1
|
Dai J, Wang H, Yang X, Lan L, Li S, Zhang G, Li R, Nie D, Zhang W. Spontaneous thermal energy transfer and anti-gravitational water pumping using Al 2O 3 fiber-enhanced flexible nonwoven material as a high-performance and self-floating solar evaporator. MATERIALS HORIZONS 2024; 11:2095-2105. [PMID: 38391254 DOI: 10.1039/d3mh02204h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Solar-driven evaporation is promising to address water scarcity. However, preserving the heat inside evaporators instead of allowing run-off, and synergistically utilizing it to wick water from the bulk, is still underexplored. Herein, a dual-functional bridge of longitudinal orientated channels of Al2O3 fibers (AOFs) embedded in a multi-layered nonwoven evaporator was proposed to create a buffer for spontaneous thermal conduction and anti-gravitational water pumping. As a self-floating system with high porosity and flexibility, benefiting from the strong water transporting ability and high thermal conductivity of the AOFs, a superhigh evaporation rate (2.79 kg m-2 h-1 under 1 sun) can be achieved with great stability and durability. This work highlights the potential of promoting thermal management using a large-scale vapour chamber and mass-producible nonwoven technology to prepare a high-performance evaporator for practical applications.
Collapse
Affiliation(s)
- Jiamu Dai
- School of Textile and Clothing, Nantong University, Nantong 226019, China.
| | - Hang Wang
- School of Textile and Clothing, Nantong University, Nantong 226019, China.
| | - Xiaochuan Yang
- School of Textile and Clothing, Nantong University, Nantong 226019, China.
| | - Liujia Lan
- School of Textile and Clothing, Nantong University, Nantong 226019, China.
| | - Suying Li
- School of Textile and Clothing, Nantong University, Nantong 226019, China.
| | - Guangyu Zhang
- School of Textile and Clothing, Nantong University, Nantong 226019, China.
| | - Ruiqing Li
- School of Textile and Clothing, Nantong University, Nantong 226019, China.
| | - Du Nie
- College of Materials, Xiamen University, Xiamen, 361005, China.
| | - Wei Zhang
- School of Textile and Clothing, Nantong University, Nantong 226019, China.
| |
Collapse
|
2
|
Dhar M, Mishra C, Das A, Manna U. Polymerization of monomer aggregates for tailoring and patterning water wettability. Chem Commun (Camb) 2024; 60:444-447. [PMID: 38088028 DOI: 10.1039/d3cc05172b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
An approach of 'polymerization of monomers in its aggregated form' is unprecedentedly introduced to (i) tailor the water wettability of fibrous and porous substrates from hydrophobicity to superhydrophobicity, and (ii) associate patterned wettability. A solution of selected monomers-i.e., alkyl acrylate in a good solvent (indicating high solubility; ethanol) was transferred into a bad solvent (refers to poor solubility; water) to achieve a stable dispersion of monomer aggregates of size <1 μm for deposition on fibrous and porous substrates. Its photopolymerization provided a durable coating with the ability to tailor the water wettability from 134° to 153°. Furthermore, a spatially selective photopolymerization process yielded a patterned interface of superhydrophilicity and superhydrophobicity. Such a facile chemical approach with the ability to provide a durable coating embedded with tailored and patterned wettability would be useful for various potential applications.
Collapse
Affiliation(s)
- Manideepa Dhar
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| | - Chittaranjan Mishra
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| | - Avijit Das
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| | - Uttam Manna
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Kamrup, Assam 781039, India
- Jyoti and Bhupat Mehta School of Health Science and Technology, Indian Institute of Technology Guwahati, Kamrup, Assam 781039, India
| |
Collapse
|
3
|
Zhao S, Wei H, Zhang X, Wang F, Su Z. Clay-based aerogel combined with CuS for solar-driven interfacial steam generation and desalination. J Colloid Interface Sci 2024; 653:1504-1513. [PMID: 37804618 DOI: 10.1016/j.jcis.2023.09.184] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
Solar-driven water purification is a promising technology that can effectively utilize solar energy for seawater desalination. However, poor materials are unable to meet the dense energy of solar steam generation in natural sunlight for real-time practical applications. Therefore, the demand for energy density can be increased by using improved semiconductor aerogel materials. Here, we report a simple chemical method to obtain a CuS@ATP/PS composite aerogel (named CuAP), which was made of attapulgite (ATP) and CuS loaded onto it using an N-template to give it good photothermal characteristics (CuS@ATP), and then cross-link it with potato starch (PS). The evaporation rate of CuAP-15 aerogel in pure water at 1 kW m-2 solar radiation is 1.57 kg m-2 h-1. Meanwhile, CuAP-15 aerogel showed excellent salt resistance with an evaporation rate of 1.35 kg m-2 h-1 in 20 wt% NaCl solution. And also exhibited excellent cycling durability in cycling stability tests. More importantly, the freshwater yield can reach 6.54 kg m-2 under natural light irradiation for 11 h. Therefore, CuAP aerogel has a great prospect of application in the field of seawater desalination in the future.
Collapse
Affiliation(s)
- Shujing Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huangfang Wei
- Zhejiang Zili Polymer Chemistry Materials Co., Ltd, Shaoxing 312300, China
| | - Xin Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fengyuan Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
4
|
Wang S, Xiao C, Lu S, Guo Y, Wu S, Li H, Chen L. Starch hydrogel with Poly(ionic liquid)s grafted SiO 2 for efficient desalination and wastewater purification. J Colloid Interface Sci 2023; 656:358-366. [PMID: 37995405 DOI: 10.1016/j.jcis.2023.11.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Solar-driven interface evaporation is promising to alleviate the fresh water scarcity in an economical and sustainable way. However, most of currently reported photothermal conversion materials (PMs) are time-consuming costly, inefficient, or complex preparation process, which causes low utilization efficiency, and difficult to be practical for large-scale application. To solve this problem, a facile and green strategy for preparing hydrogel evaporator (SiO2-PILs/starch) by grafting poly(ionic liquid)s onto silica and doping it with starch is proposed. Benefiting from the broad solar absorption (ca.91 %), strong hydrophilic, and superb salt tolerance and stain resistance of SiO2-PILs/starch. Under 1 sun irradiation, the SiO2-PILs/starch achieves a remarkable solar evaporation efficiency of 91.72 % in pure water and 81.45 % in 20 wt% NaCl solution, respectively. In particular, SiO2-PILs/starch exhibited outstanding long-term salt stability (8 h) and crystalline salt can be self-cleaned in the dark environment. It is worth noting that the prepared hydrogel also possesses a satisfied evaporation efficiency of 75.84 % in oily wastewater (3 wt% n-hexadecane solution) due to its excellent water retention. These properties of SiO2-PILs/starch may provide desperately needed solution for efficient desalination and guaranteed high applicability and durability in practice.
Collapse
Affiliation(s)
- Shanshan Wang
- College of Chemical Engineering, Experimental teaching department, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Xincun 1, Lanzhou 730030, PR China
| | - Chaohu Xiao
- College of Chemical Engineering, Experimental teaching department, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Xincun 1, Lanzhou 730030, PR China
| | - Shun Lu
- College of Chemical Engineering, Experimental teaching department, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Xincun 1, Lanzhou 730030, PR China
| | - Yuyan Guo
- College of Chemical Engineering, Experimental teaching department, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Xincun 1, Lanzhou 730030, PR China
| | - Shang Wu
- College of Chemical Engineering, Experimental teaching department, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Xincun 1, Lanzhou 730030, PR China
| | - Hailing Li
- College of Chemical Engineering, Experimental teaching department, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Xincun 1, Lanzhou 730030, PR China
| | - Lihua Chen
- College of Chemical Engineering, Experimental teaching department, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Xincun 1, Lanzhou 730030, PR China.
| |
Collapse
|
5
|
Zhang Y, Wang F, Yu Y, Wu J, Cai Y, Shi J, Morikawa H, Zhu C. Multi-bioinspired hierarchical integrated hydrogel for passive fog harvesting and solar-driven seawater desalination. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023; 466:143330. [PMID: 37193347 PMCID: PMC10162477 DOI: 10.1016/j.cej.2023.143330] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/12/2023] [Accepted: 05/01/2023] [Indexed: 05/18/2023]
Abstract
In recent years, with the outbreak and epidemic of the novel coronavirus in the world, how to obtain clean water from the limited resources has become an urgent issue of concern to all mankind. Atmospheric water harvesting technology and solar-driven interfacial evaporation technology have shown great potential in seeking clean and sustainable water resources. Here, inspired by a variety of organisms in nature, a multi-functional hydrogel matrix composed of polyvinyl alcohol (PVA), sodium alginate (SA) cross-linked by borax as well as doped with zeolitic imidazolate framework material 67 (ZIF-67) and graphene owning macro/micro/nano hierarchical structure has successfully fabricated for producing clean water. The hydrogel not only can reach the average water harvesting ratio up to 22.44 g g-1 under the condition of fog flow after 5 h, but also be capable of desorbing the harvested water with water release efficiency of 1.67 kg m-2 h-1 under 1 sun. In addition to excellent performance in passive fog harvesting, the evaporation rate over 1.89 kg m-2 h-1 is attained under 1 sun on natural seawater during long-term. This hydrogel indicates its potential in producing clean water resources in multiple scenarios in different dry or wet states, and which holds great promise for flexible electronic materials and sustainable sewage or wastewater treatment applications.
Collapse
Affiliation(s)
- Yi Zhang
- Graduate School of Medicine, Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Feifei Wang
- Graduate School of Medicine, Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Yongtao Yu
- Graduate School of Medicine, Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Jiajia Wu
- Graduate School of Medicine, Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Yingying Cai
- Graduate School of Medicine, Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Jian Shi
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Hideaki Morikawa
- Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Chunhong Zhu
- Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
6
|
Huang X, Li L, Zhao X, Zhang J. Highly Salt-Resistant interfacial solar evaporators based on Melamine@Silicone nanoparticles for stable Long-Term desalination and water harvesting. J Colloid Interface Sci 2023; 646:141-149. [PMID: 37187047 DOI: 10.1016/j.jcis.2023.05.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023]
Abstract
Interfacial solar-driven evaporation (ISE) is one of the most promising solutions for collecting fresh water, however, poor salt-resistance severely limits the long-term stability of solar evaporators. Here, highly salt-resistant solar evaporators for stable long-term desalination and water harvesting were fabricated by depositing silicone nanoparticles onto melamine sponge, and then modifying the hybrid sponge sequentially with polypyrrole and Au nanoparticles. The solar evaporators have a superhydrophilic hull for water transport and solar desalination, and a superhydrophobic nucleus for reducing heat loss. Spontaneous rapid salt exchange and reduction in salt concentration gradient were achieved due to ultrafast water transport and replenishment in the superhydrophilic hull with a hierachical micro-/nanostructure, which effectively prevents salt deposition during ISE. Consequently, the solar evaporators have long-term stable evaporation performance of 1.65 kg m-2h-1 for 3.5 wt% NaCl solution under 1 sun illumination. Moreover, 12.87 kg m-2 fresh water was collected during consecutive 10 h ISE of 20 wt% brine under 1 sun without any salt precipitation. We believe that this strategy will shed a new light on the design of long-term stable solar evaporators for fresh water harvesting.
Collapse
Affiliation(s)
- Xiaopeng Huang
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China; Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Lingxiao Li
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China; Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Xia Zhao
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Junping Zhang
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China; Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| |
Collapse
|
7
|
Zhang H, Li L, Geng L, Tan X, Hu Y, Mu P, Li J. Reduced graphene oxide/carbon nitride composite sponge for interfacial solar water evaporation and wastewater treatment. CHEMOSPHERE 2023; 311:137163. [PMID: 36347356 DOI: 10.1016/j.chemosphere.2022.137163] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/19/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Interfacial solar-driven steam generation has been proposed as a cost-effective green sustainable technology to alleviate the freshwater crisis. However, the desire to produce clean water from water sources containing organic contaminants is still remains a challenge due to the limitations of the traditional wastewater treatment methods. Here, we constructed a g-C3N4-based composite sponge solar steam generator (rGCPP) by a simple hydrothermal reaction. Benefiting from its low cost and easy preparation, this evaporator can be expected to be a promising candidate for the alleviation of water shortages and water pollution in practical applications. By combination of the solar steam generation and the photocatalysis into the rGCPP-based interfacial solar-driven steam generation system, the resulted rGCPP-based solar steam generator performs outstanding solar absorption of 90.8%, which achieves high evaporation rate of 1.875 kg m-2 h-1 and solar-to-vapor efficiency of 81.07% under 1 sun irradiation. Meanwhile, organic pollutants in the water source can be completely removed by photocatalytic degradation and the degradation rates were measured to be 99.20% for methylene blue and 91.07% for rhodamine B, respectively. Consequently, the as-prepared composite sponge has promising applications in generating clean water and alleviating water pollution.
Collapse
Affiliation(s)
- He Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Lele Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Le Geng
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Xinyan Tan
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Yaxuan Hu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Peng Mu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China.
| | - Jian Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China.
| |
Collapse
|
8
|
Choi YW, Yoo SS, Lee JH, Moon MW, Yoo PJ. Graphite/SnSe hybrid-embedded monolithic foams with hierarchical and bimodal pores for high performance solar desalination membranes with spontaneous salt rejection. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Alam MK, He M, Chen W, Wang L, Li X, Qin X. Stable and Salt-Resistant Janus Evaporator Based on Cellulose Composite Aerogels from Waste Cotton Fabric. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41114-41121. [PMID: 36040314 DOI: 10.1021/acsami.2c12750] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Solar steam generation has been considered a promising approach for using renewable solar energy to produce clean water from seawater and wastewater. It shows great potential for alleviating water shortages. However, salt accumulation and system longevity are challenges which impede the widespread use of evaporators. This paper reports a stable Janus evaporator with thickness controllable hydrophilic and hydrophobic layers based on cellulose composite aerogels, which were extracted from waste cotton fabric by a two-step freeze-drying process. The obtained glutaraldehyde cross-linked carbon nanotubes/cellulose Janus aerogel exhibited an attractive solar steam generation rate of 1.81 kg·m-2·h-1 and a light-to-vapor efficiency of up to 92.5% in 1 sun illumination. Moreover, the Janus solar steam generator could pledge stable and sustainable solar-driven water evaporation performance within a 10 h test, showing a high salt-resistant property in simulated seawater. In addition, the developed solar evaporator also had a good purification effect on dye wastewater. These findings suggest its potential ability for seawater desalination and wastewater purification.
Collapse
Affiliation(s)
- Md Kowsar Alam
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Mantang He
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Wenjing Chen
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Liming Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xinxin Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xiaohong Qin
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
10
|
Dong Y, Lin Y, Du C, Zhou C, Yang S. Manipulating hydropathicity/hydrophobicity properties to achieve anti-corrosion copper-based membrane toward high-efficient solar water purification. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Li S, Qiu F, Xia Y, Chen D, Jiao X. Integrating a Self-Floating Janus TPC@CB Sponge for Efficient Solar-Driven Interfacial Water Evaporation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19409-19418. [PMID: 35446540 DOI: 10.1021/acsami.2c01359] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Solar-driven photothermal interfacial evaporation is considered as one of the most promising strategies in seawater desalination and wastewater treatment. In desalination, evaporation efficiency and salt resistance are regarded as two inter-constraint measures. Thus, it is still challenging to fabricate solar evaporators with both high evaporation efficiency and excellent salt resistance. In the present work, a self-floating Janus sponge composed of hydrophobic carbon black (CB) coating and hydrophilic porous thermoplastic polyurethane-carbon nanotube (TPC) nanofibrous substrate (TPC@CB) is fabricated via a simple electrospinning and gas templating expansion method. Attributing to the unique trilaminar functional architecture: the upper superhydrophobic solar-absorption coating, the intermediate ultrathin heat localization layer, and the lower cellular thermal insulation layer, the Janus TPC@CB sponge exhibits high evaporation efficiency (1.80 kg m-2 h-1 with an energy efficiency of 97.2% under 1.0 solar irradiation) and outstanding salt resistance ability. Moreover, zero liquid discharge in salt-containing wastewater treatment is realized using the Janus TPC@CB sponge as a solar-driven photothermal medium. This work provides a promising approach to seawater desalination and wastewater treatment.
Collapse
Affiliation(s)
- Shuying Li
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Feng Qiu
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Yuguo Xia
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Dairong Chen
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Xiuling Jiao
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
12
|
Superlyophilic Interfaces Assisted Thermal Management. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2063-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|