1
|
Thakur S, Rohilla J, Sharma S, Singh R, Kamboj R, Kaur V. Photosensitizing CNTs by organotin(IV) compounds: generation of reactive oxygen species and degradation of amoxicillin. Dalton Trans 2024; 53:18283-18295. [PMID: 39446127 DOI: 10.1039/d4dt02490g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
This work is based on probing photosensitization in carbon nanotubes (CNTs) by organotin(IV) compounds to fabricate a hybrid material with excellent photocatalytic activity and generation of reactive oxygen species. Two organotin(IV) compounds (compounds 1 and 2) were synthesized and characterized by spectroscopic and spectrometric studies, elemental analysis and single crystal X-ray diffraction followed by their impregnation inside the CNTs. The so obtained hybrid materials (1@CNT and 2@CNT) were characterized by FTIR, TGA, FE-SEM, HR-TEM, PXRD and XPS analysis, and assessed for photosensitization and generation of reactive oxygen species. The enhanced photocatalytic activity of the fabricated materials in comparison to bare CNTs is attributed to the reduction of band gap and suppression of rapid recombination rates due to the encapsulation of photogenerated electrons. The generation of reactive species in photocatalyst 1@CNT was validated by the degradation of Amoxicillin (AMX) under optimized conditions for catalytic dosage, H2O2 concentration, response time and pH. The material 1@CNT could degrade ca. 83% of AMX by generating free radicals (˙OH and ˙O2-) under visible light irradiation at pH 6 as investigated by UV-visible spectroscopy and supported by EPR and DFT studies. Furthermore, the structural stability and sustained photocatalytic properties of 1@CNT over four cycles highlight its potential as an eco-friendly solution for degrading environmental toxins.
Collapse
Affiliation(s)
- Sahil Thakur
- Department of Chemistry, Panjab University, Chandigarh-160014, India.
| | - Jyoti Rohilla
- Department of Chemistry, Panjab University, Chandigarh-160014, India.
| | - Sahil Sharma
- Department of Chemistry, DAV College, Sector 10, Chandigarh-160011, India.
| | - Raghubir Singh
- Department of Chemistry, DAV College, Sector 10, Chandigarh-160011, India.
| | - Raman Kamboj
- Department of Chemistry, DAV College, Sector 10, Chandigarh-160011, India.
| | - Varinder Kaur
- Department of Chemistry, Panjab University, Chandigarh-160014, India.
| |
Collapse
|
2
|
Li Y, Wang X, Zhao Y, Wang X, Xue K, Yang L, Deng J, Sun S, Qi Z. Designing NIR AIEgens for lysosomes targeting and efficient photodynamic therapy of tumors. Bioorg Chem 2024; 150:107551. [PMID: 38971094 DOI: 10.1016/j.bioorg.2024.107551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 07/08/2024]
Abstract
Cancer is the most severe health problem facing most people today. Photodynamic therapy (PDT) for tumors has attracted attention because of its non-invasive nature, negligible adverse reactions, and high spatiotemporal selectivity. Developing biocompatible photosensitizers that can target, guide, and efficiently kill cancer cells is desirable in PDT. Here, two amphiphilic organic compounds, PS-I and PSS-II, were synthesized based on the D-π-A structure with a positive charge. The two AIEgens exhibited near-infrared emission, large Stokes shift, high 1O2 and O2-∙ generation efficiency, good biocompatibility, and photostability. They were co-incubated with cancer cells and eventually accumulated to lysosomes by cell imaging experiments. In vitro and in vivo experiments demonstrated that PS-I and PSS-II could effectively kill cancer cells and sufficiently inhibit tumor growth under light irradiation. PS-I had a higher fluorescence quantum yield in the aggregated state, which made it better for bio-imaging in imaging-guided photodynamic therapy. In contrast, PSS-II with a longer conjugated structure had more ROS generation to kill tumor cells under illumination, and the tumor growth inhibition of mice reached 71.95% during the treatment. No observable injury or undesirable outcomes were detected in the vital organs of the mice within the treatment group, suggesting that PSS-II/PS-I had a promising future in efficient imaging-guided PDT for cancer.
Collapse
Affiliation(s)
- Yuanhang Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Xing Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Yongfei Zhao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Xiaohan Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Ke Xue
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Li Yang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Jing Deng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Saidong Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Zhengjian Qi
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China.
| |
Collapse
|
3
|
Wang X, Tang Y, Li Y, Qi Z. A Pyroptosis-Inducing Arsenic(III) Nanomicelle Platform for Synergistic Cancer Immunotherapy. Adv Healthc Mater 2024:e2401904. [PMID: 39101289 DOI: 10.1002/adhm.202401904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/17/2024] [Indexed: 08/06/2024]
Abstract
Immunogenic cell death (ICD) could activate anti-tumor immune responses, which is highly attractive for improving cancer treatment effectiveness. Here, this work reports a multifunctional arsenic(III) allosteric inhibitor Mech02, which induces excessive accumulation of 1O2 through sensitized biocatalytic reactions, leading to cell pyroptosis and amplified ICD effect. After Mech02 is converted to Mech03, it could actualize stronger binding effects on the allosteric pocket of pyruvate kinase M2, further interfering with the anaerobic glycolysis pathway of tumors. The enhanced DNA damage triggered by Mech02 and the pyroptosis of cancer stem cells provide assurance for complete tumor clearance. In vivo experiments prove nanomicelle Mech02-HA NPs is able to activate immune memory effects and raise the persistence of anti-tumor immunity. In summary, this study for the first time to introduce the arsenic(III) pharmacophore as an enhanced ICD effect initiator into nitrogen mustard, providing insights for the development of efficient multimodal tumor therapy agents.
Collapse
Affiliation(s)
- Xing Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Yuqi Tang
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Yuanhang Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Zhengjian Qi
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
4
|
Ojha M, Banerjee M, Mandal M, Singha T, Ray S, Datta PK, Mandal M, Anoop A, Singh NDP. Two-Photon-Responsive "TICT + AIE" Active Naphthyridine-BF 2 Photoremovable Protecting Group: Application for Specific Staining and Killing of Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21486-21497. [PMID: 38640485 DOI: 10.1021/acsami.4c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
The combined effects of twisted intramolecular charge transfer (TICT) and aggregation-induced emission (AIE) phenomena have demonstrated a significant influence on excited-state chemistry. These combined TICT and AIE features have been extensively utilized to enhance photodynamic and photothermal therapy. Herein, we demonstrated the synergistic capabilities of TICT and AIE phenomena in the design of the photoremovable protecting group (PRPG), namely, NMe2-Napy-BF2. This innovative PRPG incorporates TICT and AIE characteristics, resulting in four remarkable properties: (i) red-shifted absorption wavelength, (ii) strong near-infrared (NIR) emission, (iii) viscosity-sensitive emission property, and (iv) accelerated photorelease rate. Inspired by these intriguing attributes, we developed a nanodrug delivery system (nano-DDS) using our PRPG for cancer treatment. In vitro studies showed that our nano-DDS manifested effective cellular internalization, specific staining of cancer cells, high-resolution confocal imaging of cancerous cells in the NIR region, and controlled release of the anticancer drug chlorambucil upon exposure to light, leading to cancer cell eradication. Most notably, our nano-DDS exhibited a substantially increased two-photon (TP) absorption cross section (435 GM), exhibiting its potential for in vivo applications. This development holds promise for significant advancements in cancer treatment strategies.
Collapse
Affiliation(s)
- Mamata Ojha
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Moumita Banerjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Madhurima Mandal
- Department of School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Tara Singha
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Souvik Ray
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Prasanta K Datta
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Mahitosh Mandal
- Department of School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Anakuthil Anoop
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - N D Pradeep Singh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
5
|
Tang X, Chen L, Wang Y, Chen P, Li LS, Yang X, Zhao MX. Multimodal phototherapy agents target lipid droplets for near-infrared imaging-guided type I photodynamic/photothermal therapy. Acta Biomater 2024; 180:394-406. [PMID: 38615810 DOI: 10.1016/j.actbio.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
The construction and optimization of a single phototherapeutic agent with photoluminescence, type I photodynamic therapy (PDT), and photothermal therapy (PTT) functions remain challenging. In this study, we aimed to design and synthesize four donor-acceptor (D-A) type aggregation-induced emission molecules: PSI, TPSI, PSSI, and TPSSI. We employed phenothiazine as an electron donor and 1,3-bis(dicyanomethylidene)indan as a strong electron acceptor in the synthesis process. Among them, TPSSI exhibited efficient type I reactive oxygen species generation, high photothermal conversion efficiency (45.44 %), and near-infrared emission. These observations can be attributed to the introduction of a triphenylamine electron donor group and a thiophene unit, which resulted in increased D-A strengths, a reduced singlet-triplet energy gap, and increased free intramolecular motion. TPSSI was loaded into bovine serum albumin to prepare biocompatible TPSSI nanoparticles (NPs). Our results have indicated that TPSSI NPs can target lipid droplets with negligible dark toxicity and can efficiently generate O2•- in hypoxic tumor environments. Moreover, TPSSI NPs selectively targeted 4T1 tumor tissues and exhibited a good PDT-PTT synergistic effect in vitro and in vivo. We believe that the successful preparation of multifunctional phototherapeutic agents will promote the development of efficient tumor diagnosis and treatment technologies. STATEMENT OF SIGNIFICANCE: The construction of a single phototherapeutic agent with photoluminescence, type I photodynamic therapy, and photothermal therapy functions, and its optimization remain challenging. In this study, we construct four donor-acceptor aggregation-induced emission molecules using phenothiazine as an electron donor and 1,3-Bis(dicyanomethylidene)indan as a strong electron acceptor. By optimizing the molecular structure, an integrated phototherapy agent with fluorescence imaging ability and high photodynamic / photothermal therapy performance was prepared. We believe that the successful preparation of multifunctional phototherapeutic agents will promote the development of efficient tumor diagnosis and treatment technology.
Collapse
Affiliation(s)
- Xianjiao Tang
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng 475004, China
| | - Liping Chen
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng 475004, China
| | - Yuhan Wang
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng 475004, China
| | - Pengwei Chen
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng 475004, China
| | - Lin-Song Li
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng 475004, China
| | - Xiaojing Yang
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng 475004, China.
| | - Mei-Xia Zhao
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng 475004, China.
| |
Collapse
|
6
|
Zhu L, Wu W. Dual/Multi-Modal Image-Guided Diagnosis and Therapy Based on Luminogens with Aggregation-Induced Emission. Molecules 2024; 29:371. [PMID: 38257284 PMCID: PMC10819122 DOI: 10.3390/molecules29020371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The combination of multiple imaging methods has made an indelible contribution to the diagnosis, surgical navigation, treatment, and prognostic evaluation of various diseases. Due to the unique advantages of luminogens with aggregation-induced emission (AIE), their progress has been significant in the field of organic fluorescent contrast agents. Herein, this manuscript summarizes the recent advancements in AIE molecules as contrast agents for optical image-based dual/multi-modal imaging. We particularly focus on the exceptional properties of each material and the corresponding application in the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
| | - Wenbo Wu
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China;
| |
Collapse
|
7
|
Zeng S, Liu X, Kafuti YS, Kim H, Wang J, Peng X, Li H, Yoon J. Fluorescent dyes based on rhodamine derivatives for bioimaging and therapeutics: recent progress, challenges, and prospects. Chem Soc Rev 2023; 52:5607-5651. [PMID: 37485842 DOI: 10.1039/d2cs00799a] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Since their inception, rhodamine dyes have been extensively applied in biotechnology as fluorescent markers or for the detection of biomolecules owing to their good optical physical properties. Accordingly, they have emerged as a powerful tool for the visualization of living systems. In addition to fluorescence bioimaging, the molecular design of rhodamine derivatives with disease therapeutic functions (e.g., cancer and bacterial infection) has recently attracted increased research attention, which is significantly important for the construction of molecular libraries for diagnostic and therapeutic integration. However, reviews focusing on integrated design strategies for rhodamine dye-based diagnosis and treatment and their wide application in disease treatment are extremely rare. In this review, first, a brief history of the development of rhodamine fluorescent dyes, the transformation of rhodamine fluorescent dyes from bioimaging to disease therapy, and the concept of optics-based diagnosis and treatment integration and its significance to human development are presented. Next, a systematic review of several excellent rhodamine-based derivatives for bioimaging, as well as for disease diagnosis and treatment, is presented. Finally, the challenges in practical integration of rhodamine-based diagnostic and treatment dyes and the future outlook of clinical translation are also discussed.
Collapse
Affiliation(s)
- Shuang Zeng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
| | - Xiaosheng Liu
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
| | - Yves S Kafuti
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
| | - Heejeong Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Jingyun Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Haidong Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
- Provincial Key Laboratory of Interdisciplinary Medical Engineering for Gastrointestinal Carcinoma, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning 110042, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
8
|
Liu L, Li C, Gong J, Zhang Y, Ji W, Feng L, Jiang G, Wang J, Tang BZ. A Highly Water-Soluble Aggregation-Induced Emission Luminogen with Anion-π + Interactions for Targeted NIR Imaging of Cancer Cells and Type I Photodynamic Therapy. Angew Chem Int Ed Engl 2023; 62:e202307776. [PMID: 37358791 DOI: 10.1002/anie.202307776] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 06/27/2023]
Abstract
The low oxygen dependence of type I photosensitizers (PSs) has made them a popular choice for treating solid tumors. However, the drawbacks of poor water solubility, short emission wavelength, poor stability, and inability to distinguish cancer cells from normal cells limit the application of most type I PSs in clinical therapy. Thereby, developing novel type I PSs for overcoming these problems is an urgent but challenging task. Herein, by utilizing the distinctive structural characteristics of anion-π+ interactions, a highly water-soluble type I PS (DPBC-Br) with aggregation-induced emission (AIE) characteristic and near-infrared (NIR) emission is fabricated for the first time. DPBC-Br displays remarkable water solubility (7.3 mM) and outstanding photobleaching resistance, enabling efficient and precise differentiation between tumor cells and normal cells in a wash-free and long-term tracking manner via NIR-I imaging. Additionally, the superior type I reactive oxygen species (ROS) produced by DPBC-Br provide both specific killing of cancer cells in vitro and inhibition of tumor growth in vivo, with negligible systemic toxicity. This study rationally constructs a highly water-soluble type I PS, which has higher reliability and controllability compared with conventional nanoparticle formulating procedures, offering great potential for clinical cancer treatment.
Collapse
Affiliation(s)
- Lingxiu Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Chunbin Li
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Jianye Gong
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Ying Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Weiwei Ji
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Lina Feng
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Guoyu Jiang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| |
Collapse
|
9
|
Recent Progress in Type I Aggregation-Induced Emission Photosensitizers for Photodynamic Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010332. [PMID: 36615526 PMCID: PMC9822449 DOI: 10.3390/molecules28010332] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023]
Abstract
In modern medicine, precision diagnosis and treatment using optical materials, such as fluorescence/photoacoustic imaging-guided photodynamic therapy (PDT), are becoming increasingly popular. Photosensitizers (PSs) are the most important component of PDT. Different from conventional PSs with planar molecular structures, which are susceptible to quenching effects caused by aggregation, the distinct advantages of AIE fluorogens open up new avenues for the development of image-guided PDT with improved treatment accuracy and efficacy in practical applications. It is critical that as much of the energy absorbed by optical materials is dissipated into the pathways required to maximize biomedical applications as possible. Intersystem crossing (ISC) represents a key step during the energy conversion process that determines many fundamental optical properties, such as increasing the efficiency of reactive oxygen species (ROS) production from PSs, thus enhancing PDT efficacy. Although some review articles have summarized the accomplishments of various optical materials in imaging and therapeutics, few of them have focused on how to improve the phototherapeutic applications, especially PDT, by adjusting the ISC process of organic optics materials. In this review, we emphasize the latest advances in the reasonable design of AIE-active PSs with type I photochemical mechanism for anticancer or antibacterial applications based on ISC modulation, as well as discuss the future prospects and challenges of them. In order to maximize the anticancer or antibacterial effects of type I AIE PSs, it is the aim of this review to offer advice for their design with the best energy conversion.
Collapse
|
10
|
Li J, Wang J, Zhu Y, Zhu X, Yu Z, Zhang J, Wang L, Yu J, Liu Z, Zhou H. A FLIM photosensitizer: Targeting “Affinal” suborganelles to accelerate cancer cell oxidative stress and apoptosis. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
11
|
Liu J, Chen W, Zheng C, Hu F, Zhai J, Bai Q, Sun N, Qian G, Zhang Y, Dong K, Lu T. Recent molecular design strategies for efficient photodynamic therapy and its synergistic therapy based on AIE photosensitizers. Eur J Med Chem 2022; 244:114843. [DOI: 10.1016/j.ejmech.2022.114843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/14/2022] [Accepted: 10/08/2022] [Indexed: 11/04/2022]
|
12
|
Kachwal V, Tan J. Stimuli-Responsive Electrospun Fluorescent Fibers Augmented with Aggregation-Induced Emission (AIE) for Smart Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2204848. [PMID: 36373688 PMCID: PMC9811457 DOI: 10.1002/advs.202204848] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/05/2022] [Indexed: 06/16/2023]
Abstract
This review addresses the latest advancements in the integration of aggregation-induced emission (AIE) materials with polymer electrospinning, to accomplish fine-scale electrospun fibers with tunable photophysical and photochemical properties. Micro- and nanoscale fibers augmented with AIE dyes (termed AIEgens) are bespoke composite systems that can overcome the limitation posed by aggregation-caused quenching, a critical deficiency of conventional luminescent materials. This review comprises three parts. First, the reader is exposed to the basic concepts of AIE and the fundamental mechanisms underpinning the restriction of intermolecular motions. This is followed by an introduction to electrospinning techniques pertinent to AIE-based fibers, and the core parameters for controlling fiber architecture and resultant properties. Second, exemplars are drawn from latest research to demonstrate how electrospun nanofibers and porous films incorporating modified AIEgens (especially tetraphenylethylene and triphenylamine derivatives) can yield enhanced photostability, photothermal properties, photoefficiency (quantum yield), and improved device sensitivity. Advanced applications are drawn from several promising sectors, encompassing optoelectronics, drug delivery and biology, chemosensors and mechanochromic sensors, and innovative photothermal devices, among others. Finally, the outstanding challenges together with potential opportunities in the nascent field of electrospun AIE-active fibers are presented, for stimulating frontier research and explorations in this exciting field.
Collapse
Affiliation(s)
- Vishal Kachwal
- Multifunctional Materials & Composites (MMC) LaboratoryDepartment of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUK
| | - Jin‐Chong Tan
- Multifunctional Materials & Composites (MMC) LaboratoryDepartment of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUK
| |
Collapse
|
13
|
Wang J, Li J, Yu Z, Zhu X, Yu J, Wu Z, Wang S, Zhou H. Molecular Tailoring Based on Forster Resonance Energy Transfer for Initiating Two-Photon Theranostics with Amplified Reactive Oxygen Species. Anal Chem 2022; 94:14029-14037. [PMID: 36173258 DOI: 10.1021/acs.analchem.2c03408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The fabrication of multifunctional photosensitizers (PSs) with abundant Type I/II ROS for efficient theranostics in the "therapeutic window" (700-900 nm) is an appealing yet significantly challenging task. We herein report a molecular tailoring strategy based on intramolecular two-photon Forster Resonance Energy Transfer (TP-FRET) to obtain a novel theranostic agent (Lyso-FRET), featuring the amplified advantage of energy donor (NH) and acceptor (COOH), because of the reuse of fluorescence energy with high efficiency of FRET (∼83%). Importantly, under the excitation by the near-infrared (840 nm) window, Lyso-FRET can not only penetrate the deeper tissue with a higher resolution for fluorescence imaging due to the nonlinear optical (NLO) nature, but also generate more Type I (superoxide anion) and Type II (singlet oxygen) reactive oxygen species for hypoxic PDT. Moreover, Lyso-FRET targeting lysosomes further promotes the effect of treatment. The experiments in vitro and in vivo also verify that the developed TP-FRET PS is conducive to treating deep hypoxic tumors. This strategy provides new and significant insights into the design and fabrication of advanced multifunctional PSs.
Collapse
Affiliation(s)
- Junjun Wang
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Hefei 230601, People's Republic of China
| | - Jinsong Li
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Hefei 230601, People's Republic of China
| | - Zhipeng Yu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Hefei 230601, People's Republic of China
| | - Xiaojiao Zhu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Hefei 230601, People's Republic of China
| | - Jianhua Yu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Hefei 230601, People's Republic of China
| | - Zhichao Wu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Hefei 230601, People's Republic of China
| | - Sen Wang
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Hefei 230601, People's Republic of China
| | - Hongping Zhou
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Hefei 230601, People's Republic of China
| |
Collapse
|
14
|
Li D, Liu P, Tan Y, Zhang Z, Kang M, Wang D, Tang BZ. Type I Photosensitizers Based on Aggregation-Induced Emission: A Rising Star in Photodynamic Therapy. BIOSENSORS 2022; 12:bios12090722. [PMID: 36140107 PMCID: PMC9496375 DOI: 10.3390/bios12090722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 05/09/2023]
Abstract
Photodynamic therapy (PDT), emerging as a minimally invasive therapeutic modality with precise controllability and high spatiotemporal accuracy, has earned significant advancements in the field of cancer and other non-cancerous diseases treatment. Thereinto, type I PDT represents an irreplaceable and meritorious part in contributing to these delightful achievements since its distinctive hypoxia tolerance can perfectly compensate for the high oxygen-dependent type II PDT, particularly in hypoxic tissues. Regarding the diverse type I photosensitizers (PSs) that light up type I PDT, aggregation-induced emission (AIE)-active type I PSs are currently arousing great research interest owing to their distinguished AIE and aggregation-induced generation of reactive oxygen species (AIE-ROS) features. In this review, we offer a comprehensive overview of the cutting-edge advances of novel AIE-active type I PSs by delineating the photophysical and photochemical mechanisms of the type I pathway, summarizing the current molecular design strategies for promoting the type I process, and showcasing current bioapplications, in succession. Notably, the strategies to construct highly efficient type I AIE PSs were elucidated in detail from the two aspects of introducing high electron affinity groups, and enhancing intramolecular charge transfer (ICT) intensity. Lastly, we present a brief conclusion, and a discussion on the current limitations and proposed opportunities.
Collapse
Affiliation(s)
- Danxia Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Peiying Liu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yonghong Tan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhijun Zhang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Miaomiao Kang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- Correspondence: (M.K.); (D.W.)
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- Correspondence: (M.K.); (D.W.)
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
15
|
Gu H, Liu W, Sun W, Du J, Fan J, Peng X. Single-molecule photosensitizers for NIR-II fluorescence and photoacoustic imaging guided precise anticancer phototherapy. Chem Sci 2022; 13:9719-9726. [PMID: 36091889 PMCID: PMC9400679 DOI: 10.1039/d2sc02879d] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/15/2022] [Indexed: 01/10/2023] Open
Abstract
It is ideal yet challenging to achieve precise tumor targeting and high-quality imaging guided combined photodynamic and photothermal therapy (PDT and PTT). In this study, we synthesized a series of D-π-A-type single-molecule photosensitizers (CyE-TT, CyQN-TT, and CyQN-BTT) based on quaternized 1,1,2-trimethyl-1H-benz[e]indoles as acceptors by introducing π-bridges to elongate their emission wavelength and triphenylamine as a donor to construct a twisted molecular conformation. We found that the 1O2 generation ability and the photothermal conversion efficiency (PCE) are directly correlated with the π-bridge between donors and acceptors in these molecules. When a 2,1,3-benzothiadiazole group as a π-bridge was introduced into CyQN-BTT, the singlet oxygen yield enhanced to 27.1%, PCE to 37.8%, and the emission wavelength was red-shifted to near-infrared II (NIR-II). Importantly, double-cationic CyQN-BTT displays structure-inherent cancer cell targeting ability instead of targeting normal cells. Consequently, relying on NIR-II fluorescence imaging (NIR-II FLI) and photoacoustic imaging (PAI) guided PDT and PTT, CyQN-BTT can accurately locate solid tumors in mice and effectively eliminate them with good biocompatibility and biosafety to normal tissues. This study provides insights into the design and development of a tumor-specific targeting multifunctional photosensitizer for precise cancer phototherapy.
Collapse
Affiliation(s)
- Hua Gu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Weijian Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology Dalian 116024 China
- Ningbo Institute of Dalian University of Technology Ningbo 315016 China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology Dalian 116024 China
- Ningbo Institute of Dalian University of Technology Ningbo 315016 China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology Dalian 116024 China
- Ningbo Institute of Dalian University of Technology Ningbo 315016 China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology Dalian 116024 China
| |
Collapse
|
16
|
Meng Z, Xue H, Wang T, Chen B, Dong X, Yang L, Dai J, Lou X, Xia F. Aggregation-induced emission photosensitizer-based photodynamic therapy in cancer: from chemical to clinical. J Nanobiotechnology 2022; 20:344. [PMID: 35883086 PMCID: PMC9327335 DOI: 10.1186/s12951-022-01553-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/08/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer remains a serious threat to human health owing to the lack of effective treatments. Photodynamic therapy (PDT) has emerged as a promising non-invasive cancer treatment that consists of three main elements: photosensitizers (PSs), light and oxygen. However, some traditional PSs are prone to aggregation-caused quenching (ACQ), leading to reduced reactive oxygen species (ROS) generation capacity. Aggregation-induced emission (AIE)-PSs, due to their distorted structure, suppress the strong molecular interactions, making them more photosensitive in the aggregated state instead. Activated by light, they can efficiently produce ROS and induce cell death. PS is one of the core factors of efficient PDT, so proceeding from the design and preparation of AIE-PSs, including how to manipulate the electron donor (D) and receptor (A) in the PSs configuration, introduce heavy atoms or metal complexes, design of Type I AIE-PSs, polymerization-enhanced photosensitization and nano-engineering approaches. Then, the preclinical experiments of AIE-PSs in treating different types of tumors, such as ovarian cancer, cervical cancer, lung cancer, breast cancer, and its great potential clinical applications are discussed. In addition, some perspectives on the further development of AIE-PSs are presented. This review hopes to stimulate the interest of researchers in different fields such as chemistry, materials science, biology, and medicine, and promote the clinical translation of AIE-PSs.
Collapse
Affiliation(s)
- Zijuan Meng
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Huiying Xue
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Tingting Wang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Biao Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Xiyuan Dong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Lili Yang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China.
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China.
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
17
|
Lv F, Fan X, Liu D, Song F. Photothermal agents based on small organic fluorophores with intramolecular motion. Acta Biomater 2022; 149:16-29. [PMID: 35817339 DOI: 10.1016/j.actbio.2022.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/20/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022]
Abstract
Photothermal therapy (PTT) has attracted great attention due to its noninvasive and low side effects. Photothermal agents (PTAs) which could convert absorbing light into heat play a critical role in PTT. For conventional small organic PTAs, the photothermal conversion ability is mainly achieved by intermolecular noncovalent interactions such as π-π interactions. However, in terms of organic fluorophores with rotator or vibrator segments, the balance between fluorescence emission and heat generation is mainly regulated by intramolecular motions which could be mediated by molecular engineering. Following this designing principle, various fluorophores with intramolecular motions for effective PTT have been reported. In this review, we highlight the recent progress of PTAs based on small organic fluorophores with intramolecular motions for enhanced PTT. Designing tactics of these fluorophores to afford long-wavelength absorption, high photothermal conversion ability, and effective accumulation capability are emphasized. Finally, one-for-all phototheranostics achieved by mediating intramolecular motions of these fluorophores are highlighted. We hope this review could pave a new avenue to developing fluorophores with intramolecular motion as PTAs to advance their clinical transition. STATEMENT OF SIGNIFICANCE: Recent progress of photothermal agents (PTAs) based on small organic fluorophores with intramolecular motion is summarized in this review. Molecular engineering of these small organic fluorophores to afford long-wavelength absorption, high photothermal conversion ability, and effective accumulation at tumor sites for enhanced photothermal therapy (PTT) is highlighted. Strategies to tune the intramolecular motions of these fluorophores to achieve multimodal phototherapy are emphasized as well.
Collapse
Affiliation(s)
- Fangyuan Lv
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
| | - Xiaoxue Fan
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
| | - Dapeng Liu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China.
| | - Fengling Song
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|