1
|
Zhang Z, Li H, Zhou N, Zheng Z, Zhai T, Xia F, Lou X. Protein Detection Based on Field-Effect Transistor Biosensors for Diagnosing Diseases. Anal Chem 2025; 97:1951-1959. [PMID: 39848614 DOI: 10.1021/acs.analchem.4c04178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Proteins have been one of the most important biomarkers for diagnosing diseases, and field-effect transistor (FET) biosensors possess high sensitivity; are label-free; and feature real-time detection, rapidity, and easy integration for protein detection. FET biosensors are mainly made up of FET parts, such as channel materials, and bio parts, such as receptors. This Tutorial provides an in-depth exploration of FET biosensors for protein detection from the composition perspective and discusses the commercialization of point-of-care diagnostics of proteins based on FET biosensors.
Collapse
Affiliation(s)
- Zhicheng Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Haiyang Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Ning Zhou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Zhi Zheng
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, P. R. China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| |
Collapse
|
2
|
Shao W, Sorescu DC, Liu Z, Star A. Machine Learning Discrimination and Ultrasensitive Detection of Fentanyl Using Gold Nanoparticle-Decorated Carbon Nanotube-Based Field-Effect Transistor Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311835. [PMID: 38679787 DOI: 10.1002/smll.202311835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/12/2024] [Indexed: 05/01/2024]
Abstract
The opioid overdose crisis is a global health challenge. Fentanyl, an exceedingly potent synthetic opioid, has emerged as a leading contributor to the surge in opioid-related overdose deaths. The surge in overdose fatalities, particularly due to illicitly manufactured fentanyl and its contamination of street drugs, emphasizes the urgency for drug-testing technologies that can quickly and accurately identify fentanyl from other drugs and quantify trace amounts of fentanyl. In this paper, gold nanoparticle (AuNP)-decorated single-walled carbon nanotube (SWCNT)-based field-effect transistors (FETs) are utilized for machine learning-assisted identification of fentanyl from codeine, hydrocodone, and morphine. The unique sensing performance of fentanyl led to use machine learning approaches for accurate identification of fentanyl. Employing linear discriminant analysis (LDA) with a leave-one-out cross-validation approach, a validation accuracy of 91.2% is achieved. Meanwhile, density functional theory (DFT) calculations reveal the factors that contributed to the enhanced sensitivity of the Au-SWCNT FET sensor toward fentanyl as well as the underlying sensing mechanism. Finally, fentanyl antibodies are introduced to the Au-SWCNT FET sensor as specific receptors, expanding the linear range of the sensor in the lower concentration range, and enabling ultrasensitive detection of fentanyl with a limit of detection at 10.8 fg mL-1.
Collapse
Affiliation(s)
- Wenting Shao
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Dan C Sorescu
- United States Department of Energy, National Energy Technology Laboratory, Pittsburgh, Pennsylvania, 15236, USA
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| | - Zhengru Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Alexander Star
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| |
Collapse
|
3
|
Eide JG, Mason W, Ray A, Carey J, Cook B, Craig JR. Systematic review of errors on beta-2 transferrin gel electrophoresis testing of rhinorrhea and otorrhea. Int Forum Allergy Rhinol 2024; 14:1016-1025. [PMID: 37864574 DOI: 10.1002/alr.23293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/17/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Beta-2 transferrin (B2-Tf) gel electrophoresis (GE) is the preferred non-invasive diagnostic modality for confirming cerebrospinal fluid (CSF) in body fluids. While B2-Tf GE testing is highly sensitive and specific for CSF, false-positive (FP) and false-negative (FN) results can lead to diagnostic and therapeutic dilemmas. Several series have demonstrated potential causes of false B2-Tf GE results, but few studies have reported reasons for these errors. The purpose of this systematic review was to describe sources of B2-Tf GE errors. METHODS A systematic review was performed by searching OVID, EMBASE, and Web of Science databases for B2-Tf GE studies. After applying exclusion criteria, original research studies directly addressing erroneous B2-Tf GE results underwent qualitative analysis. RESULTS Of the 243 abstracts screened, 71 underwent full-text review and 18 studies reporting B2-Tf GE errors were included for analysis. There were 15 potential FPs, 12 actual FPs, 12 potential FNs, 19 actual FNs, and 14 indeterminate results. There were also 246 potentially indeterminate results from in vitro studies. Reasons for B2-Tf GE errors included serum transferrin alterations (n = 17; all potential), infection related (n = 13; 9 potential), orbital or salivary contamination (n = 2; 1 potential), and collection related (n = 255; 246 potential). There were 31 false or indeterminate results with unspecified reasons. There were no reported errors due to laboratory processing. CONCLUSIONS Multiple potential or actual reasons for false or indeterminate results have been reported for B2-Tf GE testing of rhinorrhea and otorrhea. Future studies should explore reasons for B2-Tf testing errors and how these may affect clinical decision making.
Collapse
Affiliation(s)
- Jacob G Eide
- Department of Otolaryngology-Head and Neck Surgery, Henry Ford Health, Detroit, Michigan, USA
| | - William Mason
- Department of Otolaryngology-Head and Neck Surgery, Henry Ford Health, Detroit, Michigan, USA
| | - Amrita Ray
- Department of Otolaryngology-Head and Neck Surgery, Henry Ford Health, Detroit, Michigan, USA
| | - John Carey
- Department of Pathology, Henry Ford Health, Detroit, Michigan, USA
| | - Bernard Cook
- Department of Pathology, Henry Ford Health, Detroit, Michigan, USA
| | - John R Craig
- Department of Otolaryngology-Head and Neck Surgery, Henry Ford Health, Detroit, Michigan, USA
| |
Collapse
|
4
|
Torabi SJ, Abiri A, Chen X, Senel M, Hsu FPK, Lupták A, Khine M, Kuan EC. Multimodal diagnosis of cerebrospinal fluid rhinorrhea: State of the art review and emerging concepts. Laryngoscope Investig Otolaryngol 2024; 9:e1272. [PMID: 38803458 PMCID: PMC11129547 DOI: 10.1002/lio2.1272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
Objective Currently, diagnosis of cerebrospinal fluid (CSF) rhinorrhea relies on a multimodal approach, increasing costs and ultimately delaying diagnosis. In the United States and internationally, the crux of such a diagnosis relies on confirmation testing (via biomarkers) and localization (e.g., imaging). Biomarker testing may require analysis at an outside facility, resulting in delays diagnosis and treatment. In addition, specialized imaging may be nonspecific and often requires an active leak for diagnosis. There remains a clear need for innovative new technology. Methods A comprehensive review was conducted on both foundational and innovative scholarly articles regarding current and emerging diagnosis modalities for CSF. Results Current modalities in CSF rhinorrhea diagnosis and localization include laboratory tests (namely, B2T immunofixation), imaging (CT and/or MRI) with or without intrathecal administration, and surgical exploration. Each of these modalities carry flaws, risks, and benefits, ultimately contributing to delays in diagnosis and morbidity. Promising emerging technologies include lateral flow immunoassays (LFI) and biologically functionalized field-effect transistors (BioFET). Nevertheless, these carry some drawbacks of their own, and require further validation. Conclusion CSF rhinorrhea remains a challenging diagnosis, requiring a multimodal approach to differentiate from nonpathologic causes of rhinorrhea. Current methods in diagnosis are imperfect, as the ideal test would be a readily accessible, inexpensive, rapid, highly accurate point-of-care test without the need for excess fluid or specialized processing. Critical work is being done to develop promising, new, improved tests, though a clear successor has not yet emerged. Level of Evidence N/A.
Collapse
Affiliation(s)
- Sina J. Torabi
- Department of Otolaryngology‐Head and Neck SurgeryUniversity of CaliforniaIrvineCaliforniaUSA
| | - Arash Abiri
- Department of Otolaryngology‐Head and Neck SurgeryUniversity of CaliforniaIrvineCaliforniaUSA
- Department of Biomedical EngineeringUniversity of CaliforniaIrvineCaliforniaUSA
| | - Xinlei Chen
- Department of Biomedical EngineeringUniversity of CaliforniaIrvineCaliforniaUSA
| | - Mehmet Senel
- Department of Pharmaceutical SciencesUniversity of CaliforniaIrvineCaliforniaUSA
- Department of Biochemistry, Faculty of PharmacyBiruni UniversityIstanbulTurkey
| | - Frank P. K. Hsu
- Department of Neurological SurgeryUniversity of CaliforniaIrvineCaliforniaUSA
| | - Andrej Lupták
- Department of Pharmaceutical SciencesUniversity of CaliforniaIrvineCaliforniaUSA
| | - Michelle Khine
- Department of Biomedical EngineeringUniversity of CaliforniaIrvineCaliforniaUSA
| | - Edward C. Kuan
- Department of Otolaryngology‐Head and Neck SurgeryUniversity of CaliforniaIrvineCaliforniaUSA
- Department of Neurological SurgeryUniversity of CaliforniaIrvineCaliforniaUSA
| |
Collapse
|
5
|
Wang J, Shao W, Liu Z, Kesavan G, Zeng Z, Shurin MR, Star A. Diagnostics of Tuberculosis with Single-Walled Carbon Nanotube-Based Field-Effect Transistors. ACS Sens 2024; 9:1957-1966. [PMID: 38484361 PMCID: PMC11059104 DOI: 10.1021/acssensors.3c02694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 05/02/2024]
Abstract
Tuberculosis (TB) is still threatening millions of people's lives, especially in developing countries. One of the major factors contributing to the ongoing epidemic of TB is the lack of a fast, efficient, and inexpensive diagnostic strategy. In this work, we developed a semiconducting single-walled carbon nanotube (SWCNT)-based field-effect transistor (FET) device functionalized with anti-Mycobacterium tuberculosis antigen 85B antibody (Ab85B) to detect the major M. tuberculosis-secreted antigen 85B (Ag85B). Through optimizing the device fabrication process by evaluating the mass of the antibody and the concentration of the gating electrolyte, our Ab85B-SWCNT FET devices achieved the detection of the Ag85B spiked in phosphate-buffered saline (calibration samples) with a limit of detection (LOD) of 0.05 fg/mL. This SWCNT FET biosensor also showed good sensing performance in biological matrices including artificial sputum and can identify Ag85B in serum after introducing bovine serum albumin (BSA) into the blocking layer. Furthermore, our BSA-blocked Ab85B-SWCNT FET devices can distinguish between TB-positive and -negative clinical samples, promising the application of SWCNT FET devices in point-of-care TB diagnostics. Moreover, the robustness of this SWCNT-based biosensor to the TB diagnosis in blood serum was enhanced by blocking SWCNT devices directly with a glutaraldehyde cross-linked BSA layer, enabling future applications of these SWCNT-based biosensors in clinical testing.
Collapse
Affiliation(s)
- Jieyu Wang
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Wenting Shao
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zhengru Liu
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ganesh Kesavan
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zidao Zeng
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael R. Shurin
- Department
of Pathology, University of Pittsburgh Medical
Center, Pittsburgh, Pennsylvania 15213, United States
| | - Alexander Star
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
6
|
Shkodra B, Petrelli M, Yang KA, Tagliaferri A, Lugli P, Petti L, Nakatsuka N. Polymeric integration of structure-switching aptamers on transistors for histamine sensing. Faraday Discuss 2024; 250:43-59. [PMID: 37970875 DOI: 10.1039/d3fd00123g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Aptamers that undergo large conformational rearrangements at the surface of electrolyte-gated field-effect transistor (EG-FETs)-based biosensors can overcome the Debye length limitation in physiological high ionic strength environments. For the sensitive detection of small molecules, carbon nanotubes (CNTs) that approach the dimensions of analytes of interest are promising channel materials for EG-FETs. However, functionalization of CNTs with bioreceptors using frequently reported surface modification strategies (e.g., π-π stacking), requires highly pristine CNTs deposited through methods that are incompatible with low-cost fabrication methods and flexible substrates. In this work, we explore alternative non-covalent surface chemistry to functionalize CNTs with aptamers. We harnessed the adhesive properties of poly-D-lysine (PDL), to coat the surface of CNTs and then grafted histamine-specific DNA aptamers electrostatically in close proximity to the CNT semiconducting channel. The layer-by-layer assembly was monitored by complementary techniques such as X-ray photoelectron spectroscopy, optical waveguide lightmode spectroscopy, and fluorescence microscopy. Surface characterization confirmed histamine aptamer integration into PDL-coated CNTs and revealed ∼5-fold higher aptamer surface coverage when using CNT networks with high surface areas. Specific aptamers assembled on EG-CNTFETs enabled histamine detection in undiluted high ionic strength solutions in the concentration range of 10 nM to 100 μM. Sequence specificity was demonstrated via parallel measurements with control EG-CNTFETs functionalized with scrambled DNA. Histamine aptamer-modified EG-CNTFETs showed high selectivity vs. histidine, the closest structural analog and precursor to histamine. Taken together, these results implied that target-specific aptamer conformational changes on CNTs facilitate signal transduction, which was corroborated by circular dichroism spectroscopy. Our work suggests that layer-by-layer polymer chemistry enables integration of structure-switching aptamers into flexible EG-CNTFETs for small-molecule biosensing.
Collapse
Affiliation(s)
- Bajramshahe Shkodra
- Sensing Technologies Laboratory (STL), Faculty of Engineering, Free University of Bozen-Bolzano, 39100 Bozen, Italy
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, CH-8092, Switzerland.
| | - Mattia Petrelli
- Sensing Technologies Laboratory (STL), Faculty of Engineering, Free University of Bozen-Bolzano, 39100 Bozen, Italy
| | - Kyung-Ae Yang
- Center for Innovative Diagnostic and Therapeutic Approaches, Department of Medicine, Columbia University, New York 10032, USA
| | - Anna Tagliaferri
- Sensing Technologies Laboratory (STL), Faculty of Engineering, Free University of Bozen-Bolzano, 39100 Bozen, Italy
| | - Paolo Lugli
- Sensing Technologies Laboratory (STL), Faculty of Engineering, Free University of Bozen-Bolzano, 39100 Bozen, Italy
| | - Luisa Petti
- Sensing Technologies Laboratory (STL), Faculty of Engineering, Free University of Bozen-Bolzano, 39100 Bozen, Italy
| | - Nako Nakatsuka
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, CH-8092, Switzerland.
| |
Collapse
|
7
|
Shao W, Zeng Z, Star A. An Ultrasensitive Norfentanyl Sensor Based on a Carbon Nanotube-Based Field-Effect Transistor for the Detection of Fentanyl Exposure. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37784-37793. [PMID: 37523478 PMCID: PMC10416144 DOI: 10.1021/acsami.3c05958] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/14/2023] [Indexed: 08/02/2023]
Abstract
The opioid crisis is a worldwide public health crisis that has affected millions of people. In recent years, synthetic opioids, primarily illicit fentanyl, have become the primary driver of overdose deaths. There is a great need for a highly sensitive, portable, and inexpensive analytical tool that can quickly indicate the presence and relative threat of fentanyl. In this work, we develop a semiconductor enriched (sc-) single-walled carbon nanotube (SWCNT)-based field-effect transistor (FET) biosensor functionalized with norfentanyl antibodies for the sensitive detection of norfentanyl, the primary inactive metabolite of fentanyl, in urine samples. Different sensor configurations were explored in order to obtain the most optimized sensing results. Moreover, by employing the "reduced" antibody, we achieved orientated immobilization of the norfentanyl antibody and thus brought the antigen-antibody interaction closer to the sensor surface, further improving the sensitivity. The reported norfentanyl biosensors have a limit of detection in the fg/mL region in both calibration samples and synthetic urine samples, showing ultrasensitivity and high reliability.
Collapse
Affiliation(s)
- Wenting Shao
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zidao Zeng
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Star
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
8
|
Abdulhameed A, Halim MM, Halin IA. Dielectrophoretic alignment of carbon nanotubes: theory, applications, and future. NANOTECHNOLOGY 2023; 34:242001. [PMID: 36921341 DOI: 10.1088/1361-6528/acc46c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Carbon nanotubes (CNTs) are nominated to be the successor of several semiconductors and metals due to their unique physical and chemical properties. It has been concerning that the anisotropic and low controllability of CNTs impedes their adoption in commercial applications. Dielectrophoresis (DEP) is known as the electrokinetics motion of polarizable nanoparticles under the influence of nonuniform electric fields. The uniqueness of this phenomenon allows DEP to be employed as a novel method to align, assemble, separate, and manipulate CNTs suspended in liquid mediums. This article begins with a brief overview of CNT structure and production, with the emphasize on their electrical properties and response to electric fields. The DEP phenomenon as a CNT alignment method is demonstrated and graphically discussed, along with its theory, procedure, and parameters. We also discussed the side forces that arise in DEP systems and how they negatively or positively affect the CNT alignment. The article concludes with a brief review of CNT-based devices fabricated using DEP, as well as the method's limitations and future prospects.
Collapse
Affiliation(s)
| | - Mohd Mahadi Halim
- School of Physics, Universiti Sains Malaysia, 11800 USM Penang, Malaysia
| | - Izhal Abdul Halin
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, 43400, Malaysia
| |
Collapse
|
9
|
Cohen PR, Dorros SM. Lumbar Stenosis Spinal Surgery-Associated Cerebrospinal Fluid Leak Without Headache: An Autobiographical Case Report. Cureus 2022; 14:e25253. [PMID: 35755552 PMCID: PMC9217665 DOI: 10.7759/cureus.25253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2022] [Indexed: 11/05/2022] Open
|