1
|
Lu M, Zhao Z, Tang Y, Wang Y, Zhang F, Li J, Yang J. A Lewis basic site rich metal-organic framework featuring a hydrogen-bonded acetylene nano-trap for the efficient separation of C 2H 2/CO 2. Dalton Trans 2025; 54:2812-2818. [PMID: 39807081 DOI: 10.1039/d4dt03411b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The physical separation of C2H2 from CO2 on metal-organic frameworks (MOFs) has received a substantial amount of research interest due to its advantages of simplicity, security, and energy efficiency. However, the exploitation of ideal MOF adsorbents for C2H2/CO2 separation remains a challenging task due to their similar physical properties and molecular sizes. Herein, we report a unique C2H2 nano-trap constructed using accessible oxygen and nitrogen sites, which exhibits energetic favorability toward C2H2 molecules. This material exhibits a good acetylene capacity of 55.31 cm3 g-1 and high C2H2/CO2 selectivity of 7.0 under ambient conditions. We have combined in situ IR spectroscopy and in-depth theoretical calculations to unravel the synergistic interactions driven by the high density of accessible oxygen and nitrogen sites. Furthermore, dynamic breakthrough experiments confirmed the capability of TUTJ-201Ni for the separation of binary C2H2/CO2 mixtures. This study on Ni-based MOFs will enrich Lewis basic site rich MOFs for gas adsorption and separation applications.
Collapse
Affiliation(s)
- Mengyue Lu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China.
| | - Zhiwei Zhao
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China.
| | - Yuhao Tang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China.
| | - Yating Wang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China.
| | - Feifei Zhang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China.
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China
| | - Jinping Li
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China.
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China
| | - Jiangfeng Yang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China.
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China
| |
Collapse
|
2
|
Zhu N, Wu J, Zhao D. Nanospace Engineering for C 8 Aromatic Isomer Separation. ACS NANO 2025; 19:2029-2046. [PMID: 39762116 DOI: 10.1021/acsnano.4c15755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
C8 aromatic isomers, namely para-xylene (PX), meta-xylene (MX), ortho-xylene (OX), and ethylbenzene (EB), are essential industrial chemicals with a wide range of applications. The effective separation of these isomers is crucial across various sectors, including petrochemicals, pharmaceuticals, and polymer manufacturing. Traditional separation methods, such as distillation and solvent extraction, are energy-intensive. In contrast, selective adsorption has emerged as an efficient technique for separating C8 aromatic isomers, in which nanospace engineering offers promising strategies to address existing challenges by precisely tailoring the structures and properties of porous materials at the nanoscale. This review explores the application of nanospace engineering in modifying the pore structures and characteristics of diverse porous materials─including zeolites, metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and other porous substances─to enhance their performance in C8 aromatic isomer separation. Additionally, this review provides a comprehensive summary of how different separation techniques, temperature fluctuations, enthalpy/entropy considerations, and desorption processes influence separation efficiency. It also presents a forward-looking perspective on remaining challenges and potential opportunities for advancing C8 aromatic isomer separation.
Collapse
Affiliation(s)
- Nengxiu Zhu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore
| | - Jiayi Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore
| |
Collapse
|
3
|
Zhang Y, Tan H, Zhu J, Duan L, Ding Y, Liang F, Li Y, Peng X, Jiang R, Yu J, Fan J, Chen Y, Chen R, Ma D. A Fluorine-Functionalized Tb(III)-Organic Framework for Ba 2+ Detection. Molecules 2024; 29:5903. [PMID: 39769992 PMCID: PMC11677539 DOI: 10.3390/molecules29245903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
The development of lanthanide-organic frameworks (Ln-MOFs) using for luminescence sensing and selective gas adsorption applications is of great significance from an energy and environmental perspective. This study reports the solvothermal synthesis of a fluorine-functionalized 3D microporous Tb-MOF with a face-centered cubic (fcu) topology constructed from hexanuclear clusters (Tb6O30) bridged by fdpdc ligands, formulated as {[Tb6(fdpdc)6(μ3-OH)8(H2O)6]·4DMF}n (1), (fdpdc = 3-fluorobiphenyl-4,4'-dicarboxylate). Complex 1 displays a 3D framework with the channel of 7.2 × 7.2 Å2 (measured between opposite atoms) perpendicular to the a-axis. With respect to Ba2+ cation, the framework of activated 1 (1a) exhibits high selectivity and reversibility in luminescence sensing function, with an LOD of 4.34665 mM. According to the results of simulations, compared to other small gas molecules (CO2, N2, H2, CO, and CH4), activated 1 (1a) shows a high adsorption selectivity for C2H2 at 298 K.
Collapse
Affiliation(s)
- Yang Zhang
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Hua Tan
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Jiaping Zhu
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Linhai Duan
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Yuchi Ding
- College of Life Science, Zhaoqing University, Zhaoqing 526061, China
| | - Fenglan Liang
- College of Life Science, Zhaoqing University, Zhaoqing 526061, China
| | - Yongshi Li
- School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing 526061, China
| | - Xinteng Peng
- School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing 526061, China
| | - Ruomei Jiang
- School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing 526061, China
| | - Jiaxin Yu
- School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing 526061, China
| | - Jianjiong Fan
- School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing 526061, China
| | - Yuhang Chen
- School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing 526061, China
| | - Rimeng Chen
- Zhangjiang Institute for Food and Drug Control, Zhanjiang 524008, China
| | - Deyun Ma
- School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing 526061, China
| |
Collapse
|
4
|
Liu Q, Hilliard JS, Cai Z, Wade CR. Comparative study of metal-organic frameworks synthesized via imide condensation and coordination assembly. RSC Adv 2024; 14:27634-27643. [PMID: 39221129 PMCID: PMC11363248 DOI: 10.1039/d4ra05563b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
A series of metal-organic frameworks (1-XDI) have been synthesized by imide condensation reactions between an amine-functionalized pentanuclear zinc cluster, Zn4Cl5(bt-NH2)6, (bt-NH2 = 5-aminobenzotriazolate), and organic dianhydrides (pyromellitic dianhydride (PMDA), naphthalenetetracarboxylic dianhydride (NDA), 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA) and 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (HFIPA)). The properties of the 1-XDI MOFs have been compared with analogues (2-XDI) prepared using traditional coordination assembly. The resulting materials have been characterized by ATR-IR spectroscopy, acid-digested 1H NMR spectroscopy, elemental analysis, and gas adsorption measurements. N2 adsorption isotherm data reveal modest porosities and BET surface areas (30-552 m2 g-1). All of the new 1-XDI and 2-XDI MOFs show selective adsorption of C2H2 over CO2 while 2-PMDI and 2-BPDI exhibit high selectivity toward C3H6/C3H8 separation. This study establishes imide condensation of preformed metal-organic clusters with organic linkers as a viable route for MOF design.
Collapse
Affiliation(s)
- Qiao Liu
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Ave Columbus OH 43210 USA
| | - Jordon S Hilliard
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Ave Columbus OH 43210 USA
| | - Zhongzheng Cai
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Ave Columbus OH 43210 USA
| | - Casey R Wade
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Ave Columbus OH 43210 USA
| |
Collapse
|
5
|
Zhang L, Lang F, Xi XJ, Yin S, Pang J, Zheng W, Bu XH. A Highly Stable Microporous Calcium-Based MOF for C 2H 2/CO 2 Separation with Low Regenerative Energy. Inorg Chem 2024; 63:8329-8335. [PMID: 38648287 DOI: 10.1021/acs.inorgchem.4c00666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Most of the porous materials used for acetylene/carbon dioxide separation have the problems of poor stability and high energy requirements for regeneration, which significantly hinder their practical application in industries. Here, we report a novel calcium-based metal-organic framework (NKM-123) with excellent chemical stability against water, acids, and bases. Additionally, it has exceptional thermal stability, retaining its structural integrity at temperatures up to 300 °C. This material exhibits promising potential for separating C2H2 and CO2 gases. Furthermore, it demonstrates an adsorption heat of 29.3 kJ mol-1 for C2H2, which is lower than that observed in the majority of MOFs used for C2H2/CO2 separations. The preferential adsorption of C2H2 over that of CO2 is confirmed by dispersion-corrected density functional theory (DFT-D) calculations. In addition, the potential of industrial feasibility of NKM-123 for C2H2/CO2 separation is confirmed by transient breakthrough tests. The robust cycle performance and structural stability of NKM-123 during multiple breakthrough tests show great potential in the industrial separation of light hydrocarbons.
Collapse
Affiliation(s)
- Lulu Zhang
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Feifan Lang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, Nankai University, Tianjin 300350, China
| | - Xiao-Juan Xi
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shunxian Yin
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiandong Pang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, Nankai University, Tianjin 300350, China
| | - Wenjun Zheng
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xian-He Bu
- College of Chemistry, Nankai University, Tianjin 300071, China
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, Nankai University, Tianjin 300350, China
| |
Collapse
|
6
|
Li J, Jin Y, Yang YY, Song XQ. A Multifunctional Ca II-Eu III Heterometallic Organic Framework with Sensing and Selective Adsorption in Water. Inorg Chem 2024; 63:6871-6882. [PMID: 38557029 DOI: 10.1021/acs.inorgchem.4c00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
With increasing global industrialization, it is urgent and challenging to develop multifunctional species for detection and adsorption in the environment. For this purpose, a novel anionic heterometallic organic framework, [(CH3)2NH2][CaEu(CAM)2(H2O)2]·4H2O·4DMF (CaEuCAM), is hydrothermally synthesized based on chelidamic acid (H3CAM). Single crystal analysis shows that CaEuCAM features two different oxygen-rich channels along the c-axis in which one CAM3- bridges two sextuple-coordinated Ca2+ and two octuple-coordinated Eu3+ with a μ4-η1: η1: η1: η1: η1: η1 new chelating and bridging mode. The characteristic bright red emission and superior hydrostability of CaEuCAM under harsh acidic and basic conditions benefit it by acting as a highly sensitive sensor for Fe3+ and 3-nitrophenol (3-NP) with extremely low LODs through remarkable quenching. The combination of experiments and theoretical calculations for sensing mechanisms shows that the competitive absorption and interaction are responsible for Fe3+-induced selective emission quenching, while that for 3-NP is the result of the synergism of host-guest chemistry and the inner filter effect. Meanwhile, the assimilation of negative charge plus channels renders CaEuCAM a highly selective adsorbent for methylene blue (MB) due to a synergy of electrostatic affinity, ion-dipole interaction, and size matching. Of note is the reusability of CaEuCAM toward Fe3+/3-NP sensing and MB adsorption besides its fast response. These findings could be very useful in guiding the development of multifunctional Ln-MOFs for sensing and adsorption applications in water media.
Collapse
Affiliation(s)
- Juan Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yan Jin
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yi-Yi Yang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xue-Qin Song
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
7
|
Hu Y, Wang Y, Fang Z, Yao B, Ye Z, Peng X. Ca-MOF-Derived Porous Sorbents for High-Yield Solar-Driven Atmosphere Water Harvesting. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44942-44952. [PMID: 37703912 DOI: 10.1021/acsami.3c08929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The development of high-yield, metal-organic framework (MOF)-based water harvesters in arid areas remains challenging due to the absence of effective strategies for enhancing water sorption capacity and kinetics. Herein, we presented a novel strategy for in situ fabrication of calcium chloride (CaCl2) decorated MOF-derived porous sorbents (PCC-42) through pyrolysis Ca-MOF and subsequently hydrochloric acid (HCl) vapor treatment process. The resulting PCC-42 sorbents exhibited a high water adsorption capacity of 3.04 g g-1 at 100% relative humidity (RH), outstanding photothermal performance, and rapid water uptake-release kinetics, surpassing most reported MOFs adsorbents. At 20, 30, 40, and 50% RH, PCC-42 demonstrated water uptake capacity of 0.45, 0.59, 0.76, and 0.9 g g-1, which represented an increase of 421 and 940% (at 20% RH) and 333 and 351% (at 30% RH) compared to Ca-MOF and CaCl2·2H2O, respectively. Approximately 80% of the adsorbed water in PCC-42 could be released under one sun within 50 min. Indoor water harvesting experiments demonstrated that PCC-42 is a promising adsorbent for various humidity environments. Additionally, outdoor solar-driven atmospheric water harvesting (AWH) tests revealed a high daily water production of 1.13 L/kgadsorbent under typical arid conditions (30-60% RH). The proposed strategy helps the design of high-performance adsorbents for solar-driven AWH in arid environments.
Collapse
Affiliation(s)
- Yue Hu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nanomaterials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, P. R. China
| | - Yuqi Wang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nanomaterials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, P. R. China
| | - Zhou Fang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nanomaterials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, P. R. China
| | - Bing Yao
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nanomaterials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, P. R. China
| | - Zhizhen Ye
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nanomaterials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, P. R. China
| | - Xinsheng Peng
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nanomaterials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, P. R. China
| |
Collapse
|
8
|
Su RH, Shi WJ, Zhang XY, Hou L, Wang YY. Cu-MOFs with Rich Open Metal and F Sites for Separation of C 2H 2 from CO 2 and CH 4. Inorg Chem 2023. [PMID: 37450355 DOI: 10.1021/acs.inorgchem.3c01203] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Herein, we used the 4-fluoro-[1,1'-biphenyl]-3,4',5-tricarboxylic acid (H3fbptc) ligand to design and construct a new metal-organic framework (MOF), [Cu3(fbptc)2(H2O)3]·3NMP (1), which possesses rich accessible metal sites and F functional groups in the porous walls and shows high uptake for C2H2 (119.3 cm3 g-1) and significant adsorption selectivity for C2H2 over CH4 (14.4) and CO2 (3.6) at 298 K and 100 kPa. In particular, for the gas mixtures of C2H2-CH4 and C2H2-CO2, the MOF reveals large breakthrough time ratios (C2H2/CH4 = 13, C2H2/CO2 = 5.9), which are particularly prominent in dynamic breakthrough experiments, also confirming the excellent potential for the practical separation of C2H2 from two-component mixtures (C2H2-CH4 and C2H2-CO2) and even three-component mixtures (C2H2-CO2-CH4).
Collapse
Affiliation(s)
- Run-Han Su
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Wen-Juan Shi
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Xiao-Yu Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| |
Collapse
|
9
|
Designed metal-organic frameworks with potential for multi-component hydrocarbon separation. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
10
|
Yue L, Wang X, Guo R, Lv Y, Zhang T, Li B, Lin S, Liang Y, Chen DL, He Y. Ligand Conformation Fixation Strategy for Expanding the Structural Diversity of Copper-Tricarboxylate Frameworks and C 2H 2 Purification Performance Studies. Inorg Chem 2023; 62:2415-2424. [PMID: 36683338 DOI: 10.1021/acs.inorgchem.2c04226] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Structural and functional expansion of metal-organic frameworks (MOFs) is fundamentally important because it not only enriches the structural chemistry of MOFs but also facilitates the full exploration of their application potentials. In this work, by employing a dual-site functionalization strategy to lock the ligand conformation, we designed and synthesized a pair of biphenyl tricarboxylate ligands bearing dimethyl and dimethoxy groups and fabricated their corresponding framework compounds through coordination with copper(II) ions. Compared to the monofunctionalized version, introduction of two side groups can significantly fix the ligand conformation, and as a result, the dual-methoxy compound exhibited a different network structure from the mono-methoxy counterpart. Although only one almost orthogonal conformation was observed for the two ligands, their coordination framework compounds displayed distinct topological structures probably due to different solvothermal conditions. Significantly, with a hierarchical cage-type structure and good hydrostability, the dimethyl compound exhibited promising practical application value for industrially important C2H2 separation and purification, which was comprehensively demonstrated by equilibrium/dynamic adsorption measurements and the corresponding Clausius-Clapeyron/IAST/DFT theoretical analyses.
Collapse
Affiliation(s)
- Lianglan Yue
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua321004, China
| | - Xinxin Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua321004, China
| | - Rou Guo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua321004, China
| | - Yueli Lv
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua321004, China
| | - Ting Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua321004, China
| | - Bing Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua321004, China
| | - Shengjie Lin
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua321004, China
| | - Ye Liang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua321004, China
| | - De-Li Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua321004, China
| | - Yabing He
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua321004, China
| |
Collapse
|
11
|
Wang YN, Xu H, Wang SD, Mao RY, Wen LM, Wang SY, Liu LJ, Sun Y, Lu SQ, Wang F, Yang QF. A water-stable dual-responsive Cd-CP for fluorometric recognition of hypochlorite and acetylacetone in aqueous media. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:121952. [PMID: 36228487 DOI: 10.1016/j.saa.2022.121952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/25/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
One novel cadmium(II)-coordination polymer [Cd3L2(datrz)(H2O)3] (CP 1) is controllably synthesized by surmising the astute combination of semi-rigid tricarboxylate acid 4-(2',3'-dicarboxylphenoxy) benzoic acid (H3L) and auxiliary ligand 3,5-diamino-1,2,4-triazole (datrz). Structure analysis shows that CP 1 has a two-dimensional (2D) layer structure with a 5-nodal (43) (44·62) (45·64·8) (45·6) (47·66·82) topology. Further investigations reveal that CP 1 shows superordinary water stability and good thermal stability. The fluorescent explorations suggest that the as-synthesized CP 1 could emit blue light centered at 485 nm, attributing to ligand-based emission. In terms of sensing investigations, CP 1 could act as a fluorescent sensor for detecting hypochlorite (ClO-) and acetylacetone (acac) through fluorescence turn-off process in aqueous solution, and the detection limit could reach 0.18 μM and 0.056 μM, respectively. Further research reveals that it is more likely the N-H···O-Cl hydrogen bonds between -NH2 groups of the triazole ligands and O atoms of ClO- plays the key role in the system, which may serve as a bridge for the energy transfer, leading to fluorescence quenching of the chemosensor. While the photoinduced electron transfer (PET) combined with inner filter effect (IFT) should be responsible for the turn-off fluorescence of CP 1 triggered by acac.
Collapse
Affiliation(s)
- Yan-Ning Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Hao Xu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Shao-Dan Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Run-Yu Mao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Lin-Man Wen
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Si-Yuan Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Lin-Jie Liu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Yue Sun
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Shu-Qin Lu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Fan Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Qing-Feng Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
12
|
Lu X, Tang Y, Yang G, Wang YY. Porous functional metal–organic frameworks (MOFs) constructed from different N-heterocyclic carboxylic ligands for gas adsorption/separation. CrystEngComm 2023. [DOI: 10.1039/d2ce01667b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This review mainly summarizes the recent progress of MOFs composed of N-heterocyclic carboxylate ligands in gas sorption/separation. This work may help to understand the relationship between the structures of MOFs and gas sorption/separation.
Collapse
Affiliation(s)
- Xiangmei Lu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Yue Tang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Guoping Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| |
Collapse
|
13
|
Yue L, Wang X, Lv C, Zhang T, Li B, Chen DL, He Y. Substituent Engineering-Enabled Structural Rigidification and Performance Improvement for C 2/CO 2 Separation in Three Isoreticular Coordination Frameworks. Inorg Chem 2022; 61:21076-21086. [PMID: 36508728 DOI: 10.1021/acs.inorgchem.2c03657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Construction of porous solid materials applied to the adsorptive removal of CO2 from C2 hydrocarbons is highly demanded thanks to the important role C2 hydrocarbons play in the chemical industry but quite challenging owing to the similar physical parameters between C2 hydrocarbons and CO2. In particular, the development of synthetic strategies to simultaneously enhance the uptake capacity and adsorption selectivity is very difficult due to the trade-off effect frequently existing between both of them. In this work, a combination of the dicopper paddlewheel unit and 4-pyridylisophthalate derivatives bearing different substituents afforded an isoreticular family of coordination framework compounds as a platform. Their adsorption properties toward C2 hydrocarbons and CO2 were systematically investigated, and subsequent IAST and density functional theory calculations combined with column breakthrough experiments verified their promising potential for C2/CO2 separations. Furthermore, the substituent engineering endowed the resulting compounds with simultaneous enhancement of uptake capacity and adsorption selectivity and thus better C2/CO2 separation performance compared to their parent compound. The substituent introduction not only mitigated the framework distortion via fixing the ligand conformation for establishment of better permanent porosity required for gas adsorption but also polarized the framework surface for host-guest interaction improvement, thus resulting in enhanced separation performance.
Collapse
Affiliation(s)
- Lianglan Yue
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xinxin Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Chao Lv
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Ting Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Bing Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - De-Li Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Yabing He
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
14
|
Zhang Q, Han GN, Lian X, Yang SQ, Hu TL. Customizing Pore System in a Microporous Metal–Organic Framework for Efficient C2H2 Separation from CO2 and C2H4. Molecules 2022; 27:molecules27185929. [PMID: 36144665 PMCID: PMC9502222 DOI: 10.3390/molecules27185929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Selective-adsorption separation is an energy-efficient technology for the capture of acetylene (C2H2) from carbon dioxide (CO2) and ethylene (C2H4). However, it remains a critical challenge to effectively recognize C2H2 among CO2 and C2H4, owing to their analogous molecule sizes and physical properties. Herein, we report a new microporous metal–organic framework (NUM-14) possessing a carefully tailored pore system containing moderate pore size and nitro-functionalized channel surface for efficient separation of C2H2 from CO2 and C2H4. The activated NUM-14 (namely NUM-14a) exhibits sufficient pore space to acquire excellent C2H2 loading capacity (4.44 mmol g−1) under ambient conditions. In addition, it possesses dense nitro groups, acting as hydrogen bond acceptors, to selectively identify C2H2 molecules rather than CO2 and C2H4. The breakthrough experiments demonstrate the good actual separation ability of NUM-14a for C2H2/CO2 and C2H2/C2H4 mixtures. Furthermore, Grand Canonical Monte Carlo simulations indicate that the pore surface of the NUM-14a has a stronger affinity to preferentially bind C2H2 over CO2 and C2H4 via stronger C-H···O hydrogen bond interactions. This article provides some insights into customizing pore systems with desirable pore sizes and modifying groups in terms of MOF materials toward the capture of C2H2 from CO2 and C2H4 to promote the development of more MOF materials with excellent properties for gas adsorption and separation.
Collapse
|
15
|
Su F, Li S, Han C, Wu L, Wang Z. Tuning three coordination polymers with dinuclear metal units via pH control: syntheses, structures, and magnetic properties. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|