1
|
Wang X, Li Y, Sun G, Cao J, Wang Y. Synthesis of Co-Doped In 2O 3 Hierarchical Porous Nanocubes for High-Performance Hydrogen Sulfide Sensors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:14185-14196. [PMID: 40439039 DOI: 10.1021/acs.langmuir.5c01131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
Recently, because of the urgent need for safety and health protection, there has been a growing focus on exploring effective and feasible gas sensors based on metal oxide semiconductors (MOSs) for detecting trace levels of hydrogen sulfide (H2S). In this context, a cobalt (Co) doping strategy was proposed to improve the H2S-sensitive properties of In2O3 nanomaterials, enabling them to monitor 1 ppm of H2S at a relatively lower temperature. The Co-doped In2O3 hierarchical porous nanocubes (Co-In2O3 HPNCs) were prepared through a hydrothermal route using In(OH)3 as a precursor. When utilized as a sensing material to detect H2S, the Co-In2O3 HPNCs demonstrated significant enhancements compared to pure In2O3. These enhancements include a reduction in the operating temperature (260 vs 300 °C), a significant increase in response (36.99 vs 12.28 for 20 ppm of H2S), and better selectivity (13.21 vs 3.07 times to ethanol). Even to 1 ppm of H2S, the Co-In2O3 sensor can give a response value of 1.86, highlighting its substantial potential for detecting H2S at the limit of detection (LOD) of 1 ppm. A detailed analysis of the multiple sensitization effects of Co doping reveals that these improved H2S sensing characteristics of Co-In2O3 HPNCs can be primarily traced back to three factors, namely, an increased oxygen vacancy concentration, a narrowing of the bandgap, and an upward shift of the Fermi level.
Collapse
Affiliation(s)
- Xiaohua Wang
- School of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
- School of Chemical Engineering and Environmental Engineering, Jiaozuo University, Jiaozuo 454000, China
| | - Yanwei Li
- School of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
- The Collaboration Innovation Center of Coal Safety Production of Henan Province, Henan Polytechnic University, Jiaozuo 454000, China
| | - Guang Sun
- School of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
- The Collaboration Innovation Center of Coal Safety Production of Henan Province, Henan Polytechnic University, Jiaozuo 454000, China
| | - Jianliang Cao
- School of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Yan Wang
- The Collaboration Innovation Center of Coal Safety Production of Henan Province, Henan Polytechnic University, Jiaozuo 454000, China
| |
Collapse
|
2
|
Zhang L, Gao Y, Feng Y, Mai Z, Wang J, Chang Y, Wang F, Li H, Paoprasert P, Lee YK, French PJ, Umar Siddiqui AM, Zhou G, Wang Y. Ferrocene-decorated graphene nanosheets built by edge-to-face π-π interaction for room temperature ppb-level NO sensing. Talanta 2025; 285:127365. [PMID: 39700718 DOI: 10.1016/j.talanta.2024.127365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024]
Abstract
The development of materials toward ppb-level nitric oxide (NO) sensing at room temperature remains in high demand for the monitoring of respiratory inflammatory diseases. In order to find an iron-containing molecule without steric hindrance to combine with graphene for room temperature NO gas sensing, here a supramolecular assembly of ferrocene (Fc) and reduced graphene oxide (rGO) was designed and prepared for NO sensing. The assembly of Fc/rGO was characterized using FT-IR, TEM, and XPS measurements. The Fc/rGO-based sensors exhibited superior NO sensing properties at room temperature including high response (Ra/Rg = 1.73, 1 ppm), high selectivity against other exhaled gases, reliable repeatability and stability (less than 4 % decrease after 40 days). A practical limit of detection (LOD) of 200 ppb was achieved. The theoretical simulation demonstrates that ferrocene is assembled via π-π interaction with rGO in edge-to-face configuration which provides relatively lower energy than face-to-face configuration does for the whole assembly. It was first verified that the enhanced adsorption capacity and the charge transfer between NO and Fc/rGO would result in improvement of the assembly's sensitivity toward NO after ferrocene was assembled with graphene. This work provides a fresh approach of anchoring iron on graphene for gas sensing via supramolecular methods.
Collapse
Affiliation(s)
- Lulu Zhang
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China
| | - Yixun Gao
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China.
| | - Yancong Feng
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China
| | - Zhijian Mai
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China
| | - Jianqiang Wang
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China
| | - Yanwei Chang
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China
| | - Fengnan Wang
- Department of Thoracic Oncology, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510006, PR China
| | - Hao Li
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China
| | - Peerasak Paoprasert
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani, 12121, Thailand
| | - Yi-Kuen Lee
- Department of Mechanical & Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region; Department of Electronic & Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region
| | - Paddy J French
- BE Laboratory, EWI, Delft University of Technology, Delft, 2628CD, the Netherlands
| | - Ahmad M Umar Siddiqui
- Department of Chemistry, Faculty of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Saudi Arabia
| | - Guofu Zhou
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China
| | - Yao Wang
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China.
| |
Collapse
|
3
|
Lv S, Liu L, Guo L, Mai Z, Chen H, Wang C, Wang F, Li H, Lee YK, Umar Siddiqui AM, Yi Z, Zhou G, Wang Y. Ultrahigh humidity-resistance ppb-level formaldehyde sensing at room temperature induced by fluorinated dipole based "umbrella" and "bridge". JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135467. [PMID: 39146586 DOI: 10.1016/j.jhazmat.2024.135467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/21/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
Formaldehyde (HCHO) is a major indoor pollutant that is extremely harmful to human health even at ppb-level. Meanwhile, ppb-level HCHO is also a potential disease marker in the exhalation of patients with respiratory diseases. Higher humidity resistance and lower practical limit of detection (pLOD) both have to be pursued for practical HCHO sensors. In this work, by assembling indium oxide (In2O3) and fluorinated dipole modified reduced graphene oxide (rGO), we prepared a high-performance room temperature HCHO sensor (In2O3 @ATQ-rGO). Excellent sensing properties toward HCHO under visible illumination have been achieved, including ultra-low pLOD of 3 ppb and high humidity-resistance. By control experiments and density functional theory calculation, it is indicated that the introduced fluorinated dipoles act as not only an "umbrella" to improve the humidity resistance of the composite, but also a "bridge" to accelerate the electron transport, improving the sensitivity of the material. The significant practicality and reliability of the obtained sensors were verified by in-situ simulation experiments using a 3 m3 test chamber with a humidity control system and by detection of the simulated lung disease patient's exhalation. This work provides an effective strategy of simultaneously achieving high humidity-resistance and low pLOD of room temperature formaldehyde sensing materials.
Collapse
Affiliation(s)
- Sitao Lv
- Guangdong Province Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, PR China; Zhongshan Branch of State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan 528402, PR China; National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, PR China
| | - Liming Liu
- Zhongshan Branch of State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan 528402, PR China.
| | - Lanpeng Guo
- Guangdong Province Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, PR China; National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, PR China
| | - Zhijian Mai
- Guangdong Province Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, PR China; National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, PR China
| | - Honghao Chen
- Guangdong Province Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, PR China; National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, PR China
| | - Chenxu Wang
- Guangdong Province Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, PR China; National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, PR China
| | - Fengnan Wang
- Department of Thoracic Oncology, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510006, PR China
| | - Hao Li
- Guangdong Province Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, PR China; National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, PR China
| | - Yi-Kuen Lee
- Department of Mechanical & Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region; Department of Electronic & Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region
| | - Ahmad M Umar Siddiqui
- Department of Chemistry, Faculty of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran 11001, Saudi Arabia
| | - Zichuan Yi
- Zhongshan Branch of State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan 528402, PR China.
| | - Guofu Zhou
- Guangdong Province Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, PR China; National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, PR China
| | - Yao Wang
- Guangdong Province Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, PR China; National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, PR China.
| |
Collapse
|
4
|
Bhunia AK, Mahata B, Mandal B, Guha PK, Saha S. Emerging 2D nanoscale metal oxide sensor: semiconducting CeO 2nano-sheets for enhanced formaldehyde vapor sensing. NANOTECHNOLOGY 2024; 35:455501. [PMID: 39137791 DOI: 10.1088/1361-6528/ad6e8b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024]
Abstract
Herein, we fabricated nanoscale 2D CeO2sheet structure to develop a stable resistive gas sensor for detection of low concentration (ppm) level formaldehyde vapors. The fabricated CeO2nanosheets (NSs) showed an optical band gap of 3.53 eV and cubic fluorite crystal structure with enriched defect states. The formation of 2D NSs with well crystalline phases is clearly observed from high-resolution transmission electron microscope (HRTEM) images. The NSs have been shown tremendous blue-green emission related to large oxygen defects. A VOC sensing device based on fabricated two-dimensional NSs has been developed for the sensing of different VOCs. The device showed better sensing for formaldehyde compared with other VOCs (2-propanol, methanol, ethanol, and toluene). The response was found to be 4.35, with the response and recovery time of 71 s and 310 s, respectively. The device showed an increment of the recovery time (71 s to 100 s) with the decrement of the formaldehyde ppm (100 ppm to 20 ppm). Theoretical fittings provided the detection limit of formaldehyde ≈8.86 ± 0.45 ppm with sensitivity of 0.56 ± 0.05 ppm-1. The sensor device showed good reproducibility with excellent stability over the study period of 135 d, with a deviation of 1.8% for 100 ppm formaldehyde. The average size of the NSs (≈24 nm) calculated from HRTEM observation showed lower value than the calculated Debye length (≈44 nm) of the charge accumulation during VOCs sensing. Different defect states, interstitial and surface states in the CeO2NSs as observed from the Raman spectrum and emission spectrum are responsible for the formaldehyde sensing. This work offers an insight into 2D semiconductor-based oxide material for highly sensitive and stable formaldehyde sensors.
Collapse
Affiliation(s)
- Amit Kumar Bhunia
- Department of Physics, Government General Degree College Gopiballavpur-II, Jhargram 721517, India
| | - Bidesh Mahata
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur 721302, India
| | - Biswajit Mandal
- Department of Physics, National Institute of Technology Calicut, Calicut 673601, India
| | - Prasanta Kumar Guha
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur 721302, India
- Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Paschim Medinipur 721302, India
| | - Satyajit Saha
- Department of Physics, Vidyasagar University, Paschim Medinipur 721102, India
| |
Collapse
|
5
|
Wu P, Li Y, Yang A, Tan X, Chu J, Zhang Y, Yan Y, Tang J, Yuan H, Zhang X, Xiao S. Advances in 2D Materials Based Gas Sensors for Industrial Machine Olfactory Applications. ACS Sens 2024; 9:2728-2776. [PMID: 38828988 DOI: 10.1021/acssensors.4c00431] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The escalating development and improvement of gas sensing ability in industrial equipment, or "machine olfactory", propels the evolution of gas sensors toward enhanced sensitivity, selectivity, stability, power efficiency, cost-effectiveness, and longevity. Two-dimensional (2D) materials, distinguished by their atomic-thin profile, expansive specific surface area, remarkable mechanical strength, and surface tunability, hold significant potential for addressing the intricate challenges in gas sensing. However, a comprehensive review of 2D materials-based gas sensors for specific industrial applications is absent. This review delves into the recent advances in this field and highlights the potential applications in industrial machine olfaction. The main content encompasses industrial scenario characteristics, fundamental classification, enhancement methods, underlying mechanisms, and diverse gas sensing applications. Additionally, the challenges associated with transitioning 2D material gas sensors from laboratory development to industrialization and commercialization are addressed, and future-looking viewpoints on the evolution of next-generation intelligent gas sensory systems in the industrial sector are prospected.
Collapse
Affiliation(s)
- Peng Wu
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Yi Li
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Aijun Yang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong, No 28 XianNing West Road, Xi'an, Shanxi 710049, China
| | - Xiangyu Tan
- Electric Power Research Institute, Yunnan Power Grid Co., Ltd., Kunming, Yunnan 650217, China
| | - Jifeng Chu
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong, No 28 XianNing West Road, Xi'an, Shanxi 710049, China
| | - Yifan Zhang
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Yongxu Yan
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Ju Tang
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China
| | - Xiaoxing Zhang
- Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Song Xiao
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
6
|
Zong S, Zhang Y, Cao J, Qin C, Bala H, Wang Y. Hydrothermal Synthesis of SnO 2 with Different Morphologies as Sensing Materials for HCHO Detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10814-10824. [PMID: 38723195 DOI: 10.1021/acs.langmuir.4c01263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Morphology regulation is an effective strategy for improving the sensor sensitivity of transition metal oxide nanostructures. In this work, SnO2 with three different morphologies (nanorods, nanoparticles, and nanopillars) has been synthesized by a simple one-step solvothermal process with the addition of various solute ratios at 180 °C for 6 h for detecting formaldehyde (HCHO) at the optimum working temperature of 320 °C. Compared to nanorods and nanopillars, the created SnO2 nanoparticles exhibit a much faster response time and sensitivity than other samples, showing the fastest recovery time (18 s) with the highest sensitivity of 6-100 ppm of the HCHO gas. The sensing mechanism of the sensors is investigated by Brunauer-Emmett-Teller (BET) methods and X-ray photoelectron spectroscopy (XPS) analysis, revealing that the pore size distribution and amount of OV and OC improve the charge transfer and HCHO adsorption of nanoparticle sensors. Such an effect of morphology control on sensing performance paves an idea for the development of different structure-based HCHO sensors.
Collapse
Affiliation(s)
- Shaofeng Zong
- College of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Yan Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Jianliang Cao
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Cong Qin
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Hari Bala
- College of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Yan Wang
- State Collaborative Innovation Center of Coal Work Safety and Clean-Efficiency Utilization, Henan Polytechnic University, Jiaozuo 454000, China
| |
Collapse
|
7
|
Chen Z, Zhou B, Xiao M, Bhowmick T, Karthick Kannan P, Occhipinti LG, Gardner JW, Hasan T. Real-time, noise and drift resilient formaldehyde sensing at room temperature with aerogel filaments. SCIENCE ADVANCES 2024; 10:eadk6856. [PMID: 38335291 PMCID: PMC10857368 DOI: 10.1126/sciadv.adk6856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
Formaldehyde, a known human carcinogen, is a common indoor air pollutant. However, its real-time and selective recognition from interfering gases remains challenging, especially for low-power sensors suffering from noise and baseline drift. We report a fully 3D-printed quantum dot/graphene-based aerogel sensor for highly sensitive and real-time recognition of formaldehyde at room temperature. By optimizing the morphology and doping of printed structures, we achieve a record-high and stable response of 15.23% for 1 part per million formaldehyde and an ultralow detection limit of 8.02 parts per billion consuming only ∼130-microwatt power. On the basis of measured dynamic response snapshots, we also develop intelligent computational algorithms for robust and accurate detection in real time despite simulated substantial noise and baseline drift, hitherto unachievable for room temperature sensors. Our framework in combining materials engineering, structural design, and computational algorithm to capture dynamic response offers unprecedented real-time identification capabilities of formaldehyde and other volatile organic compounds at room temperature.
Collapse
Affiliation(s)
- Zhuo Chen
- Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Ave., Cambridge CB3 0FA, UK
| | - Binghan Zhou
- Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Ave., Cambridge CB3 0FA, UK
| | - Mingfei Xiao
- Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Ave., Cambridge CB3 0FA, UK
| | - Tynee Bhowmick
- Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Ave., Cambridge CB3 0FA, UK
| | | | - Luigi G. Occhipinti
- Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Ave., Cambridge CB3 0FA, UK
| | | | - Tawfique Hasan
- Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Ave., Cambridge CB3 0FA, UK
| |
Collapse
|
8
|
Guo L, Liang H, Hu H, Shi S, Wang C, Lv S, Yang H, Li H, de Rooij NF, Lee YK, French PJ, Wang Y, Zhou G. Large-Area and Visible-Light-Driven Heterojunctions of In 2O 3/Graphene Built for ppb-Level Formaldehyde Detection at Room Temperature. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18205-18216. [PMID: 36999948 DOI: 10.1021/acsami.3c00218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Achieving convenient and accurate detection of indoor ppb-level formaldehyde is an urgent requirement to ensure a healthy working and living environment for people. Herein, ultrasmall In2O3 nanorods and supramolecularly functionalized reduced graphene oxide are selected as hybrid components of visible-light-driven (VLD) heterojunctions to fabricate ppb-level formaldehyde (HCHO) gas sensors (named InAG sensors). Under 405 nm visible light illumination, the sensor exhibits an outstanding response toward ppb-level HCHO at room temperature, including the ultralow practical limit of detection (pLOD) of 5 ppb, high response (Ra/Rg = 2.4, 500 ppb), relatively short response/recovery time (119 s/179 s, 500 ppb), high selectivity, and long-term stability. The ultrasensitive room temperature HCHO-sensing property is derived from visible-light-driven and large-area heterojunctions between ultrasmall In2O3 nanorods and supramolecularly functionalized graphene nanosheets. The performance of the actual detection toward HCHO is evaluated in a 3 m3 test chamber, confirming the practicability and reliability of the InAG sensor. This work provides an effective strategy for the development of low-power-consumption ppb-level gas sensors.
Collapse
Affiliation(s)
- Lanpeng Guo
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Hongping Liang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Huiyun Hu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Shenbin Shi
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Chenxu Wang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Sitao Lv
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Haihong Yang
- Department of Thoracic Oncology, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510006, P. R. China
| | - Hao Li
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Nicolaas Frans de Rooij
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Yi-Kuen Lee
- Department of Mechanical & Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region
- Department of Electronic & Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region
| | - Paddy J French
- BE Laboratory, EWI, Delft University of Technology, Delft 2628CD, The Netherlands
| | - Yao Wang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
9
|
Preparation of hollow bidirectional porous 3D peony-flower structure ZnCO3/ZnO with gas sensitive properties at room temperature. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Wang J, Gao Y, Chen F, Zhang L, Li H, de Rooij NF, Umar A, Lee YK, French PJ, Yang B, Wang Y, Zhou G. Assembly of Core/Shell Nanospheres of Amorphous Hemin/Acetone-Derived Carbonized Polymer with Graphene Nanosheets for Room-Temperature NO Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53193-53201. [PMID: 36395355 DOI: 10.1021/acsami.2c16769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Implementing parts per billion-level nitric oxide (NO) sensing at room temperature (RT) is still in extreme demand for monitoring inflammatory respiratory diseases. Herein, we have prepared a kind of core-shell structural Hemin-based nanospheres (Abbr.: Hemin-nanospheres, defined as HNSs) with the core of amorphous Hemin and the shell of acetone-derived carbonized polymer, whose core-shell structure was verified by XPS with argon-ion etching. Then, the HNS-assembled reduced graphene oxide composite (defined as HNS-rGO) was prepared for RT NO sensing. The acetone-derived carbonized polymer shell not only assists the formation of amorphous Hemin core by disrupting their crystallization to release more Fe-N4 active sites, but provides protection to the core. Owing to the unique core-shell structure, the obtained HNS-rGO based sensor exhibited superior RT gas sensing properties toward NO, including a relatively higher response (Ra/Rg = 5.8, 20 ppm), a lower practical limit of detection (100 ppb), relatively reliable repeatability (over 6 cycles), excellent selectivity, and much higher long-term stability (less than a 5% decrease over 120 days). The sensing mechanism has also been proposed based on charge transfer theory. The superior gas sensing properties of HNS-rGO are ascribed to the more Fe-N4 active sites available under the amorphous state of the Hemin core and to the physical protection by the shell of acetone-derived carbonized polymer. This work presents a facile strategy of constructing a high-performance carbon-based core-shell nanostructure for gas sensing.
Collapse
Affiliation(s)
- Jianqiang Wang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou510006, P. R. China
| | - Yixun Gao
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou510006, P. R. China
| | - Fengjia Chen
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou510006, P. R. China
- Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou510006, P. R. China
| | - Lulu Zhang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou510006, P. R. China
| | - Hao Li
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou510006, P. R. China
| | - Nicolaas Frans de Rooij
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou510006, P. R. China
| | - Ahmad Umar
- Promising Centre for Sensors and Electronic Devices, Department of Chemistry, Faculty of Science and Arts, Najran University, Najran11001, Kingdom of Saudi Arabia
| | - Yi-Kuen Lee
- Department of Mechanical & Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region
- Department of Electronic & Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region
| | - Paddy J French
- BE Laboratory, EWI, Delft University of Technology, Delft2628CD, The Netherland
| | - Bai Yang
- State Key Lab of Supramolecular Structure and Materials College of Chemistry, Jilin University, Changchun130012, P. R. China
| | - Yao Wang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou510006, P. R. China
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou510006, P. R. China
| |
Collapse
|
11
|
Goyat R, Saharan Y, Singh J, Umar A, Akbar S. Synthesis of Graphene-Based Nanocomposites for Environmental Remediation Applications: A Review. Molecules 2022; 27:6433. [PMID: 36234970 PMCID: PMC9571129 DOI: 10.3390/molecules27196433] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022] Open
Abstract
The term graphene was coined using the prefix "graph" taken from graphite and the suffix "-ene" for the C=C bond, by Boehm et al. in 1986. The synthesis of graphene can be done using various methods. The synthesized graphene was further oxidized to graphene oxide (GO) using different methods, to enhance its multitude of applications. Graphene oxide (GO) is the oxidized analogy of graphene, familiar as the only intermediate or precursor for obtaining the latter at a large scale. Graphene oxide has recently obtained enormous popularity in the energy, environment, sensor, and biomedical fields and has been handsomely exploited for water purification membranes. GO is a unique class of mechanically robust, ultrathin, high flux, high-selectivity, and fouling-resistant separation membranes that provide opportunities to advance water desalination technologies. The facile synthesis of GO membranes opens the doors for ideal next-generation membranes as cost-effective and sustainable alternative to long existing thin-film composite membranes for water purification applications. Many types of GO-metal oxide nanocomposites have been used to eradicate the problem of metal ions, halomethanes, other organic pollutants, and different colors from water bodies, making water fit for further use. Furthermore, to enhance the applications of GO/metal oxide nanocomposites, they were deposited on polymeric membranes for water purification due to their relatively low-cost, clear pore-forming mechanism and higher flexibility compared to inorganic membranes. Along with other applications, using these nanocomposites in the preparation of membranes not only resulted in excellent fouling resistance but also could be a possible solution to overcome the trade-off between water permeability and solute selectivity. Hence, a GO/metal oxide nanocomposite could improve overall performance, including antibacterial properties, strength, roughness, pore size, and the surface hydrophilicity of the membrane. In this review, we highlight the structure and synthesis of graphene, as well as graphene oxide, and its decoration with a polymeric membrane for further applications.
Collapse
Affiliation(s)
- Rohit Goyat
- Department of Chemistry, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133203, Haryana, India
| | - Yajvinder Saharan
- Department of Chemistry, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133203, Haryana, India
| | - Joginder Singh
- Department of Chemistry, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133203, Haryana, India
| | - Ahmad Umar
- Department of Chemistry, College of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran 11001, Saudi Arabia
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Sheikh Akbar
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
12
|
Vijeata A, Chaudhary S, Chaudhary GR, Umar A, Baskoutas S. Sustainable agronomic response of carbon quantum dots on Allium sativum: Translocation, physiological responses and alternations in chromosomal aberrations. ENVIRONMENTAL RESEARCH 2022; 212:113559. [PMID: 35660407 DOI: 10.1016/j.envres.2022.113559] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/14/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The revolutionary growth in the usage of carbon quantum dots (CQDs) in different areas have ultimately directed their discharge in the environment and further augmented the exposure of agricultural crops to these released particles. Therefore, the aim of current study is to evaluate the uptake, translocation and phytotoxicity of blue emissive CQDs on Allium sativum plant. The genotoxicity and cytotoxicity assessment of CQDs towards Allium sativum roots was estimated as function of three different concentrations. Considering the role of CQDs in promoting seed germination at 50 ppm concentration, a greenhouse experiment was performed to evaluate their effect on plant growth. Systematic investigations have shown the translocation of CQDs and their physiological response in terms of increased shoot length wherein P-CQDs exhibited more accumulation into Allium sativum parts. Our investigations unfold the opportunity to utilize Aegle marmelos fruit derived CQDs as a growth regulator in variety of other food plants.
Collapse
Affiliation(s)
- Anjali Vijeata
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Savita Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India.
| | - Ganga Ram Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India.
| | - Ahmad Umar
- Department of Chemistry, College of Science and Arts, Najran University, Najran, 11001, Saudi Arabia; Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Saudi Arabia.
| | | |
Collapse
|