color usually located on the surface of the fabrics or textiles, which make them not stable when rubbed, bent, or washed due to the weak interaction between the PC coatings and fabrics. Here, double networks were constructed between the PC coatings and the fabrics for the first time via a hydrogen bond by introducing tannic acid (TA) and dynamic cross-linking with 2-formylphenylboronic acid to increase the wash resistance of the structural colored fabrics. On modifying the monodispersed SiO2 nanoparticles, poly(dimethylsiloxane), and the fabrics, the interaction between the PC coatings and the fabrics increased by the formation of double networks. The structural color, wash, and rub resistance of the PC-coated fabrics were systematically studied. The obtained fabrics with the TA content at 0.030% (SiDT30) showed the best wash and rub resistance. The construction of double networks not only improved the wash and rub resistance of PCs but also retained the bright structural color of the PC coatings, facilitating the practical application of structural coloration in the textile industry.
Collapse
Affiliation(s)
- Yin Fu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Qingwen Shi
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Jiuxiao Sun
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Xue Li
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Chen Pan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Tao Tang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Tao Peng
- High-Tech Organic Fibers Key Laboratory of Sichuan Province, Bluestar Chengrand Co., Ltd., Chengdu, Sichuan 610041, China
| | - Haiying Tan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
8
|
Hu L, Ge Y, Cao Z, Tian Y, Sun Q, Li Z, Ma J, Wu Y, Wang N, Tang B. Strontium-modified porous polyetheretherketone with the triple function of osteogenesis, angiogenesis, and anti-inflammatory for bone grafting. BIOMATERIALS ADVANCES 2022; 143:213160. [PMID: 36334515 DOI: 10.1016/j.bioadv.2022.213160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/26/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Polyetheretherketone (PEEK) is a potential bone repair material because of its stable chemical and good mechanical properties. However, the biological inertness of PEEK limits its clinical application. Sr2+ has multi biological functions, including promoting bone formation and blood vessel regeneration and inhibiting inflammation. In this paper, PEEK was modified with Sr2+ with the purpose to construct PEEK bone graft material with triple functions of osteogenesis, angiogenesis, and anti-inflammatory. The results showed that Sr-modified PEEK could stably release Sr2+ for a long time in the PBS solution, and indeed could promote the proliferation and differentiation of osteoblasts, promote angiogenesis, and inhibit inflammation. Therefore, it is believed that this multifunctional PEEK with Sr2+ should show great promise for clinical applications in bone repair.
Collapse
Affiliation(s)
- Liqiu Hu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yongmei Ge
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhe Cao
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ye Tian
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - QiLi Sun
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhen Li
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou, Jiangsu 213001, China
| | - Jing Ma
- Smart Biomaterial Design Lab, Southern University of Science and Technology Hospital, Shenzhen, Guangdong 518055, China
| | - Yutong Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ning Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, Guangdong 518055, China.
| | - Bin Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
9
|
Ma W, Liu H, He W, Zhang Y, Li Y, Zhao Y, Li C, Zhou L, Shao J, Liu G. Preparation of Acrylic Yarns with Durable Structural Colors Based on Stable Photonic Crystals. ACS OMEGA 2022; 7:39750-39759. [PMID: 36385851 PMCID: PMC9647713 DOI: 10.1021/acsomega.2c03672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/12/2022] [Indexed: 05/31/2023]
Abstract
Structural coloration of photonic crystals (PCs) is considered an ecological and environmental way to achieve colorful textiles. However, constructing PCs with obvious structural colors on traditional flexible yarns is still a great challenge. As a secondary structure that forms textiles, compared with fibers and fabrics, the yarns are rougher, hindering the construction of regular PCs. In this work, the flexible acrylic yarns with vivid structural colors, named PC-based structural color yarns, were prepared by constructing regular PCs via assembling poly(styrene-butyl acrylate-methacrylate) (P(St-BA-MAA)) colloidal microspheres on yarns. Specifically, the properties of P(St-BA-MAA) colloidal microspheres were investigated. The PCs with better structural stability and obvious structural colors were prepared by presetting the acrylic adhesive layer on yarns. Moreover, the color durability and color regulation methods of prepared PC-based structural color yarns were evaluated and discussed. The results showed that the P(St-BA-MAA) colloidal microspheres exhibited even particle sizes, excellent monodispersity, and a typical hard core-soft shell structure. And the glass-transition temperature (T g) of the microspheres was tested to be about 65.6 °C. The cationic acrylate regarded as a pretreatment agent could not only improve the combination between the PC layers and the yarns by acting as a "bridge" but also enhance the structural color effect by smoothing the yarn surface. The results showed that when the mass fraction of cationic acrylate was 3 wt %, the microspheres were beneficial to access regular PCs with obvious structural colors. The PCs with bright structural colors could be constructed on black acrylic yarns, and the colors of yarns were still bright after rubbing and washing tests, indicating that the prepared PC-based structural color yarns have good color fastness. Moreover, the color hue of PC-based structural color yarns could be regulated by adjusting the particle sizes and viewing angles. This study provides strategic support for the structural coloration of flexible materials.
Collapse
Affiliation(s)
- Wanbin Ma
- Zhejiang
Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
| | - Hao Liu
- Zhejiang
Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
| | - Wenyu He
- Zhejiang
Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
| | - Yunxiao Zhang
- Zhejiang
Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
| | - Yucheng Li
- Zhejiang
Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
| | - Yang Zhao
- Zhejiang
Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
| | - Chengcai Li
- Zhejiang
Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
| | - Lan Zhou
- Key
Laboratory of Advanced Textile Materials and Manufacturing Technology,
Ministry of Education, Zhejiang Sci-Tech
University Hangzhou, Zhejiang 310018, People’s Republic
of China
| | - Jianzhong Shao
- Key
Laboratory of Advanced Textile Materials and Manufacturing Technology,
Ministry of Education, Zhejiang Sci-Tech
University Hangzhou, Zhejiang 310018, People’s Republic
of China
| | - Guojin Liu
- Zhejiang
Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
- Key
Laboratory of Advanced Textile Materials and Manufacturing Technology,
Ministry of Education, Zhejiang Sci-Tech
University Hangzhou, Zhejiang 310018, People’s Republic
of China
- Zhejiang
Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| |
Collapse
|
10
|
Meng Z, Wang B, Liu Y, Wan Y, Liu Q, Xu H, Liang R, Shi Y, Tu P, Wu H, Xu C. Mitochondria-targeting Polydopamine-coated Nanodrugs for Effective Photothermal- and Chemo- Synergistic therapies Against Lung Cancer. Regen Biomater 2022; 9:rbac051. [PMID: 35958515 PMCID: PMC9362997 DOI: 10.1093/rb/rbac051] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022] Open
Abstract
Targeting mitochondria via nano platform emerged as an attractive anti-tumor pathway due to the central regulation role in cellar apoptosis and drug resistance. Here, a mitochondria-targeting nanoparticle (TOS-PDA-PEG-TPP) was designed to precisely deliver polydopamine (PDA) as the photothermal agent and alpha-tocopherol succinate (α-TOS) as the chemotherapeutic drug to the mitochondria of the tumor cells, which inhibits the tumor growth through chemo- and photothermal- synergistic therapies. TOS-PDA-PEG-TPP was constructed by coating PDA on the surface of TOS NPs self-assembled by α-TOS, followed by grafting PEG and triphenylphosphonium (TPP) on their surface to prolong the blood circulation time and target delivery of TOS and PDA to the mitochondria of tumor cells. In vitro studies showed that TOS-PDA-PEG-TPP could be efficiently internalized by tumor cells and accumulated at mitochondria, resulting in cellular apoptosis and synergistic inhibition of tumor cell proliferation. In vivo studies demonstrated that TOS-PDA-PEG-TPP could be efficiently localized at tumor sites and significantly restrain the tumor growth under NIR irradiation without apparent toxicity or deleterious effects. Conclusively, the combination strategy adopted for functional nanodrugs construction aimed at target-delivering therapeutic agents with different action mechanisms to the same intracellular organelles can be extended to other nanodrugs-dependent therapeutic systems.
Collapse
Affiliation(s)
- Ziyu Meng
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610047, China
| | - Binchao Wang
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Yiqiang Liu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610047, China
| | - Yejian Wan
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610047, China
| | - Qianshi Liu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610047, China
| | - Huasheng Xu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610047, China
| | - Renchuan Liang
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610047, China
| | - Ying Shi
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610047, China
| | - Peng Tu
- Correspondence address: Tel: +86-28-85420852, E-mail: (P.T); (H.W); (C.X)
| | - Hong Wu
- Correspondence address: Tel: +86-28-85420852, E-mail: (P.T); (H.W); (C.X)
| | - Chuan Xu
- Correspondence address: Tel: +86-28-85420852, E-mail: (P.T); (H.W); (C.X)
| |
Collapse
|
11
|
An injectable and biodegradable hydrogel incorporated with photoregulated NO generators to heal MRSA-infected wounds. Acta Biomater 2022; 146:107-118. [PMID: 35545186 DOI: 10.1016/j.actbio.2022.05.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 02/06/2023]
Abstract
The development of degradable hydrogel fillers with high antibacterial activity and wound-healing property is urgently needed for the treatment of infected wounds. Herein, an injectable, degradable, photoactivated antibacterial hydrogel (MPDA-BNN6@Gel) was developed by incorporating BNN6-loaded mesoporous polydopamine nanoparticles (MPDA-BNN6 NPs) into a fibrin-based hydrogel. After administration, MPDA-BNN6@Gel created local hyperthermia and released large quantities of NO gas to treat methicillin-resistant Staphylococcus aureus infection under the stimulation of an 808 nm laser. Experiments confirmed that the bacteria were eradicated through irreversible damage to the cell membrane, genetic metabolism, and material energy. Furthermore, in the absence of laser irradition, the fibrin and small amount of NO that originated from MPDA-BNN6@Gel promoted wound healing in vivo. This work indicates that MPDA-BNN6@Gel is a promising alternative for the treatment of infected wounds and provides a facile tactic to design a photoregulated bactericidal hydrogel for accelerating infected wound healing. STATEMENT OF SIGNIFICANCE: The development of a degradable hydrogel with high antibacterial activity and wound-healing property is an urgent need for the treatment of infected wounds. Herein, an injectable, degradable, and photo-activated antibacterial hydrogel (MPDA-BNN6@Gel) has been developed by incorporating BNN6-loaded mesoporous polydopamine nanoparticles (MPDA-BNN6 NPs) into a fibrin-based hydrogel. After administration of MPDA-BNN6@Gel, the MPDA-BNN6@Gel could generate local hyperthermia and release large quantities of NO gas to treat the methicillin-resistant Staphylococcus aureus infection under the irradiation of 808 nm laser. Furthermore, in the absence of a laser, the fibrin and a small amount of NO originating from MPDA-BNN6@Gel could promote wound healing in vivo.
Collapse
|