1
|
Cai W, Gao Y, Feng W, Xu J, Wang M, Sun J, Cao M, Qu Z, Liu X, Huang X, Zhou H, Huang Z. Rapidly Prepared Lithophilic Frameworks Stabilizes Lithium Anodes via Altered Lithium Deposition Patterns. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403831. [PMID: 38949398 DOI: 10.1002/smll.202403831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/19/2024] [Indexed: 07/02/2024]
Abstract
Lithium metal batteries are regarded as promising candidates for next-generation energy storage systems. However, their anodes are susceptible to interfacial instability due to significant volume changes, which significantly impacts the cycle life of lithium metal batteries. Here, a rapid method for the fabrication of 3D-hosts with interface modified layers is reported. A simple infiltration and heating process enables the transformation of copper foam into Zn-BDC-modified copper foam within 1 min, rendering it suitable for use as a current collector for lithium metal anodes. The Zn-BDC nanosheets with high lithiophilicity are uniformly distributed on the surface of the current collector, facilitating the uniform deposition of lithium and reducing the volume change. Consequently, the half cell exhibits a remarkably low overpotential (26 mV) at a current-density of 4 mA cm-2 and is cycled stably for 1000 h. Furthermore, it demonstrates a significant enhancement in performance in the LiFePO4 full cell. This study provides a crucial reference on the connection between the interfacial modification of the current collector and the lithium deposition behavior, which promotes the practicalization of lithium metal anodes.
Collapse
Affiliation(s)
- Weiming Cai
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yuancan Gao
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Wei Feng
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Junwei Xu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Meng Wang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jiale Sun
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Mengxue Cao
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zhongqing Qu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xuying Liu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xia Huang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Haihui Zhou
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zhongyuan Huang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
2
|
Lei Y, Xu X, Yin J, Xi K, Wei L, Zheng J, Wang Y, Wu H, Jiang S, Gao Y. LiF/Li 3N-Rich Electrode-Electrolyte Interfaces Enabled by Multi-Functional Electrolyte Additive to Achieve High-Performance Li/LiNi 0.8Co 0.1Mn 0.1O 2 Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400365. [PMID: 38644295 DOI: 10.1002/smll.202400365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/25/2024] [Indexed: 04/23/2024]
Abstract
LiPF6-based carbonate electrolytes have been extensively employed in commercial Li-ion batteries, but they face numerous interfacial stability challenges while applicating in high-energy-density lithium-metal batteries (LMBs). Herein, this work proposes N-succinimidyl trifluoroacetate (NST) as a multifunctional electrolyte additive to address these challenges. NST additive could optimize Li+ solvation structure and eliminate HF/H2O in the electrolyte, and preferentially be decomposed on the Ni-rich cathode (LiNi0.8Co0.1Mn0.1O2, NCM811) to generate LiF/Li3N-rich cathode-electrolyte interphase (CEI) with high conductivity. The synergistic effect reduces the electrolyte decomposition and inhibits the transition metal (TM) dissolution. Meanwhile, NST promotes the creation of solid electrolyte interphase (SEI) rich in inorganics on the Li metal anode (LMA), which restrains the growth of Li dendrites, minimizes parasitic reactions, and fosters rapid Li+ transport. As a result, compared with the reference, the Li/LiNi0.8Co0.1Mn0.1O2 cell with 1.0 wt.% NST exhibits higher capacity retention after 200 cycles at 1C (86.4% vs. 64.8%) and better rate performance, even at 9C. In the presence of NST, the Li/Li symmetrical cell shows a super-stable cyclic performance beyond 500 h at 0.5 mA cm-2/0.5 mAh cm-2. These unique features of NST are a promising solution for addressing the interfacial deterioration issue of high-capacity Ni-rich cathodes paired with LMA.
Collapse
Affiliation(s)
- Yue Lei
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Xin Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Junying Yin
- College of Chemical Engineering and Safety, Binzhou University, Binzhou, Shandong, 256603, China
| | - Kang Xi
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Lai Wei
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Junzi Zheng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Yuhao Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Haihua Wu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Sen Jiang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang, University, Hangzhou, 311215, China
| | - Yunfang Gao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
3
|
Pan X, Liu T, Hou Q. Artificial Layer Construction via Cosolvent Enables Stable Ni-Rich Cathodes for Enhanced Lithium Storage. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38470147 DOI: 10.1021/acsami.4c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Ni-rich cathodes have recently gained significant attention as next-generation cathodes for lithium-ion batteries. However, their relatively high oxidative surface should be reduced to control the high surface reactivity because the capacity retention decreases rapidly in the batteries. Herein, a simple and effective method to pretreat LiNi0.8Mn0.1Co0.1O2 (NMC811) particles using a cosolvent for improving the battery performance is reported. Imitating the interfacial reaction in practical cells, an artificial layer is created via a spontaneous redox reaction between the cathode and the organic solvent. The artificial layer comprises metal-organic compounds with reduced transition-metal cations. Benefiting from the artificial layer, the cells deliver high capacity retention at a high current density and better rate capability, which might result from the low and stable interfacial resistance of the modified NMC811 cathode. Our approach can effectively reduce the high oxidative surface of most oxide cathode materials and induce a long cyclic lifespan and high capacity retention in most battery systems.
Collapse
Affiliation(s)
- Xiaona Pan
- Department of Basic Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Tianyi Liu
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Qingjie Hou
- College of Resource and Environment, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
4
|
Feng H, He Y, Ma M, Gao S, Zhao S, Shan X, Yang H, Cao PF. Hybrid Dynamic Covalent Network-Based Protecting Layer for Stable Li-Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38414436 DOI: 10.1021/acsami.3c15690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Metallic lithium (Li) is considered as the "Holy Grail" anode material for next-generation energy storage systems due to its extremely high theoretical capacity and low electrochemical potential. Before the commercialization of the Li electrode, dendritic Li growth and the unstable solid electrolyte interphase layer should be conquered. Herein, a hybrid covalent adaptable polymer network (HCAPN) is prepared via the random copolymerization of poly(ethylene glycol) methyl ether methacrylate and -acetoacetoxyethyl methacrylate, followed by chemical cross-linking with polyethylenimine (PEI) and amine-modified silicon dioxide (SiO2). Such a hybrid network, where PEI and amine-modified SiO2 formed a vinylogous urethane-based dynamic covalent bond with the copolymer, respectively, shows improved mechanical properties, solvent resistance, and excellent healability/recyclability. As the protecting layer on the Li electrode, the assembled HCAPN@Li||HCAPN@Li symmetric cell shows a long cycle life of 800 h with low overpotential at a current density of 1 mA cm-2, and superior electrochemical performance can be achieved in the HCAPN@Li||LiFePO4 full cell (capacity retention of 77% over 400 cycles at 1.5 C) and HCAPN@Li||NCM811 cell (capacity retention of 79% after 300 cycles). Surface morphology analysis is also performed for physical insight into their role as protecting layer. This work provides a new perspective for constructing a hybrid dynamic covalent network-based polymer protecting layer for inhibiting Li dendrite growth.
Collapse
Affiliation(s)
- Hao Feng
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yayue He
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mengxiang Ma
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shilun Gao
- School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Sheng Zhao
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Xinyuan Shan
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huabin Yang
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Metal and Molecular Based Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Peng-Fei Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
5
|
Yin C, Wu K, Liu C, Ma B, Rong J, Wang Y. Design of a new Li-rich Mn-based ternary cathode material based on the Ni, Co, and Mn action mechanism. Phys Chem Chem Phys 2024; 26:4091-4098. [PMID: 38226486 DOI: 10.1039/d3cp04792j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Rechargeable lithium-ion batteries, as the most advanced energy storage devices currently available, urgently require the development of cathode materials with high capacity, large specific energy, and fast charge/discharge performance to satisfy the continuous technological innovation. Here, a Li-rich Mn-based ternary cathode material Li7/6Nil/6Co1/6Mn1/2O2 is designed, and the geometrical structure, electronic properties, and thermodynamic properties of this material are investigated employing the first-principles method. Six layered structure models are established by adjusting the ratio of Ni, Co, and Mn elements, and the effects of various elements on the material properties are evaluated. Based on the performance of Ni, Co, and Mn in the structure, Li1.2Ni0.15Co0.1Mn0.55O2 features favorable electrical conductivity, thermal conductivity, and excellent stability. This material obtained through co-precipitation using a high temperature solid phase synthesis presents a high actual capacity (245 mA h g-1) and superior cycling performance (the capacity retention rate of the material is 84% after 60 cycles at 0.2C). This effort discusses the Li-rich Mn-based cathode materials in terms of the structural basis, reaction mechanism, and application exploration, which are valuable for guiding their theoretical design, optimization modification, and industrial application.
Collapse
Affiliation(s)
- Chengbin Yin
- School of Machinery and Transportation Engineering, Southwest Forestry University, Kunming 650224, China.
| | - Keyang Wu
- School of Machinery and Transportation Engineering, Southwest Forestry University, Kunming 650224, China.
| | - Chengzhou Liu
- School of Machinery and Transportation Engineering, Southwest Forestry University, Kunming 650224, China.
| | - Beibei Ma
- School of Machinery and Transportation Engineering, Southwest Forestry University, Kunming 650224, China.
| | - Ju Rong
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650031, China.
| | - Yuan Wang
- School of Machinery and Transportation Engineering, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
6
|
Patel SV, Lacivita V, Liu H, Truong E, Jin Y, Wang E, Miara L, Kim R, Gwon H, Zhang R, Hung I, Gan Z, Jung SK, Hu YY. Charge-clustering induced fast ion conduction in 2LiX-GaF 3: A strategy for electrolyte design. SCIENCE ADVANCES 2023; 9:eadj9930. [PMID: 37992180 PMCID: PMC10664998 DOI: 10.1126/sciadv.adj9930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
2LiX-GaF3 (X = Cl, Br, I) electrolytes offer favorable features for solid-state batteries: mechanical pliability and high conductivities. However, understanding the origin of fast ion transport in 2LiX-GaF3 has been challenging. The ionic conductivity order of 2LiCl-GaF3 (3.20 mS/cm) > 2LiBr-GaF3 (0.84 mS/cm) > 2LiI-GaF3 (0.03 mS/cm) contradicts binary LiCl (10-12 S/cm) < LiBr (10-10 S/cm) < LiI (10-7 S/cm). Using multinuclear 7Li, 71Ga, 19F solid-state nuclear magnetic resonance and density functional theory simulations, we found that Ga(F,X)n polyanions boost Li+-ion transport by weakening Li+-X- interactions via charge clustering. In 2LiBr-GaF3 and 2LiI-GaF3, Ga-X coordination is reduced with decreased F participation, compared to 2LiCl-GaF3. These insights will inform electrolyte design based on charge clustering, applicable to various ion conductors. This strategy could prove effective for producing highly conductive multivalent cation conductors such as Ca2+ and Mg2+, as charge clustering of carboxylates in proteins is found to decrease their binding to Ca2+ and Mg2+.
Collapse
Affiliation(s)
- Sawankumar V. Patel
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
- Center of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA
| | - Valentina Lacivita
- Advanced Materials Lab, Samsung Advanced Institute of Technology-America, Samsung Semiconductor Inc., Cambridge, MA 02138, USA
| | - Haoyu Liu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Erica Truong
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Yongkang Jin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Eric Wang
- Advanced Materials Lab, Samsung Advanced Institute of Technology-America, Samsung Semiconductor Inc., Cambridge, MA 02138, USA
| | - Lincoln Miara
- Advanced Materials Lab, Samsung Advanced Institute of Technology-America, Samsung Semiconductor Inc., Cambridge, MA 02138, USA
| | - Ryounghee Kim
- Battery Material Lab, Material Research Center, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Hyeokjo Gwon
- Battery Material Lab, Material Research Center, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Rongfu Zhang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
- Center of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA
| | - Ivan Hung
- Center of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA
| | - Zhehong Gan
- Center of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA
| | - Sung-Kyun Jung
- Battery Material Lab, Material Research Center, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919. Republic of Korea
| | - Yan-Yan Hu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
- Center of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA
| |
Collapse
|
7
|
Liu Y, Wang J, Rong S, Zhao K, He K, Cheng S, Sun Y, Xiang H. Multifunctional Acetamide Additive Combined with LiNO 3 Co-Assists Low-Concentration Electrolyte Interfacial Stability for Lithium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53405-53416. [PMID: 37937447 DOI: 10.1021/acsami.3c10616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Lithium metal batteries (LMBs) are expected to upgrade their energy density to meet the growing battery market demand; however, intractable lithium dendrites and prominent electrode-electrolyte interface problems have been the stumbling block to their practical applications. Electrolytes play a crucial role in LMBs and are directly involved in the establishment of the electrode-electrolyte interface. In particular, low-concentration electrolytes (LCEs) can significantly save electrolyte costs, but the interface issue is more noteworthy. Here, multifunctional acetamide (N-methyl-N-(trimethylsilyl)-trifluoroacetamide, MTA) and lithium nitrate (LiNO3) additives were introduced together to enhance the performance of LMBs in LCEs. The MTA additive effectively removes the trace water and corrosive HF from the electrolyte, thus suppressing lithium salt decomposition and enhancing the stability of LCEs. Moreover, the MTA additive can construct an inorganic-rich interphase layer on the cathode/anode surface to protect the electrode. Especially, MTA can cooperate with LiNO3 additive to suppress lithium dendrites and reduce interfacial impedance, thus effectively enhancing lithium metal anode stability. Benefiting from the introduction of MTA and LiNO3 additives in the LCEs, the Li||NMC811 metal battery still has a capacity of 110 mA h g-1 after 500 cycles at room temperature, while the reference batteries have failed. The rate capacity and high temperature (50 °C) performance of the Li||NCM811 batteries have also been significantly improved. Significantly, this research explores a cost-effective method of using multifunctional additives to enhance LMBs' stability in LCEs.
Collapse
Affiliation(s)
- Yongchao Liu
- School of Materials Science and Engineering, Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Jirui Wang
- School of Materials Science and Engineering, Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Shengge Rong
- Chery New Energy Automobile Co., Ltd., Wuhu, Anhui 241003, P. R. China
| | - Kun Zhao
- Chery New Energy Automobile Co., Ltd., Wuhu, Anhui 241003, P. R. China
| | - Kunpeng He
- Chery New Energy Automobile Co., Ltd., Wuhu, Anhui 241003, P. R. China
| | - Sheng Cheng
- Instrumental Analysis Center, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Yi Sun
- School of Materials Science and Engineering, Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Hongfa Xiang
- School of Materials Science and Engineering, Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| |
Collapse
|
8
|
Jabeen M, Ren Z, Ishaq M, Yuan S, Bao X, Shu C, Liu X, Liu X, Li L, He YS, Ma ZF, Liao XZ. Stable Operation Induced by Plastic Crystal Electrolyte Used in Ni-Rich NMC811 Cathodes for Li-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37890042 DOI: 10.1021/acsami.3c10643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
The LiNi0.8Mn0.1Co0.1O2 (NMC811) cathode material has been of significant consideration owing to its high energy density for Li-ion batteries. However, the poor cycling stability in a carbonate electrolyte limits its further development. In this work, we report the excellent electrochemical performance of the NMC811 cathode using a rational electrolyte based on organic ionic plastic crystal N-ethyl-N-methyl pyrrolidinium bis(fluorosulfonyl)imide C2mpyr[FSI], with the addition of (1:1 mol) LiFSI salt. This plastic crystal electrolyte (PC) is a thick viscous liquid with an ionic conductivity of 2.3 × 10-3 S cm-1 and a high Li+ transference number of 0.4 at ambient temperature. The NMC811@PC cathode delivers a discharge capacity of 188 mA h g-1 at a rate of 0.2 C with a capacity retention of 94.5% after 200 cycles, much higher than that of using a carbonate electrolyte (54.3%). Moreover, the NMC811@PC cathode also exhibits a superior high-rate capability with a discharge capacity of 111.0 mA h g-1 at the 10 C rate. The significantly improved cycle performance of the NMC811@PC cathode can be attributed to the high Li+ conductivity of the PC electrolyte, the stable Li+ conductive CEI film, and the maintaining of particle integrity during long-term cycling. The admirable electrochemical performance of the NMC811|C2mpyr[FSI]:[LiFSI] system exhibits a promising application of the plastic crystal electrolyte for high voltage layered oxide cathode materials in advanced lithium-ion batteries.
Collapse
Affiliation(s)
- Maher Jabeen
- School of Chemistry and Chemical Engineering, Shanghai Electrochemical Energy Device Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhouhong Ren
- School of Chemistry and Chemical Engineering, Shanghai Electrochemical Energy Device Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
- In-Situ Center for Physical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Ishaq
- School of Chemistry and Chemical Engineering, Shanghai Electrochemical Energy Device Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Siqi Yuan
- School of Chemistry and Chemical Engineering, Shanghai Electrochemical Energy Device Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu Bao
- School of Chemistry and Chemical Engineering, Shanghai Electrochemical Energy Device Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chaojiu Shu
- School of Chemistry and Chemical Engineering, Shanghai Electrochemical Energy Device Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoning Liu
- School of Chemistry and Chemical Engineering, Shanghai Electrochemical Energy Device Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xi Liu
- School of Chemistry and Chemical Engineering, Shanghai Electrochemical Energy Device Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
- In-Situ Center for Physical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Li
- School of Chemistry and Chemical Engineering, Shanghai Electrochemical Energy Device Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu-Shi He
- School of Chemistry and Chemical Engineering, Shanghai Electrochemical Energy Device Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zi-Feng Ma
- School of Chemistry and Chemical Engineering, Shanghai Electrochemical Energy Device Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiao-Zhen Liao
- School of Chemistry and Chemical Engineering, Shanghai Electrochemical Energy Device Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Wang X, Zeng Z, Zhang H, Qin M, Zhu Y, Xie J. 1,3,5-Trifluorobenzene, an electrolyte additive with high thermal stability and superior film-forming properties for lithium-ion batteries. Chem Commun (Camb) 2023; 59:12919-12922. [PMID: 37823281 DOI: 10.1039/d3cc04003h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The introduction of 1,3,5-trifluorobenzene (F3B) as an additive for lithium-ion battery electrolytes can produce a LiF-rich solid electrolyte interface (SEI). Meanwhile, F3B has superior thermal stability compared with traditional fluorinated additives and is less likely to produce hydrogen fluoride to damage the cathode.
Collapse
Affiliation(s)
- Xinlan Wang
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ziqi Zeng
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Han Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mingsheng Qin
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yanli Zhu
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Jia Xie
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
10
|
Park S, Kim S, Lee JA, Ue M, Choi NS. Liquid electrolyte chemistries for solid electrolyte interphase construction on silicon and lithium-metal anodes. Chem Sci 2023; 14:9996-10024. [PMID: 37772127 PMCID: PMC10530773 DOI: 10.1039/d3sc03514j] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/14/2023] [Accepted: 08/11/2023] [Indexed: 09/30/2023] Open
Abstract
Next-generation battery development necessitates the coevolution of liquid electrolyte and electrode chemistries, as their erroneous combinations lead to battery failure. In this regard, priority should be given to the alleviation of the volumetric stress experienced by silicon and lithium-metal anodes during cycling and the mitigation of other problems hindering their commercialization. This review summarizes the advances in sacrificial compound-based volumetric stress-adaptable interfacial engineering, which has primarily driven the development of liquid electrolytes for high-performance lithium batteries. Besides, we discuss how the regulation of lithium-ion solvation structures helps expand the range of electrolyte formulations and thus enhance the quality of solid electrolyte interphases (SEIs), improve lithium-ion desolvation kinetics, and realize longer-lasting SEIs on high-capacity anodes. The presented insights are expected to inspire the design and synthesis of next-generation electrolyte materials and accelerate the development of advanced electrode materials for industrial battery applications.
Collapse
Affiliation(s)
- Sewon Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| | - Saehun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| | - Jeong-A Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| | - Makoto Ue
- Research Organization for Nano & Life Innovation, Waseda University 513 Waseda-tsurumaki-cho Shinjuku-ku Tokyo 162-0041 Japan
| | - Nam-Soon Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| |
Collapse
|
11
|
Jiang S, Xu X, Yin J, Lei Y, Guan H, Gao Y. High-performance Li/LiNi 0.8Co 0.1Mn 0.1O 2 batteries enabled by optimizing carbonate-based electrolyte and electrode interphases via triallylamine additive. J Colloid Interface Sci 2023; 644:415-425. [PMID: 37126891 DOI: 10.1016/j.jcis.2023.04.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Lithium (Li) metal batteries (LMBs), paired with high-energy-density cathode materials, are promising to meet the ever-increasing demand for electric energy storage. Unfortunately, the inferior electrode-electrolyte interfaces and hydrogen fluoride (HF) corrosion in the state-of-art carbonate-based electrolytes lead to dendritic Li growth and unsatisfactory cyclability of LMBs. Herein, a multifunctional electrolyte additive triallylamine (TAA) is proposed to circumvent those issues. The TAA molecule exhibits strong nucleophilicity and contains three unsaturated carbon-carbon double bonds, the former for HF elimination, the later for in-situ passivation of aggressive electrodes. As evidenced theoretically and experimentally, the preferential oxidation and reduction of carbon-carbon double bonds enable the successful regulation of components and morphologies of electrode interfaces, as well as the binding affinity to HF effectively blocks HF corrosion. In particular, the TAA-derived electrode interfaces are packed with abundant lithium-containing inorganics and oligomers, which diminishes undesired parasitic reactions of electrolyte and detrimental degradation of electrode materials. When using the TAA-containing electrolyte, the cell configuration with Li anode and nickel-rich layered oxide cathode and symmetrical Li cell deliver remarkably enhanced electrochemical performance with regard to the additive-free cell. The TAA additive shows great potential in advancing the development of carbonate-based electrolytes in LMBs.
Collapse
Affiliation(s)
- Sen Jiang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Xin Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Junying Yin
- College of Chemical Engineering and Safety, Binzhou University, Binzhou, Shandong 256603, PR China
| | - Yue Lei
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Hongtao Guan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Yunfang Gao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China.
| |
Collapse
|
12
|
Cao M, Huang X, Li D, Gao X, Sheng L, Yu X, Xie X, Wang L, Wang T, He J. Lithiophilic Interface Layer Induced Uniform Deposition for Dendrite-free Lithium Metal Anodes in a 3D Polyethersulfone Frame. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20865-20875. [PMID: 37083338 DOI: 10.1021/acsami.2c21451] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Lithium metal anodes possess ultrahigh theoretical specific capacity for next-generation lithium metal batteries, but the infinite volume expansion and the growth of lithium dendrites remain a huge obstacle to their commercialization. Therefore, here, we construct a CuO-loaded 3D polyethersulfone (PES) nanofiber frame onto a lithiophilic Cu2O/Cu substrate to promote the lithium storage performance of the composite anode, and the 3D frame can effectively alleviate the volume expansion of lithium (Li) metal anodes. Meanwhile, lithium reacts with CuO in the composite nanofiber and Cu2O of the substrate to generate Li2O, which can strengthen the solid electrolyte interface (SEI) layer and achieve the uniform deposition of lithium. In addition, the combination of the heat treatment method and electrospinning technology solves the problem of poor adhesion between the fiber film and the substrate. As a result, the PES/CuO-Cu2O (PCC) composite current collector still maintains a smooth and flat lithium-depositing layer at 5 mA cm-2. The PCC-assembled Li||Cu half-cell can operate stably for 320 cycles at 0.5 mA cm-2, which is about 4 times that of bare Cu. Furthermore, symmetrical batteries with PCC@Li can maintain excellent cycle stability for 1770 h. Accordingly, this work provides a low-cost and highly effective strategy for stabilizing the lithium metal anode.
Collapse
Affiliation(s)
- Min Cao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, P. R. China
| | - Xianli Huang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, P. R. China
| | - Datuan Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, P. R. China
| | - Xingxu Gao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, P. R. China
| | - Lei Sheng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, P. R. China
| | - Xingyu Yu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, P. R. China
| | - Xin Xie
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, P. R. China
| | - Lu Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, P. R. China
| | - Tao Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, P. R. China
| | - Jianping He
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, P. R. China
| |
Collapse
|
13
|
Guo JX, Tang WB, Xiong X, Liu H, Wang T, Wu Y, Cheng XB. Localized high-concentration electrolytes for lithium metal batteries: progress and prospect. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2286-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
14
|
Lei Y, Xu X, Yin J, Jiang S, Xi K, Wei L, Gao Y. LiF-Rich Interfaces and HF Elimination Achieved by a Multifunctional Additive Enable High-Performance Li/LiNi 0.8Co 0.1Mn 0.1O 2 Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11777-11786. [PMID: 36808951 DOI: 10.1021/acsami.2c22089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Li-metal batteries (LMBs), especially in combination with high-energy-density Ni-rich materials, exhibit great potential for next-generation rechargeable Li batteries. Nevertheless, poor cathode-/anode-electrolyte interfaces (CEI/SEI) and hydrofluoric acid (HF) attack pose a threat to the electrochemical and safety performances of LMBs due to aggressive chemical and electrochemical reactivities of high-Ni materials, metallic Li, and carbonate-based electrolytes with the LiPF6 salt. Herein, the carbonate electrolyte based on LiPF6 is formulated by a multifunctional electrolyte additive pentafluorophenyl trifluoroacetate (PFTF) to adapt the Li/LiNi0.8Co0.1Mn0.1O2 (NCM811) battery. It is theoretically illustrated and experimentally revealed that HF elimination and the LiF-rich CEI/SEI films are successfully achieved via the chemical and electrochemical reactions of the PFTF additive. Significantly, the LiF-rich SEI film with high electrochemical kinetics facilitates Li homogeneous deposition and prevents dendritic Li from forming and growing. Benefiting from the collaborative protection of PFTF on the interfacial modification and HF capture, the capacity ratio of the Li/NCM811 battery is boosted by 22.4%, and the cycling stability of the symmetrical Li cell is expanded over 500 h. This provided strategy is conducive to the achievement of high-performance LMBs with Ni-rich materials by optimizing the electrolyte formula.
Collapse
Affiliation(s)
- Yue Lei
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Xin Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Junying Yin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- College of Chemical Engineering and Safety, Binzhou University, Binzhou, Shandong 256603, P. R. China
| | - Sen Jiang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Kang Xi
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Lai Wei
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yunfang Gao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|
15
|
3-Trimethylsilyl-2-oxazolidinone, as a multifunctional additive to stabilize FEC-containing electrolyte for sodium metal batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Jiang S, Xu X, Yin J, Wu H, Zhu X, Gao Y. Multifunctional Electrolyte Additive for Bi-electrode Interphase Regulation and Electrolyte Stabilization in Li/LiNi 0.8Co 0.1Mn 0.1O 2 Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38758-38768. [PMID: 35984711 DOI: 10.1021/acsami.2c09285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rechargeable lithium metal batteries (LMBs) with high energy densities can be achieved by coupling a lithium metal anode (LMA) and a LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode. Nevertheless, Li dendrite growth on the LMA surface and structural collapse of the NCM811 material, closely tied with the fragile cathode-/solid-electrolyte interphases (CEI/SEI) and corrosive hydrogen fluoride (HF), seriously deteriorate their performances. Herein, trimethylsilyl trifluoroacetate (TMSTFA) as a multifunctional electrolyte additive is proposed for regulation of the CEI/SEI films and elimination of HF. For one thing, the TMSTFA-derived CEI film rich in C-O species is conductive to Li+ transport and structural stability of NCM811 materials, and the TMSTFA-derived SEI film mainly consisting of inorganics (Li2CO3 and LiF) and organics (C-O and O-C═O species) can significantly promote Li+ homogeneous deposition and impede the Li dendrite growth. For another thing, the undesired reactions of the solvents and LiPF6 salt are effectively retarded by the TMSTFA additive. Consequently, in the presence of TMSTFA, the capacity retention of Li/NCM811 cell is increased by 17% after 200 cycles at 1C, and the lifespan of symmetrical Li/Li cells is prolonged beyond 600 h at 0.5 mA cm-2.
Collapse
Affiliation(s)
- Sen Jiang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Xin Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Junying Yin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Haihua Wu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Xuequan Zhu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yunfang Gao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|
17
|
Voropaeva DY, Safronova EY, Novikova SA, Yaroslavtsev AB. Recent progress in lithium-ion and lithium metal batteries. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|