1
|
Hassan A, Mollah MMR, Jayashree R, Jain A, Das S, Das N. Ultrafast Removal of Thorium and Uranium from Radioactive Waste and Groundwater Using Highly Efficient and Radiation-Resistant Functionalized Triptycene-Based Porous Organic Polymers. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38687684 DOI: 10.1021/acsami.4c01397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Thorium (Th) and uranium (U) are important strategic resources in nuclear energy-based heavy industries such as energy and defense sectors that also generate significant radioactive waste in the process. The management of nuclear waste is therefore of paramount importance. Contamination of groundwater/surface water by Th/U is increasing at an alarming rate in certain geographical locations. This necessitates the development of strategic adsorbent materials with improved performance for capturing Th/U species from radioactive waste and groundwater. This report describes the design of a unique, robust, and radiation-resistant porous organic polymer (POP: TP-POP-SO3NH4), which demonstrates ultrafast removal of Th(IV) (<30 s)/U(VI) (<60 s) species present in simulated radioactive wastewater/groundwater samples. Thermal, chemical, and radiation stabilities of these POPs were studied in detail. The synthesized ammoniated POP revealed exceptional capture efficiency for trace-level Th (<4 ppb) and U (<3 ppb) metal ions through the cation-exchange mechanism. TP-POP-SO3NH4 shows a significant sorption capacity [Th (787 mg/g) and U (854 mg/g)] with an exceptionally high distribution coefficient (Kd) of 107 mL/g for Th. This work also demonstrates a facile protocol to convert a nonperforming POP, by simple chemical modifications, into a superfast adsorbent for efficient uptake/removal of U/Th.
Collapse
Affiliation(s)
- Atikur Hassan
- Department of Chemistry, Indian Institute of Technology Patna, Patna, Bihar 801106, India
| | - Md Mofizur Rahman Mollah
- Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603102, India
| | - Ravikumar Jayashree
- Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603102, India
| | - Ashish Jain
- Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603102, India
| | - Soumen Das
- Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603102, India
| | - Neeladri Das
- Department of Chemistry, Indian Institute of Technology Patna, Patna, Bihar 801106, India
| |
Collapse
|
2
|
Su LH, Qian HL, Yang C, Wang C, Wang Z, Yan XP. Integrating molecular imprinting into flexible covalent organic frameworks for selective recognition and efficient extraction of aflatoxins. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133755. [PMID: 38359765 DOI: 10.1016/j.jhazmat.2024.133755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
Covalent organic frameworks (COFs) are promising adsorbents for extraction, but their selectivity for molecular recognition remains a challenging issue due to the very limited structural design with rigid structure. Herein, we report an elegant strategy for the design and synthesis of molecularly imprinted flexible COFs (MI-FCOFs) via one-pot reaction between the flexible building block of 2,4,6-tris(4-formylphenoxy)- 1,3,5-triazine and linear 4-phenylenediamine for selective extraction of aflatoxins. The flexible chain structure enabled the developed MI-FCOF to adjust the shape and conformation of frameworks to suit the template molecule, giving high selectivity for aflatoxins recognition. Moreover, MI-FCOF with abundant imprinted sites and function groups exhibited an exceptional adsorption capacity of 258.4 mg g-1 for dummy template which is 3 times that of no-imprinted FCOF (NI-FCOF). Coupling MI-FCOF based solid-phase extraction with high-performance liquid chromatography gave low detection limits of 0.003-0.09 ng mL-1 and good precision with relative standard deviations ≤ 6.7% for the determination of aflatoxins. Recoveries for the spiked rice, corn, wheat and peanut samples were in the range of 85.4%- 105.4%. The high selectivity of the developed MI-FCOF allows matrix-free determination of AFTs in food samples. This work offers a new way to the design of MI-FCOF for selective molecular recognition.
Collapse
Affiliation(s)
- Li-Hong Su
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hai-Long Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cheng Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Sharma M, Sharma P, Janu VC, Gupta R. Evaluation of Adsorptive Capture and Release Efficiency of MNPs-SA@Cu MOF Composite Beads Toward U(VI) and Th(IV) Ions from an Aqueous Media. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:541-553. [PMID: 38109877 DOI: 10.1021/acs.langmuir.3c02767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Effluent from nuclear power plants, rocks, and minerals contains hazardous radionuclides that adversely affect human health and seriously threaten the environment. To address this issue, simple, economic, and sustainable magnetite nanoparticle loaded sodium alginate copper metal-organic framework composite beads (MNPs-SA@Cu MOF composite beads) have been designed, and their performance has been evaluated under varying conditions of pH, time, adsorbent dose, and initial concentration and have been studied by batch adsorption studies for optimizing the adsorption conditions. In this work, MNPs-SA@Cu MOF composite beads have been prepared in situ for the adsorptive removal of uranium [U(VI)] and thorium [Th(IV)] ions from an aqueous solution. The synthesized MNPs-SA@Cu MOF composite beads were characterized by model analytical techniques like Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, Brunauer-Emmett-Teller, and thermal gravimetric analysis. Here, 6 mg of adsorbent with 10 mL of 50 mg/L uranium and thorium ion solution at pH 5 was capable of removing the U(VI) and Th(IV) ions with 99.9 and 97.7% removal efficiencies, respectively. The obtained results showed that the adsorption behavior of the adsorbent for U(VI) and Th(IV) follows pseudo-second-order kinetics, and Langmuir isotherm fitted well with a maximum adsorption capacity of 454.54 and 434.78 mg/g, respectively. The adsorption mechanism indicated that electrostatic interaction and hydrogen bonding are the main driving forces for removing the U(VI) and Th(IV) ions. It can be reused for up to 10 adsorption-desorption cycles with minimal loss of removal efficiency. The easy synthesis method of MNPs-SA@Cu MOF composite beads and the high removal efficiency of U(VI) and Th(IV) ions reveal that they can potentially treat radionuclide waste effectively.
Collapse
Affiliation(s)
- Manish Sharma
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Priya Sharma
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Vikash Chandra Janu
- Defence Research and Development Organization Jodhpur, Jodhpur 342011, India
| | - Ragini Gupta
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| |
Collapse
|
4
|
Wu J, Shi N, Li N, Wang Z. Dual-Ligand ZIF-8 Bearing the Cyano Group for Efficient and Selective Uranium Capture from Seawater. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46952-46961. [PMID: 37774146 DOI: 10.1021/acsami.3c09809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Uranium extraction from seawater is a potential technique that will change the world. Adsorption capacity, selectivity, and antibacterial ability for high-performance uranium adsorbents remain the major challenges. In this study, a dual-ligand zeolitic imidazolate framework 8 (ZIF-8) decorated with cyano groups (ZIF-8-CN) is prepared via a facile blend strategy at room temperature. Owing to the abundant mesopores and nitrogen functional groups, ZIF-8-CN shows an extremely high uranium uptake of 1000 mg/g at pH = 6, which is 2.42 times that of pristine ZIF-8. Noteworthily, ZIF-8-CN possesses a 16.2 mg/g uranium adsorption in natural seawater within 28 days, and the distribution coefficient (Kd = 3.25 × 106 mL/g) is far greater than that for other coexisting metal ions, demonstrating a marked preference for uranyl ions. Except for the coordination between uranium and nitrogen in imidazole, the cyano groups provide additional adsorption sites and preferentially bind to uranyl, thereby strengthening the affinity for uranyl. Notably, ZIF-8-CN displays ultrastrong antimicrobial ability against both Escherichia coli and Staphylococcus aureus, which is greatly desired for the scale-up marine tests. Our study demonstrates the high potential of ZIF-8-CN in uranium capture and provides a wide scope for the application of mixed-ligand MOFs.
Collapse
Affiliation(s)
- Jiakun Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Na Shi
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Nan Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
- School of Information Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
5
|
Lin X, Xin W, Chen S, Song Y, Yang L, Qian Y, Fu L, Cui Y, He X, Li T, Zhang Z, Wu Y, Kong XY, Jiang L, Wen L. Skeleton engineering of rigid covalent organic frameworks to alter the number of binding sites for improved radionuclide extraction. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131978. [PMID: 37399726 DOI: 10.1016/j.jhazmat.2023.131978] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/12/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
Crystalline porous covalent frameworks (COFs) have been considered as a platform for uranium extraction from seawater and nuclear waste. However, the role of rigid skeleton and atomically precise structures of COFs is often ignored in the design of defined binding configuration. Here, a COF with an optimized relative position of two bidentate ligands realizes full potential in uranium extraction. Compared with the para-chelating groups, the optimized ortho-chelating groups with oriented adjacent phenolic hydroxyl groups on the rigid skeleton endow an additional uranyl binding site, thereby increasing the total number of binding sites up to 150%. Experimental and theoretical results indicate that the uranyl capture is greatly improved via the energetically favored multi-site configuration and the adsorption capacity reaches up to 640 mg g-1, which exceeds that of most reported COF-based adsorbents with chemical coordination mechanism in uranium aqueous solution. This ligand engineering strategy can efficiently advance the fundamental understanding of designing the sorbent systems for extraction and remediation technology.
Collapse
Affiliation(s)
- Xiangbin Lin
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Weiwen Xin
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shusen Chen
- Beijing Research Institute of Chemical Engineering and Metallurgy, CNNC Key Laboratory on Uranium Extraction from Seawater, Beijing, China
| | - Yan Song
- Beijing Research Institute of Chemical Engineering and Metallurgy, CNNC Key Laboratory on Uranium Extraction from Seawater, Beijing, China
| | - Linsen Yang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Yongchao Qian
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Lin Fu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yanglansen Cui
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiaofeng He
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Tinyang Li
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Zhehua Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yadong Wu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
6
|
Sanga P, Wang J, Li X, Chen J, Qiu H. Effective Removal of Sulfonamides Using Recyclable MXene-Decorated Bismuth Ferrite Nanocomposites Prepared via Hydrothermal Method. Molecules 2023; 28:molecules28041541. [PMID: 36838529 PMCID: PMC9962683 DOI: 10.3390/molecules28041541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Developing a simple and efficient method for removing organic micropollutants from aqueous systems is crucial. The present study describes the preparation and application, for the first time, of novel MXene-decorated bismuth ferrite nanocomposites (BiFeO3/MXene) for the removal of six sulfonamides including sulfadiazine (SDZ), sulfathiazole (STZ), sulfamerazine (SMZ), sulfamethazine (SMTZ), sulfamethoxazole (SMXZ) and sulfisoxazole (SXZ). The properties of BiFeO3/MXene are enhanced by the presence of BiFeO3 nanoparticles, which provide a large surface area to facilitate the removal of sulfonamides. More importantly, BiFeO3/MXene composites demonstrated remarkable sulfonamide adsorption capabilities compared to pristine MXene, which is due to the synergistic effect between BiFeO3 and MXene. The kinetics and isotherm models of sulfonamide adsorption on BiFeO3/MXene are consistent with a pseudo-second-order kinetics and Langmuir model. BiFeO3/MXene had appreciable reusability after five adsorption-desorption cycles. Furthermore, BiFeO3/MXene is stable and retains its original properties upon desorption. The present work provides an effective method for eliminating sulfonamides from water by exploiting the excellent texture properties of BiFeO3/MXene.
Collapse
Affiliation(s)
- Pascaline Sanga
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juanjuan Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xin Li
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Correspondence:
| |
Collapse
|
7
|
Liu Y, Lu Y, Zhang S, Li X, Zhang Z, Ge L, Chang M, Liu Y, Lisak G, Deng S. Amphiphilic ligand in situ assembly of uranyl active sites and selective interactions of molybdenum disulfide. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130089. [PMID: 36303344 DOI: 10.1016/j.jhazmat.2022.130089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/14/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Removal of radioactive uranyl ions (UO22+) from water by effective adsorbents is highly desired but remains a challenge. UO22+ are easily combined with H2O, and the polarization of H2O affects the complexation between UO22+ and the adsorbent. Thus, it is necessary to reconstruct the UO22+ active site to improve the adsorption capacity. Herein ,an amphiphilic ligand, namely N, N-dimethyl-9-decenamide (NND), is successfully prepared. NND replace H2O in [UO2(H2O)5]2+ by hydrogen bonding, thereby enhancing the adsorption capacity of MoS2 particles in the reconstituted UO22+ active sites. The predicted maximum adsorption capacity increased from 50.7 to 500.7 mg g- 1 (by a factor of 9.87) with the presence of NND, which is higher than other functional group-modified MoS2 adsorbents. Furthermore, NND and MoS2 can retain UO22+ uptake under extreme conditions including high acid-base and gamma irradiation. Theoretical Calculations of NND through H bonding produces an increased amount of charge transfer and a reduced adsorption energy between UO22+ and MoS2, which weakens the polarization effect of H2O. The findings showed that NND appeared to be a promising amphiphilic to improve the adsorption efficiency of UO22+ from water.
Collapse
Affiliation(s)
- Yuhui Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013 Jiangxi, PR China; Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Yaning Lu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013 Jiangxi, PR China
| | - Shuang Zhang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013 Jiangxi, PR China
| | - Xiaoyan Li
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013 Jiangxi, PR China
| | - Zhibin Zhang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013 Jiangxi, PR China
| | - Liya Ge
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - MengYu Chang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore.
| | - Yunhai Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013 Jiangxi, PR China.
| | - Grzegorz Lisak
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Sheng Deng
- State Key Laboratory of Groundwater Simulation and Pollution Control for Environmental Protection, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
8
|
Zhou Z, Ren H, Zhou L, Wang P, Lou X, Zou H, Cao Y. Recent Development on Determination of Low-Level 90Sr in Environmental and Biological Samples: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010090. [PMID: 36615288 PMCID: PMC9821828 DOI: 10.3390/molecules28010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
In the context of the rapid development of the world's nuclear power industry, it is vital to establish reliable and efficient radioanalytical methods to support sound environment and food radioactivity monitoring programs and a cost-effective waste management strategy. As one of the most import fission products generated during human nuclear activities, 90Sr has been widely determined based on different analytical techniques for routine radioactivity monitoring, emergency preparedness and radioactive waste management. Herein, we summarize and critically review analytical methods developed over the last few decades for the determination of 90Sr in environmental and biological samples. Approaches applied in different steps of the analysis including sample preparation, chemical separation and detection are systematically discussed. The recent development of modern materials for 90Sr concentration and advanced instruments for rapid 90Sr measurement are also addressed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yiyao Cao
- Correspondence: ; Tel.: +86-(0571)-87115089
| |
Collapse
|
9
|
Liu S, Hu Z, Wang J, Tang N, Guo D, Ou H. Eruption pore matrix with cooperative chelating of spatially continued ligands for rapid and selective removal of uranium. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Yang S, Wu G, Song J, Hu B. Preparation of chitosan-based asymmetric electrodes by co-imprinting technology for simultaneous electro-adsorption of multi-radionuclides. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Cao Y, Zhou L, Ren H, Zou H. Determination, Separation and Application of 137Cs: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191610183. [PMID: 36011815 PMCID: PMC9408292 DOI: 10.3390/ijerph191610183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 05/21/2023]
Abstract
In the context of the rapid development of the world's nuclear power industry, it is necessary to establish background data on radionuclides of different samples from different regions, and the premise of obtaining such basic data is to have a series of good sample processing and detection methods. The radiochemical analysis methods of low-level radionuclides 137Cs (Cesium) in environmental and biological samples are introduced and reviewed in detail. The latest research progress is reviewed from the five aspects of sample pretreatment, determination, separation, calculation, application of radioactive cesium and the future is proposed.
Collapse
|
12
|
Zhu Y, Wang K, Lu J, Pan Z, Rong J, Zhang T, Yang D, Pan J, Qiu F. Teamed Boronate Affinity-Functionalized Zn-MOF/PAN-Derived Molecularly Imprinted Hollow Carbon Electrospinning Nanofibers for Selective Adsorption of Shikimic Acid. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27294-27308. [PMID: 35639583 DOI: 10.1021/acsami.2c06664] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electrospun micro-/nanofibers with tailor-made specific binding sites are extremely popular due to their tremendous potential in separation applications. In this work, teamed boronate affinity (TBA)-functionalized molecularly imprinted hollow carbon electrospun nanofibers (MI-HCESNFs) derived from ZIF-8/PAN fibers with selective binding sites toward shikimic acid (SA) are presented. Each ingredient used in this strategy plays its own part: HCESNFs with excellent structural characteristics as the highly porous electrospun substrate, KH560 as the grafting material for the follow-up polyethyleneimine (PEI) modification, PEI as the dendritic platform to approach more boronic acid owing to its long chain with abundant amino groups, and TBA molecular group as the functional monomer to specifically bind with SA under the neutral condition. Benefiting from the porous structure, the high density of boronic acid, and the highly accessible imprinted sites on the surface, MI-HCESNFs show strong affinity and selectivity to the SA molecules. The adsorption capacity of MI-HCESNFs can reach 127.8 mg g-1, which is 3.1 times larger than that of the non-imprinted material. Besides, MI-HCESNFs are stable when treated with continuous ultrasonication and can be recycled eight times with a slight loss of 8.615% on the adsorption quantity. This work presents a new strategy to prepare boronate affinity adsorbents based on the electrospinning technique for the capture of SA and also proposes a path for the integration of molecularly imprinted polymers and electrospinning.
Collapse
Affiliation(s)
- Yao Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Ke Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Jiahui Lu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Zhiyuan Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Jian Rong
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Dongya Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| |
Collapse
|