1
|
Wu H, Ma W, Wu L, Dong W, Li Y, Fan Z, Zhao X, Huang P, Zhang X. Suppressing Dendrite Growth by Dolosse-Structured ZIF-67 Polycrystalline Membranes Through Eliminating Interfacial Electrolyte Turbulence on Zinc Anode. Angew Chem Int Ed Engl 2025:e202506222. [PMID: 40207514 DOI: 10.1002/anie.202506222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/11/2025]
Abstract
Aqueous Zn-ion batteries (ZIBs) are considered a promising candidate for next-generation energy storage devices, but the Zn dendrite problem limits their practical application potential. Although existing solutions, such as electrolyte additives and electrode coatings, can effectively address this issue, but almost all these solutions are based on a static electrolyte model and overlook the relationship between electrolyte flow and dendrite growth. Herein, inspired by the principle of dolosse to reduce the impact of waves on coastlines, we utilized the epitaxial growth characteristics of metal-organic frameworks (MOFs) to construct a ZIF-67 polycrystalline membrane with macro-microporous on Zn foil (D-67M@Zn). The dolosse-like structure of the membrane effectively eliminates turbulence at the electrode-electrolyte interface, enabling Zn2+ to deposit in a stable electrolyte environment, reducing the secondary nucleation rate of Zn, and inhibiting dendrite growth. The macro-microporous skeleton also helps regulate the morphology of Zn deposition, as confirmed by fluid dynamics analysis and AC-STEM. Benefiting from the unique properties of D-67M, both symmetric cells and full cells based on the D-67M@Zn anode exhibit impressive cycling stability.
Collapse
Affiliation(s)
- Haiyang Wu
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Wenyu Ma
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Langyuan Wu
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Wendi Dong
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Yang Li
- School of Chemistry and Materials Chemistry, Jiangsu Normal University, Xuzhou, 221116, China
| | - Zengjie Fan
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Xuening Zhao
- School of Chemistry and Materials Chemistry, Jiangsu Normal University, Xuzhou, 221116, China
| | - Peng Huang
- School of Chemistry and Materials Chemistry, Jiangsu Normal University, Xuzhou, 221116, China
| | - Xiaogang Zhang
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education College of Material Science and Engineering, Nanjing, 211106, China
| |
Collapse
|
2
|
Wu S, Peng LE, Yang Z, Sarkar P, Barboiu M, Tang CY, Fane AG. Next-Generation Desalination Membranes Empowered by Novel Materials: Where Are We Now? NANO-MICRO LETTERS 2024; 17:91. [PMID: 39702561 DOI: 10.1007/s40820-024-01606-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/23/2024] [Indexed: 12/21/2024]
Abstract
Membrane desalination is an economical and energy-efficient method to meet the current worldwide water scarcity. However, state-of-the-art reverse osmosis membranes are gradually being replaced by novel membrane materials as a result of ongoing technological advancements. These novel materials possess intrinsic pore structures or can be assembled to form lamellar membrane channels for selective transport of water or solutes (e.g., NaCl). Still, in real applications, the results fall below the theoretical predictions, and a few properties, including large-scale fabrication, mechanical strength, and chemical stability, also have an impact on the overall effectiveness of those materials. In view of this, we develop a new evaluation framework in the form of radar charts with five dimensions (i.e., water permeance, water/NaCl selectivity, membrane cost, scale of development, and stability) to assess the advantages, disadvantages, and potential of state-of-the-art and newly developed desalination membranes. In this framework, the reported thin film nanocomposite membranes and membranes developed from novel materials were compared with the state-of-the-art thin film composite membranes. This review will demonstrate the current advancements in novel membrane materials and bridge the gap between different desalination membranes. In this review, we also point out the prospects and challenges of next-generation membranes for desalination applications. We believe that this comprehensive framework may be used as a future reference for designing next-generation desalination membranes and will encourage further research and development in the field of membrane technology, leading to new insights and advancements.
Collapse
Affiliation(s)
- Siqi Wu
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Lu Elfa Peng
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Pulak Sarkar
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Mihail Barboiu
- Institut Européen des Membrane, University of Montpellier, ENSCM, CNRS UMR5635, Place Eugène Bataillon, CC 047, 34095, Montpellier, France
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China.
| | - Anthony G Fane
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, The University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| |
Collapse
|
3
|
Younas H, Ahmad H, Baig N, Aljundi IH. Improved Efficiency and Stability of MXene Membranes via Interlayer Space Tuning for Oily Water Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20452-20463. [PMID: 39178141 DOI: 10.1021/acs.langmuir.4c01887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Surfactant-stabilized oil-in-water emulsions are a major environmental concern due to their severe consequences for aquatic organisms and humans. Two-dimensional materials, particularly MXenes, are widely used in various applications and could be used in designing advanced membranes. The narrow interlayer spacing and intrinsic oxidation severely limit mass diffusion and induce poor stability, respectively, of MXene-based separating layers on the membrane support, rendering it challenging to use for oil-water separation. Herein, a high-performing, minimally defective MXene membrane with large d-spacing was fabricated. The d-spacing of the MXene sheets was controlled using Si-based species as the intercalating agents. The modified MXene-based membrane (ultrasonication-assisted exfoliated MXene with Si pillars) (U-MX-Si) exhibited an enlarged interlayer spacing of 11 Å, increased surface energy of 41 mJ·m-2, and less defective separating layer compared to that of pristine MXene, which was due to enhanced interlayer spacing. This phenomenon induced a higher degree of exfoliated sheets that facilitated better MXene sheet self-assembly on the membrane support, thereby resulting in high separation efficiency (99%). An increase in the surface energy of the U-MX-Si membrane caused a constant permeate flux during operation, which demonstrated their practical implications. This study presents an important pathway for designing MXene-based membranes for separation applications.
Collapse
|
4
|
Hu X, Zhou S, Zhang X, Zeng H, Guo Y, Xu Y, Liang Q, Wang J, Jiang L, Kong B. Superassembled MXene-carboxymethyl chitosan nanochannels for the highly sensitive recognition and detection of copper ions. Analyst 2024; 149:1464-1472. [PMID: 38284827 DOI: 10.1039/d3an02190d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Copper ions (Cu2+), as a crucial trace element, play a vital role in living organisms. Thus, the detection of Cu2+ is of great significance for disease prevention and diagnosis. Nanochannel devices with an excellent nanoconfinement effect show great potential in recognizing and detecting Cu2+ ions. However, these devices often require complicated modification and treatment, which not only damages the membrane structure, but also induces nonspecific, low-sensitivity and non-repeatable detection. Herein, a 2D MXene-carboxymethyl chitosan (MXene/CMC) freestanding membrane with ordered lamellar channels was developed by a super-assembly strategy. The introduction of CMC provides abundant space charges, improving the nanoconfinement effect of the nanochannel. Importantly, the CMC can chelate with Cu2+ ions, endowing the MXene/CMC with the ability to detect Cu2+. The formation of CMC-Cu2+ complexes decreases the space charges, leading to a discernible variation in the current signal. Therefore, MXene/CMC can achieve highly sensitive and stable Cu2+ detection based on the characteristics of nanochannel composition. The linear response range for Cu2+ detection is 10-9 to 10-5 M with a low detection limit of 0.095 nM. Notably, MXene/CMC was successfully applied for Cu2+ detection in real water and fetal bovine serum samples. This work provides a simple, highly sensitive and stable detection platform based on the properties of the nanochannel composition.
Collapse
Affiliation(s)
- Xiaomeng Hu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Shan Zhou
- College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Xin Zhang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Hui Zeng
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Yaxin Guo
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Yeqing Xu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Qirui Liang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266400, P. R. China
| | - Jinqiang Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, P. R. China
| |
Collapse
|
5
|
Baysal T, Güvensoy-Morkoyun A, Tantekin-Ersolmaz ŞB, Velioğlu S. Methanol recovery: potential of nanolaminate organic solvent nanofiltration (OSN) membranes. NANOSCALE 2024; 16:3393-3416. [PMID: 38230534 DOI: 10.1039/d3nr05611b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Researchers have made a significant breakthrough by merging the energy-saving attribute of organic solvent nanofiltration (OSN) with the remarkable solvent permeance and solute rejection of two-dimensional (2D) laminated membranes. This innovative approach brings forth a new era of sustainable and cost-effective separation techniques, presenting a promising solution to the issue of industrial solvents contaminating the environment. This development paves the way for new opportunities in building a sustainable future. Specifically, our mini-review has cast a spotlight on the separation and recovery of methanol-a solvent abundantly used in industrial processes. We systematically evaluated a diverse array of free-standing 2D nanolaminate OSN membranes. The analysis encompasses the assessment of pure methanol permeance, solute rejection capabilities, and the simultaneous evaluation of methanol permeance and solute rejection performance. Notably, this study sheds light on the considerable potential of 2D laminated OSN membranes in revolutionizing separation processes for the industrial use of methanol.
Collapse
Affiliation(s)
- Tuğba Baysal
- Institute of Nanotechnology, Gebze Technical University, Gebze, Kocaeli, 41400, Türkiye.
| | - Aysa Güvensoy-Morkoyun
- Department of Chemical Engineering, Istanbul Technical University, Maslak, Istanbul, 34469, Türkiye.
| | - Ş Birgül Tantekin-Ersolmaz
- Department of Chemical Engineering, Istanbul Technical University, Maslak, Istanbul, 34469, Türkiye.
- Synthetic Fuels & Chemicals Technology Center (SENTEK), Istanbul Technical University, Maslak, Istanbul, 34469, Türkiye
| | - Sadiye Velioğlu
- Institute of Nanotechnology, Gebze Technical University, Gebze, Kocaeli, 41400, Türkiye.
- Nanotechnology Research and Application Center (NUAM), Gebze Technical University, Gebze, Kocaeli, 41400, Türkiye
| |
Collapse
|
6
|
Huang L, Ding L, Caro J, Wang H. MXene-based Membranes for Drinking Water Production. Angew Chem Int Ed Engl 2023; 62:e202311138. [PMID: 37615530 DOI: 10.1002/anie.202311138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 08/25/2023]
Abstract
The soaring development of industry exacerbates the shortage of fresh water, making drinking water production an urgent demand. Membrane techniques feature the merits of high efficiency, low energy consumption, and easy operation, deemed as the most potential technology to purify water. Recently, a new type of two-dimensional materials, MXenes as the transition metal carbides or nitrides in the shape of nanosheets, have attracted enormous interest in water purification due to their extraordinary properties such as adjustable hydrophilicity, easy processibility, antifouling resistance, mechanical strength, and light-to-heat transformation capability. In pioneering studies, MXene-based membranes have been evaluated in the past decade for drinking water production including the separation of bacteria, dyes, salts, and heavy metals. This review focuses on the recent advancement of MXene-based membranes for drinking water production. A brief introduction of MXenes is given first, followed by descriptions of their unique properties. Then, the preparation methods of MXene membranes are summarized. The various applications of MXene membranes in water treatment and the corresponding separation mechanisms are discussed in detail. Finally, the challenges and prospects of MXene membranes are presented with the hope to provide insightful guidance on the future design and fabrication of high-performance MXene membranes.
Collapse
Affiliation(s)
- Lingzhi Huang
- Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Li Ding
- Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jürgen Caro
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstrasse 3A, 30167, Hannover, Germany
| | - Haihui Wang
- Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
7
|
Liu J, Zhao Z, Li L, Wu Y, He H. Molecular simulation study of 2D MXene membranes for organic solvent nanofiltration. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
8
|
Li Y, Liu Z, Li S, Nian P, Xu N, Luo H, Wei Y. Highly permeable and stable hyperbranched polyethyleneimine crosslinked AgNP@Ti3C2Tx MXene membranes for nanofiltration. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
Ali S, Shah IA, Ihsanullah I, Feng X. Nanocomposite membranes for organic solvent nanofiltration: Recent advances, challenges, and prospects. CHEMOSPHERE 2022; 308:136329. [PMID: 36087722 DOI: 10.1016/j.chemosphere.2022.136329] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/27/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Organic solvent nanofiltration (OSN) is an emerging technology for the separation of organic solvents that are relevant to the petrochemical, pharmaceutical, food and fine chemical industries. The separation performance of OSN membranes has continued to push the boundary up through advanced membrane fabrication techniques and novel materials for fabricating the membranes. Despite the many advantages, OSN membranes still face such challenges as low solvent permeability and durability in harsh organic solvent conditions. To overcome these limitations, attempts have been made to incorporate nanomaterial fillers into OSN membranes to improve their overall performance. This review analyzes the potential and use of nanomaterials for OSN membranes, including covalent organic frameworks (COFs), metal-organic frameworks (MOFs), metal oxides (MOs) and carbon-based materials (CBMs). Recent advances in the state-of-the-art nano-based OSN membranes, in the form of thin-film nanocomposite (TFN) membranes and mixed matrix membranes (MMMs), are reviewed. Moreover, the separation mechanisms of OSN with nano-based membranes are discussed. The challenges faced by these OSN membranes are also elaborated, and recommendations for further research in this field are provided.
Collapse
Affiliation(s)
- Sharafat Ali
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Izaz Ali Shah
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Ihsanullah Ihsanullah
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Xianshe Feng
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
10
|
Dai Y, Niu Z, Luo W, Wang Y, Mu P, Li J. A review on the recent advances in composite membranes for CO2 capture processes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Yan X, Yang C, Ma C, Tao H, Cheng S, Chen L, Wang G, Lin X, Yao C. A novel janus membrane modified by MXene for enhanced anti-fouling and anti-wetting in direct contact membrane distillation. CHEMOSPHERE 2022; 307:136114. [PMID: 35998734 DOI: 10.1016/j.chemosphere.2022.136114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Membrane fouling and wetting limit the applications of membrane distillation (MD) for wastewater treatment, especially when treating the wastewater with a high concentration of low surface tension substances such as oil and surfactants. In this paper, virgin polyvinylidene fluoride (PVDF) membrane was modified by polydimethylsiloxane (PDMS) to enhance anti-wetting ability. Then a thin polydopamine (PDA) layer was coated as a reaction platform for further modification. Polyethyleneimine (PEI) was cross-linked with PDA to form a uniform and stable layer, through hydrogen bonds and electrostatic interaction to immobilize hydrophilic MXene, which formed a Janus MXene-PVDF membrane. The MXene layer was the key for superoleophobicity and high liquid entry pressure (LEP) of membrane, capable of mitigating membrane fouling and wetting when dealing with low surface tension wastewater (LSTW). From the experiments results, pristine PVDF membrane showed severe fouling and wetting with flux decline and salt leakage during treatment of LSTW (surfactants containing water, oil-in-water emulsion and sodium dodecyl sulfate stabilized oil-in-water emulsion). However, under the same conditions, the Janus MXene-PVDF membrane exhibited remarkably stable flux (9.3 kg m-2h-1, 9.1 kg m-2h-1, 10.2 kg m-2h-1) and salt rejection (almost 99.9%) after 15 h operation. Excellent fouling and wetting resistance of MXene-PVDF membrane was mainly attributed to its superhydrophilic and superoleophobic top surface (in-air water contact angle: 30.2°, under-water oil contact angle: 169.9°) and hydrophobic substrate (in-air water contact angle: 130.8°), together with high LEP value (91.1 Kpa). This study provides a viable route to fabricated a Janus membrane with outstanding fouling and wetting resistance for LSTW, oily wastewater and it has great potential for sewage treatment in the future.
Collapse
Affiliation(s)
- Xiaoju Yan
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Chengyu Yang
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Cong Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China.
| | - Hui Tao
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Shirong Cheng
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Lin Chen
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Guodong Wang
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Xinping Lin
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Chengzhi Yao
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| |
Collapse
|
12
|
Feng Q, Zhan Y, Yang W, Dong H, Sun A, Li L, Chen X, Chen Y. Ultra-high flux and synergistically enhanced anti-fouling Ag@MXene lamellar membrane for the fast purification of oily wastewater through nano-intercalation, photocatalytic self-cleaning and antibacterial effect. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
13
|
Dual-layered covalent organic framework/MXene membranes with short paths for fast water treatment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Sun A, Zhan Y, Feng Q, Yang W, Dong H, Liu Y, Chen X, Chen Y. Assembly of MXene/ZnO heterojunction onto electrospun poly(arylene ether nitrile) fibrous membrane for favorable oil/water separation with high permeability and synergetic antifouling performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|