1
|
Xiao X, Shen Y, Xi W, Gu L, Li X, Xi B, Xiong S, An C. Oxygen Atom Migration Dominates Anomalous Reversible Oxidation of Ru Nanosheets. Angew Chem Int Ed Engl 2025; 64:e202502927. [PMID: 40162808 DOI: 10.1002/anie.202502927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/02/2025]
Abstract
Oxidation is a ubiquitous reaction in nature. For most metals (especially metal nanoparticles [NPs]), they will be completely oxidized under suitable conditions, except ruthenium (Ru). In this work, in situ transmission electron microscopy (in situ TEM) and ex situ spectroscopy were employed to investigate the oxidation process of Ru nanosheets. Ex situ spectroscopic analysis demonstrates the incomplete oxidation of Ru nanosheets to RuO₂, while the in situ TEM observations uncover an anomalous reverse phase transformation from the oxidized to metallic phase during oxidation. Combined with theoretical calculations, the oxygen atom migration dominates the reversible oxidation process, strikingly distinct from the unidirectional oxidation pathways in conventional metallic systems. The as-generated abundant Ru─RuO2 heterointerfaces formed through reversible oxidation provide a wealth of active sites for electrochemical alkaline hydrogen evolution reaction (HER). Herein, the study not only lays a foundation for the understanding complex dynamic oxidation processes, but also offers new insights into the design of nanocatalysts.
Collapse
Affiliation(s)
- Xiong Xiao
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Institute of New Energy Materials & Low-Carbon Technologies, Tianjin University of Technology, Tianjin, 300384, China
| | - Yongli Shen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Institute of New Energy Materials & Low-Carbon Technologies, Tianjin University of Technology, Tianjin, 300384, China
| | - Wei Xi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Lin Gu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Xiaogang Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Baojuan Xi
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Shenglin Xiong
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Changhua An
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Institute of New Energy Materials & Low-Carbon Technologies, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
2
|
He Y, Ma C, Mo S, Dong CL, Chen W, Chen S, Pang H, Ma R, Wang S, Zou Y. Unilamellar MnO 2 nanosheets confined Ru-clusters combined with pulse electrocatalysis for biomass electrooxidation in neutral electrolytes. Sci Bull (Beijing) 2025; 70:193-202. [PMID: 39299873 DOI: 10.1016/j.scib.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/17/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
The electrochemical oxidation of 5-hydroxymethylfurfural (HMFOR) in alkaline electrolyte is a promising strategy for producing high-value chemicals from biomass derivatives. However, the disproportionation of aldehyde groups under strong alkaline conditions and the polymerization of HMF to form humic substances can impact the purity of 2,5-furandicarboxylic acid (FDCA) products. The use of neutral electrolytes offers an alternative environment for electrolysis, but the lack of OH- ions in the electrolyte often leads to low current density and low yields of FDCA. In this study, a sandwich-structured catalyst, consisting of Ru clusters confined between unilamellar MnO2 nanosheets (S-Ru/MnO2), was used in conjunction with an electrochemical pulse method to realize the electrochemical conversion of 5-hydroxymethylfurfural into FDCA in neutral electrolytes. Pulse electrolysis and the strong electron transfer between Ru clusters and MnO2 nanosheets help maintain Ru in a low oxidation state, ensuring high activity. The increased *OH generation led to a groundbreaking current density of 47 mA/cm2 at 1.55 V vs. reversible hydrogen electrode (RHE) and an outstanding yield rate of 98.7% for FDCA in a neutral electrolyte. This work provides a strategy that combines electrocatalyst design with an electrolysis technique to achieve remarkable performance in neutral HMFOR.
Collapse
Affiliation(s)
- Yuanqing He
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China; State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, The National Supercomputer Centers in Changsha, Hunan University, Changsha 410082, China
| | - Chongyang Ma
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, The National Supercomputer Centers in Changsha, Hunan University, Changsha 410082, China
| | - Shiheng Mo
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, The National Supercomputer Centers in Changsha, Hunan University, Changsha 410082, China
| | - Chung-Li Dong
- Department of Physics, Tamkang University, New Taipei City 25137, China
| | - Wei Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China; State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, The National Supercomputer Centers in Changsha, Hunan University, Changsha 410082, China
| | - Shuo Chen
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| | - Renzhi Ma
- International Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, The National Supercomputer Centers in Changsha, Hunan University, Changsha 410082, China
| | - Yuqin Zou
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, The National Supercomputer Centers in Changsha, Hunan University, Changsha 410082, China.
| |
Collapse
|
3
|
Chen L, Xu Y, Su L, He T, Zhang L, Shen H, Cheng Q, Liu L, Bai S, Hong SH. Visible-Light-Enhanced Hydrogen Evolution through Anodic Furfural Electro-Oxidation Using Nickel Atomically Dispersed Copper Nanoparticles. Inorg Chem 2024; 63:730-738. [PMID: 38100509 DOI: 10.1021/acs.inorgchem.3c03677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
A novel copper nanoparticle variant, denoted as Cu98Ni2 NPs, which incorporate Ni atoms in an atomically dispersed manner, has been successfully synthesized via a straightforward one-pot electrochemical codeposition process. These nanoparticles were subsequently employed as an anode to facilitate the oxidation of furfural, leading to the production of hydrogen gas. Voltammetric measurements revealed that the inclusion of trace amounts of Ni atoms in the nanoparticles resulted in a pronounced synergistic electronic effect between Cu and Ni. Consequently, a 43% increase in current density at 0.1 V was observed in comparison to pure Cu NPs. Importantly, when the Cu98Ni2 NPs were irradiated with visible light, a remarkable current density enhancement factor of 505% at 0.1 V was achieved relative to that of pure Cu NPs in the absence of light. This enhancement can be attributed to localized surface plasmon resonance induced by visible light, which triggers photothermal and photoelectric effects. These effects collectively contribute to the significant overall improvement in the electrocatalytic oxidation of furfural, leading to enhanced hydrogen evolution.
Collapse
Affiliation(s)
- Lu Chen
- College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321000, Zhejiang, P. R. China
- College of Biological, Chemical Sciences and Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, Zhejiang, P. R. China
| | - Yuan Xu
- College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321000, Zhejiang, P. R. China
- College of Biological, Chemical Sciences and Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, Zhejiang, P. R. China
| | - Liuyu Su
- College of Biological, Chemical Sciences and Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, Zhejiang, P. R. China
| | - Tao He
- College of Biological, Chemical Sciences and Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, Zhejiang, P. R. China
| | - Liqiu Zhang
- College of Biological, Chemical Sciences and Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, Zhejiang, P. R. China
| | - Hongxia Shen
- College of Biological, Chemical Sciences and Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, Zhejiang, P. R. China
| | - Qiong Cheng
- College of Biological, Chemical Sciences and Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, Zhejiang, P. R. China
| | - Lichun Liu
- College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321000, Zhejiang, P. R. China
- College of Biological, Chemical Sciences and Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, Zhejiang, P. R. China
| | - Song Bai
- College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321000, Zhejiang, P. R. China
| | - Soon Hyung Hong
- College of Biological, Chemical Sciences and Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, Zhejiang, P. R. China
| |
Collapse
|
4
|
Arias AN, Granados-Fernández R, Fernández-Marchante C, Lobato J, Rodrigo MA. Influence of current density and inlet gas flow in the treatment of gaseous streams polluted with benzene by electro-absorption. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|