1
|
Yu L, Ren Z, Shen T, Li H, Wang L, Li X, Wang Z, Yang Y, Wei M. Anchoring Platinum Nanoparticles onto Oxygen Vacancy-Modified Mixed Metal Oxides for Selective Oxidation Reaction of Aromatic Alcohols. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39968840 DOI: 10.1021/acsami.4c17845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Directed transformation of organic compounds under mild conditions, especially alcohol oxidation, presents great challenges in green chemistry. Herein, we report a platinum nanoparticle catalyst supported on zinc-gallium mixed metal oxides (denoted as Pt/ZnGa-MMOs), which displays superior catalytic activity for the selective oxidation reaction of benzyl alcohol to benzaldehyde (conversion: >99%; selectivity: >99%; reaction rate: 125 mmolbenzyl alcohol gPt-1 h-1). Both experimental studies [X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), electron paramagnetic resonance (EPR), X-ray photoelectron spectroscopy (XPS), and X-ray absorption fine structure (XAFS)] and DFT calculations reveal the formation of an interfacial structure (Zn2+δ-Ov-Ga3-δ) on the ZnGa-MMOs support. Moreover, in situ Fourier transform infrared (FT-IR) spectroscopic analysis demonstrates that the Pt species acts as an intrinsic active center to promote the oxidation of the carbon-oxygen bond in the benzyl alcohol molecule, with the formation of the benzaldehyde. This work provides an effective strategy for the preparation of heterogeneous catalysts via constructing the support oxygen vacancy to anchor metal sites toward selective oxidation reactions.
Collapse
Affiliation(s)
- Luyao Yu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhen Ren
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Tianyao Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Haolin Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Lei Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, P. R. China
| | - Xiangcheng Li
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical Technology, Shanghai 201208, P. R. China
| | - Zhendong Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical Technology, Shanghai 201208, P. R. China
| | - Yusen Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, P. R. China
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, P. R. China
| |
Collapse
|
2
|
Shingole M, Banerjee S, Kolay S, Ruz P, Kumar A, Sudarsan V. Dual Catalytic Activity of Pd-Dispersed MOF for Ammonia-Free Hydrogen Generation from Ammonia Borane and Sodium Borohydride in Aqueous and Methanol Solvents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26875-26888. [PMID: 39661940 DOI: 10.1021/acs.langmuir.4c03169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
The development of effective catalysts for hydrogen (H2) generation from chemical hydrides is essential for advancing hydrogen-based energy technologies. Herein, we synthesized a Pd-dispersed CPO-27 catalyst exhibiting exceptional performance for hydrolysis of two boron-based chemical hydrides, i.e., ammonia borane (AB) and sodium borohydride (SB). The catalyst demonstrated activation energies of 22.7 and 18.12 kJ mol-1 for AB and SB hydrolysis respectively, confirming its proficient catalytic activity. To comprehensively understand the factors influencing the production of H2, we systematically investigated the effects of the two hydrides and catalyst concentrations on H2 evolution rates. Additionally, kinetic isotope effect studies were conducted to determine the rate-determining step of hydrolysis reactions. The Pd@MOF catalyst can efficiently capture released ammonia during AB hydrolysis, addressing a major limitation of this process. Notably, the Pd@MOF catalyst demonstrated its catalytic compatibility with methanol solvent too, exploring its applicability in various reaction environments. Overall, our study highlights the capability of the Pd@MOF catalyst toward H2 release from diverse complex hydrides in different solvent systems for H2 generation in clean energy applications.
Collapse
Affiliation(s)
- Manish Shingole
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
- Homi Bhabha National Institute, Mumbai 400 094, India
| | - Seemita Banerjee
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
- Homi Bhabha National Institute, Mumbai 400 094, India
| | - Siddhartha Kolay
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Priyanka Ruz
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Asheesh Kumar
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Vasanthakumaran Sudarsan
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
- Homi Bhabha National Institute, Mumbai 400 094, India
| |
Collapse
|
3
|
Bian L, Liang L, Fan Y, Liu X, Liang F, Peng Q, Han S, Liu L, Liu B. V-doped activated Ru/Ti 2.5V 0.5C 2 dual-active center accelerate hydrogen production from ammonia borane. J Colloid Interface Sci 2024; 671:543-552. [PMID: 38820839 DOI: 10.1016/j.jcis.2024.05.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
Designing and constructing the active center of Ru-based catalysts is the key to efficient hydrolysis of ammonia borane (NH3BH3, AB) for hydrogen production. Herein, V-doped Ru/Ti2.5V0.5C2 dual-active center catalysts were synthesized, showing excellent catalytic ability for AB hydrolysis. The corresponding turnover frequency value was 1072 min-1 at 298 K, and the hydrolysis rate rB of AB was 235 × 103 mL·min-1·gRu-1. X-ray photoelectron spectroscopy results indicated that the interaction between V-doped Ti3C2 and catalytic metal Ru transfers electrons from Ti to Ru, resulting in electron-rich Ru species. According to density functional theory calculations, the activation energy and reaction dissociation energy of the reactants AB and H2O on V-doped catalysts were lower than those of Ru/Ti3C2, thus optimizing the catalytic kinetics of AB hydrolysis. The modification strategy of V-doped Ti3C2 provides a new pathway for the development of high-performance catalysts for AB hydrolysis.
Collapse
Affiliation(s)
- Linyan Bian
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo 454000, China
| | - Licheng Liang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo 454000, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yanping Fan
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo 454000, China
| | - Xianyun Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo 454000, China
| | - Fei Liang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Qiuming Peng
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Shumin Han
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Lili Liu
- Inner Mongolia First Machinery Group Co., Ltd, Baotou 014032 China
| | - Baozhong Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo 454000, China; Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China; State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Jiaozuo 454000, PR China.
| |
Collapse
|
4
|
Guan S, Yuan Z, Zhao S, Zhuang Z, Zhang H, Shen R, Fan Y, Li B, Wang D, Liu B. Efficient Hydrogen Generation from Ammonia Borane Hydrolysis on a Tandem Ruthenium-Platinum-Titanium Catalyst. Angew Chem Int Ed Engl 2024; 63:e202408193. [PMID: 38802317 DOI: 10.1002/anie.202408193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
Hydrolysis of ammonia borane (NH3BH3, AB) involves multiple undefined steps and complex adsorption and activation, so single or dual sites are not enough to rapidly achieve the multi-step catalytic processes. Designing multi-site catalysts is necessary to enhance the catalytic performance of AB hydrolysis reactions but revealing the matching reaction mechanisms of AB hydrolysis is a great challenge. In this work, we propose to construct RuPt-Ti multi-site catalysts to clarify the multi-site tandem activation mechanism of AB hydrolysis. Experimental and theoretical studies reveal that the multi-site tandem mode can respectively promote the activation of NH3BH3 and H2O molecules on the Ru and Pt sites as well as facilitate the fast transfer of *H and the desorption of H2 on Ti sites at the same time. RuPt-Ti multi-site catalysts exhibit the highest turnover frequency (TOF) of 1293 min-1 for AB hydrolysis reaction, outperforming the single-site Ru, dual-site RuPt and Ru-Ti catalysts. This study proposes a multi-site tandem concept for accelerating the dehydrogenation of hydrogen storage material, aiming to contribute to the development of cleaner, low-carbon, and high-performance hydrogen production systems.
Collapse
Affiliation(s)
- Shuyan Guan
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Zhenluo Yuan
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
| | - Shiqian Zhao
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Huanhuan Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
| | - Ruofan Shen
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Yanping Fan
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
| | - Baojun Li
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Baozhong Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
| |
Collapse
|
5
|
Chen X, Luo X, Zhang X, Wang H, Li Y, Ye L, Zheng J, Li H. Regulation of Electronic Structures of the Urchin-Like NiCoP/CoP Nanocatalysts for Fast Hydrogen Evolution. Chemistry 2024; 30:e202304266. [PMID: 38369590 DOI: 10.1002/chem.202304266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
The exploration of stable, efficient, and low-cost catalysts toward ammonia borane hydrolysis is of vital significance for the practical implementation of this hydrogen production technology. Integrating interface engineering and nano-architecture engineering is a favorable strategy to elevate catalytic performance, as it can modify the electronic structure and provide sufficient active sites simultaneously. In this work, urchin-like NiCoP/CoP heterostructures are prepared via a three-step hydrothermal-oxidation-phosphorization synthesis route. It is demonstrated that the original Ni/Co molar ratio and the amount of phosphorus are crucial for adjusting the morphology, enhancing the exposed surface area, facilitating charge transfer, and modulating the adsorption and activation of H2O molecules. Consequently, the optimal Ni1Co2P heterostructure displays remarkable catalytic properties in the hydrolysis of ammonia borane with a turnover frequency (TOF) value of 30.3 molH2 ⋅ min-1 ⋅ molmetal -1, a low apparent activation energy of 25.89 kJ ⋅ mol-1, and good stability. Furthermore, by combining infrared spectroscopy and isotope kinetics experiments, a possible mechanism for the hydrolysis of ammonia borane was proposed.
Collapse
Affiliation(s)
- Xiaodong Chen
- School of chemistry and Materials Engineering, Huizhou University, No.46, Yanda Avenue, Huizhou, 516007, China
- Guangdong Provincial Key Laboratory for Electronic Functional Materials and Devices, Huizhou University, No.46, Yanda Avenue, Huizhou, 516007, China
| | - Xiaoling Luo
- School of chemistry and Materials Engineering, Huizhou University, No.46, Yanda Avenue, Huizhou, 516007, China
| | - Xuefeng Zhang
- School of chemistry and Materials Engineering, Huizhou University, No.46, Yanda Avenue, Huizhou, 516007, China
- Guangdong Provincial Key Laboratory for Electronic Functional Materials and Devices, Huizhou University, No.46, Yanda Avenue, Huizhou, 516007, China
| | - Huize Wang
- School of chemistry and Materials Engineering, Huizhou University, No.46, Yanda Avenue, Huizhou, 516007, China
- Guangdong Provincial Key Laboratory for Electronic Functional Materials and Devices, Huizhou University, No.46, Yanda Avenue, Huizhou, 516007, China
| | - Yongcheng Li
- School of chemistry and Materials Engineering, Huizhou University, No.46, Yanda Avenue, Huizhou, 516007, China
| | - Lifang Ye
- School of chemistry and Materials Engineering, Huizhou University, No.46, Yanda Avenue, Huizhou, 516007, China
| | - Jiahua Zheng
- School of chemistry and Materials Engineering, Huizhou University, No.46, Yanda Avenue, Huizhou, 516007, China
| | - Hao Li
- School of chemistry and Materials Engineering, Huizhou University, No.46, Yanda Avenue, Huizhou, 516007, China
- Guangdong Provincial Key Laboratory for Electronic Functional Materials and Devices, Huizhou University, No.46, Yanda Avenue, Huizhou, 516007, China
| |
Collapse
|
6
|
Li Y, Feng Y, Wang H, Liao J, Guo Z, Chen X, Zhou W, He M, Li H. Visible light-assisted hydrogen generation from ammonia borane over Z-Scheme NiO-CuO heterostructures. J Colloid Interface Sci 2023; 650:1648-1658. [PMID: 37494861 DOI: 10.1016/j.jcis.2023.07.102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/10/2023] [Accepted: 07/15/2023] [Indexed: 07/28/2023]
Abstract
The design and fabrication of cheap and high-efficiency catalysts for ammonia borane (AB) hydrolysis for hydrogen production is crucial for its commercial applications. Improvement of the catalytic performance of the catalysts with the assistance of sunlight, a costless resource, is extremely attractive. Herein, we have constructed Z-scheme heterostructured VO-NiO-CuO catalysts with strong interfacial electronic interactions and abundant oxygen vacancies to enhance hydrogen production from NH3BH3 solution under visible light illumination. The as-prepared VO-NiO-CuO catalysts exhibit excellent catalytic activity with a high turnover frequency (TOF) of 35.3 molH2 molcat.-1 min-1 toward AB hydrolysis under visible light. It is demonstrated that excellent catalytic performance is highly related to the effective separation and migration of charge on the catalyst surface. As a result, dual active sites were created, making it easier for various reactants to be adsorbed and activated on the catalyst surface. Furthermore, the density functional theory (DFT) calculations indicate that the adsorption and activation of H2O occurred mainly at the Ni site of VO-NiO-CuO. When the VO-NiO-CuO is irradiated with visible light, the photogenerated electrons assembled on the conduction band were transferred to the O atom through the Ni-O bond, which made the bond length of H2O molecules longer and OH bonds more prone to breaking, thus facilitating AB hydrolysis under illumination. The findings in this work pave the way to design novel and efficient heterostructured catalysts for fast hydrogen release from NH3BH3 under visible light irradiation.
Collapse
Affiliation(s)
- Yuanzhong Li
- School of chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China; Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China
| | - Yufa Feng
- School of chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China
| | - Huize Wang
- School of chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China
| | - Jinyun Liao
- School of chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China.
| | - Zhaohui Guo
- Guangdong Provincial Key Laboratory for Electronic Functional Materials and Devices, Huizhou University, Huizhou 516007, China
| | - Xiaodong Chen
- School of chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China.
| | - Weiyou Zhou
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China
| | - Mingyang He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China
| | - Hao Li
- School of chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China.
| |
Collapse
|
7
|
Song J, Wu F. Highly electron-deficient ultrathin Co nanosheets supported on mesoporous Cr 2O 3 for catalytic hydrogen evolution from ammonia borane. NANOSCALE 2023; 15:16741-16751. [PMID: 37814935 DOI: 10.1039/d3nr03867j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The hydrolysis of ammonia borane (NH3BH3) on metal-based heterogeneous catalysts under light irradiation has been considered as an efficient technique for hydrogen (H2) generation, in which the activity of the catalyst can be improved by increasing the electron density of the active metal. However, studies focused on reducing the electron density of the active metal are rare. Here, we report an electron density manipulation strategy to prepare highly electron-deficient ultrathin Co nanosheets via transferring nanosheets to support mesoporous Cr2O3 by simple one-step in situ reduction (denoted as Co/Cr2O3). X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge structure (XANES) spectra confirm the formation of electron-deficient Co nanosheets and the Co-O-Cr bond due to electron transfer from the nanosheets to mesoporous Cr2O3. Importantly, the Co-O-Cr bond can work as a bridge to accelerate the electron transfer under light irradiation and then improve the electron-deficiency degree of Co nanosheets. As a result, the optimal Co/Cr2O3 exhibits a high intrinsic catalytic performance with the turnover frequency (TOF) value of 106.8 min-1 and significantly reduces the activation energy (Ea) to 16.8 kJ mol-1 under visible light irradiation, which make it among the best ever recorded monometallic Co-based catalyst with enriched electrons. The density functional theory (DFT) calculation results suggest that the electron-deficient Co nanosheets are responsible for the greatly decreased H2O activation and dissociation energy barriers and then the acceleration of the evolution of H2. The work provides a new perspective for designing high efficiency catalysts for H2 production, which is beneficial for relative energy conversion and storage catalysis.
Collapse
Affiliation(s)
- Jin Song
- Department of Chemical and Environmental Engineering, Hetao College, Bayan Nur 015000, China.
| | - Fenglong Wu
- Department of Chemical and Environmental Engineering, Hetao College, Bayan Nur 015000, China.
| |
Collapse
|
8
|
Guan S, Liu Y, Zhang H, Shen R, Wen H, Kang N, Zhou J, Liu B, Fan Y, Jiang J, Li B. Recent Advances and Perspectives on Supported Catalysts for Heterogeneous Hydrogen Production from Ammonia Borane. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2300726. [PMID: 37118857 PMCID: PMC10375177 DOI: 10.1002/advs.202300726] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Ammonia borane (AB), a liquid hydrogen storage material, has attracted increasing attention for hydrogen utilization because of its high hydrogen content. However, the slow kinetics of AB hydrolysis and the indefinite catalytic mechanism remain significant problems for its large-scale practical application. Thus, the development of efficient AB hydrolysis catalysts and the determination of their catalytic mechanisms are significant and urgent. A summary of the preparation process and structural characteristics of various supported catalysts is presented in this paper, including graphite, metal-organic frameworks (MOFs), metal oxides, carbon nitride (CN), molybdenum carbide (MoC), carbon nanotubes (CNTs), boron nitride (h-BN), zeolites, carbon dots (CDs), and metal carbide and nitride (MXene). In addition, the relationship between the electronic structure and catalytic performance is discussed to ascertain the actual active sites in the catalytic process. The mechanism of AB hydrolysis catalysis is systematically discussed, and possible catalytic paths are summarized to provide theoretical considerations for the designing of efficient AB hydrolysis catalysts. Furthermore, three methods for stimulating AB from dehydrogenation by-products and the design of possible hydrogen product-regeneration systems are summarized. Finally, the remaining challenges and future research directions for the effective development of AB catalysts are discussed.
Collapse
Affiliation(s)
- Shuyan Guan
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
- Research Center of Green Catalysis, College of Chemistry, School of Physics and Microelectronics, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
| | - Yanyan Liu
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
- Research Center of Green Catalysis, College of Chemistry, School of Physics and Microelectronics, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab on Forest Chemical Engineering, SFA, 16 Suojinwucun, Nanjing, 210042, P. R. China
| | - Huanhuan Zhang
- Research Center of Green Catalysis, College of Chemistry, School of Physics and Microelectronics, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
| | - Ruofan Shen
- Research Center of Green Catalysis, College of Chemistry, School of Physics and Microelectronics, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Hao Wen
- Research Center of Green Catalysis, College of Chemistry, School of Physics and Microelectronics, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Naixin Kang
- ISM, UMR CNRS N° 5255, Univ. Bordeaux, Talence Cedex, 33405, France
| | - Jingjing Zhou
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
| | - Baozhong Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
| | - Yanping Fan
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab on Forest Chemical Engineering, SFA, 16 Suojinwucun, Nanjing, 210042, P. R. China
| | - Baojun Li
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
- Research Center of Green Catalysis, College of Chemistry, School of Physics and Microelectronics, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
| |
Collapse
|
9
|
Feng Y, Zhang X, Shao Y, Chen X, Wang H, Li J, Wu M, Dong H, Liu Q, Li H. Modulating the Acidic Properties of Mesoporous Mo x-Ni 0.8Cu 0.2O Nanowires for Enhanced Catalytic Performance toward the Methanolysis of Ammonia Borane for Hydrogen Production. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27979-27993. [PMID: 35674395 DOI: 10.1021/acsami.2c06234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rational construction of inexpensive, highly efficient, and stable catalysts for ammonia borane (AB) methanolysis is in high demand but still remains a great challenge. In this work, we have successfully fabricated uniform Mox-Ni0.8Cu0.2O nanowires using a simple hydrothermal method followed by a post-calcination treatment and flexibly modulated the acidity of their surface by changing the amount of Mo introduced into Ni0.8Cu0.2O. The Mo0.1-Ni0.8Cu0.2O catalyst displayed strong catalytic activity toward AB methanolysis with an ultrahigh turnover frequency of 46.9 molH2 molcat.-1 min-1, which is even higher than some noble metal catalysts. In this work, an equation regarding the relationship between the quantity of moderated acid sites of catalysts and its corresponding activity toward AB methanolysis was first determined. A plausible mechanism for AB methanolysis catalyzed by Mox-Ni0.8Cu0.2O was proposed, and the benefits of the introduction of MoO3 to Ni0.8Cu0.2O for enhancing the catalytic performance were also discussed. These findings can form a basis for the rational construction of inexpensive catalysts with robust performance toward AB methanolysis for hydrogen production.
Collapse
Affiliation(s)
- Yufa Feng
- School of Chemistry and Materials Engineering, Guangdong Provincial Key Laboratory for Electronic Functional Materials and Devices, Huizhou University, Huizhou 516007, China
| | - Xuefeng Zhang
- School of Chemistry and Materials Engineering, Guangdong Provincial Key Laboratory for Electronic Functional Materials and Devices, Huizhou University, Huizhou 516007, China
| | - Youxiang Shao
- School of Chemistry and Materials Engineering, Guangdong Provincial Key Laboratory for Electronic Functional Materials and Devices, Huizhou University, Huizhou 516007, China
| | - Xiaodong Chen
- School of Chemistry and Materials Engineering, Guangdong Provincial Key Laboratory for Electronic Functional Materials and Devices, Huizhou University, Huizhou 516007, China
| | - Huize Wang
- School of Chemistry and Materials Engineering, Guangdong Provincial Key Laboratory for Electronic Functional Materials and Devices, Huizhou University, Huizhou 516007, China
| | - Junhao Li
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Ming Wu
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Huafeng Dong
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Quanbing Liu
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Hao Li
- School of Chemistry and Materials Engineering, Guangdong Provincial Key Laboratory for Electronic Functional Materials and Devices, Huizhou University, Huizhou 516007, China
| |
Collapse
|
10
|
Gomez LA, Bababrik R, Komarneni MR, Marlowe J, Salavati-fard T, D’Amico AD, Wang B, Christopher P, Crossley SP. Selective Reduction of Carboxylic Acids to Aldehydes with Promoted MoO 3 Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Laura A. Gomez
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Reda Bababrik
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Mallikharjuna R. Komarneni
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Justin Marlowe
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Taha Salavati-fard
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Andrew D. D’Amico
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Bin Wang
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Phillip Christopher
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Steven P. Crossley
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
11
|
Mo B, Li S, Wen H, Zhang H, Zhang H, Wu J, Li B, Hou H. Functional Group Regulated Ni/Ti 3C 2T x (T x = F, -OH) Holding Bimolecular Activation Tunnel for Enhanced Ammonia Borane Hydrolysis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16320-16329. [PMID: 35352551 DOI: 10.1021/acsami.2c02594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Developing economical and efficient catalyst for hydrogen generation from ammonia borane (AB) hydrolysis is still a huge challenge. As an alternative strategy, the functional group regulation of metal nanoparticles (NPs)-based catalysts is believed to be capable of improving the catalytic activity. Herein, a series of Ni/Ti3C2Tx-Y (Tx = F, -OH; Y denotes etching time (d)) catalysts are synthesized and show remarkably enhanced catalytic activity on the hydrolysis of AB in contrast to the corresponding without regulating. The optimized Ni/Ti3C2Tx-4 with a turnover frequency (TOF) value of 161.0 min-1 exhibits the highest catalytic activity among the non-noble monometallic-based catalyst. Experimental results and theory calculations demonstrate that the excellent catalytic activity benefits from the bimolecular activation channels formed by Ni NPs and Ti3C2Tx-Y. H2O and AB molecules are activated simultaneously in the bimolecular activation tunnel. Bimolecular activation reduces the activation energy of AB hydrolysis, and hydrogen generation rate is promoted. This article provides a new approach to design effective catalysts and further supports the bimolecular activation model for the hydrolysis of AB.
Collapse
Affiliation(s)
- Bingyan Mo
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shuwen Li
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Hao Wen
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Huanhuan Zhang
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Heyao Zhang
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Wu
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Baojun Li
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Hongwei Hou
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|