1
|
Xu L, Cao X, Deng Y, Zhang B, Li X, Liu W, Ren W, Tang X, Kong X, Zhang D. Cuproptosis-related genes and agents: implications in tumor drug resistance and future perspectives. Front Pharmacol 2025; 16:1559236. [PMID: 40406488 PMCID: PMC12095339 DOI: 10.3389/fphar.2025.1559236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/23/2025] [Indexed: 05/26/2025] Open
Abstract
In the field of tumor treatment, drug resistance remains a significant challenge requiring urgent intervention. Recent developments in cell death research have highlighted cuproptosis, a mechanism of cell death induced by copper, as a promising avenue for understanding tumor biology and addressing drug resistance. Cuproptosis is initiated by the dysregulation of copper homeostasis, which in turn triggers mitochondrial metabolic disruptions and induces proteotoxic stress. This process specifically entails the accumulation of lipoylated proteins and the depletion of iron-sulfur cluster proteins within the context of the tricarboxylic acid cycle. Simultaneously, it is accompanied by the activation of distinct signaling pathways that collectively lead to cell death. Emerging evidence highlights the critical role of cuproptosis in addressing tumor drug resistance. However, the core molecular mechanisms of cuproptosis, regulation of the tumor microenvironment, and clinical translation pathways still require further exploration. This review examines the intersection of cuproptosis and tumor drug resistance, detailing the essential roles of cuproptosis-related genes and exploring the therapeutic potential of copper ionophores, chelators, and nanodelivery systems. These mechanisms offer promise for overcoming resistance and advancing tumor precision medicine. By elucidating the molecular mechanisms underlying cuproptosis, this study aims to identify novel therapeutic strategies and targets, thereby paving the way for the development of innovative anti-cancer drugs.
Collapse
Affiliation(s)
- Lingwen Xu
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Xiaolan Cao
- Department of Radiotherapy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Yuxiao Deng
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Bin Zhang
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Xinzhi Li
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Wentao Liu
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Wenjie Ren
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Xuan Tang
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Xiangyu Kong
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Daizhou Zhang
- Institute of Chemical Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| |
Collapse
|
2
|
Pallathadka H, Jabir M, Rasool KH, Hanumanthaiah M, Sharma N, Pramanik A, Rab SO, Jawad SF, Oghenemaro EF, Mustafa YF. siRNA-based therapy for overcoming drug resistance in human solid tumours; molecular and immunological approaches. Hum Immunol 2025; 86:111221. [PMID: 39700968 DOI: 10.1016/j.humimm.2024.111221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
RNA interference (RNAi) is a primordial biological process that protects against external intrusion. SiRNA has the potential to selectively silence disease-related genes in a sequence-specific way, thus offering a promising therapeutic approach. The efficacy of siRNA-based therapies in cancer treatment has gained significant recognition due to multiple studies demonstrating its ability to effectively suppress cancer cells' growth and multiplication. Moreover, siRNA-based medicines have shown considerable promise in enhancing the sensitivity of cancer cells to chemotherapy and other treatment methods by suppressing genes that play a role in the development of drug resistance. Exploring and identifying functional genes linked to cancer cell characteristics and drug resistance is crucial for developing effective siRNAs for cancer treatment and advancing targeted and personalized therapeutics. Targeting and silencing genes in charge of resistance mechanisms, such as those involved in drug efflux, cell survival, or DNA repair, is possible with siRNA therapy in the context of drug resistance, especially cancer. Through inhibiting these genes, siRNA therapy can prevent resistance and restore the efficacy of traditional medications. This review addresses the potential of siRNAs in addressing drug resistance in human tumours, opening up new possibilities in cancer therapy. This review article offers a non-systematic summary of how different siRNA types contribute to cancer cells' treatment resistance. Using pertinent keywords, sources were chosen from reliable databases, including PubMed, Scopus, and Google Scholar. The review covered essential papers in this area and those that mainly addressed the function of siRNA in drug resistance. The articles examined in connection with the title of this review were primarily published from 2020 onward and are based on in vitro studies. Furthermore, this article examines the potential barriers and prospective perspectives of siRNA therapies.
Collapse
Affiliation(s)
| | - Majid Jabir
- Department of Applied Sciences, University of Technology, Iraq
| | | | - Malathi Hanumanthaiah
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Neha Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri - 140307, Mohali, Punjab, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University Dehradun, Uttarakhand, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Sabrean Farhan Jawad
- Department of Biochemistry, College of Science, Al-Mustaqbal University, 51001 Babil, Iraq.
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology, Delta State University, Faculty of Pharmacy, PMB 1 Abraka, Delta State, Nigeria
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
3
|
Jiang Q, Tong F, Xu Y, Liu C, Xu Q. Cuproptosis: a promising new target for breast cancer therapy. Cancer Cell Int 2024; 24:414. [PMID: 39702350 DOI: 10.1186/s12935-024-03572-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/10/2024] [Indexed: 12/21/2024] Open
Abstract
Breast cancer (BC) is the leading cause of cancer-related mortality among women globally, affecting approximately one-quarter of all female cancer patients and accounting for one-sixth of cancer-related deaths in women. Despite significant advancements in diagnostic and therapeutic approaches, breast cancer treatment remains challenging due to issues such as recurrence and metastasis. Recently, a novel form of regulated cell death, termed cuproptosis, has been identified. This process disrupts mitochondrial respiration by targeting the copper-dependent cellular pathways. The role of cuproptosis has been extensively investigated in various therapeutic contexts, including chemotherapy, immunotherapy, radiotherapy, and nanotherapy, with the development of novel drugs significantly improving clinical outcomes. This article aims to further elucidate the connection between cuproptosis and breast cancer, focusing on its therapeutic targets, signaling pathways, and potential biomarkers that could enhance treatment strategies. These insights may offer new opportunities for improved patient care and outcomes in breast cancer therapy.
Collapse
Affiliation(s)
- Qianqian Jiang
- Department of Pharmacy, Traditional Chinese Medicine Hospital of Changshan, Quzhou, 324200, P.R. China
| | - Fei Tong
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, P.R. China
| | - Yun Xu
- Department of Pharmacy, Zhejiang Medical&Health Group Hangzhou Hospital, Hangzhou, Zhejiang, 310022, China
| | - Cheng Liu
- Department of Pharmacy, The Secend People's Hospital Of Jiande, Hangzhou, 311604, P.R. China
| | - Qiaoping Xu
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Cancer Center, Afliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
4
|
Li Y, Pan X, Hai P, Zheng Y, Shan Y, Zhang J. All-in-one nanotheranostic platform based on tumor microenvironment: new strategies in multimodal imaging and therapeutic protocol. Drug Discov Today 2024; 29:104029. [PMID: 38762088 DOI: 10.1016/j.drudis.2024.104029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Conventional tumor diagnosis and treatment approaches have significant limitations in clinical application, whereas personalized theranostistic nanoplatforms can ensure advanced diagnosis, precise treatment, and even a good prognosis in cancer. Tumor microenvironment (TME)-targeted therapeutic strategies offer absolute advantages in all aspects compared to tumor cell-targeted therapeutic strategies. It is essential to create a TME-responsive all-in-one nanotheranostic platform to facilitate individualized tumor treatment. Based on the TME-responsive multifunctional nanotheranostic platform, we focus on the combined use of multimodal imaging and therapeutic protocols and summary and outlooks on the latest advanced nanomaterials and structures for creating the integrated nanotheranostic system based on material science, which provide insights and reflections on the development of innovative TME-targeting tools for cancer theranostics.
Collapse
Affiliation(s)
- Yanchen Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoyan Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ping Hai
- NMPA Key Laboratory for Quality Control of Traditional Chinese and Tibetan Medicine, Qinghai Provincial Drug Inspection and Testing Institute, Xining 810016, China
| | - Yongbiao Zheng
- NMPA Key Laboratory for Quality Control of Traditional Chinese and Tibetan Medicine, Qinghai Provincial Drug Inspection and Testing Institute, Xining 810016, China
| | - Yuanyuan Shan
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
5
|
Wang Y, Chen Y, Zhang J, Yang Y, Fleishman JS, Wang Y, Wang J, Chen J, Li Y, Wang H. Cuproptosis: A novel therapeutic target for overcoming cancer drug resistance. Drug Resist Updat 2024; 72:101018. [PMID: 37979442 DOI: 10.1016/j.drup.2023.101018] [Citation(s) in RCA: 84] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023]
Abstract
Cuproptosis is a newly identified form of cell death driven by copper. Recently, the role of copper and copper triggered cell death in the pathogenesis of cancers have attracted attentions. Cuproptosis has garnered enormous interest in cancer research communities because of its great potential for cancer therapy. Copper-based treatment exerts an inhibiting role in tumor growth and may open the door for the treatment of chemotherapy-insensitive tumors. In this review, we provide a critical analysis on copper homeostasis and the role of copper dysregulation in the development and progression of cancers. Then the core molecular mechanisms of cuproptosis and its role in cancer is discussed, followed by summarizing the current understanding of copper-based agents (copper chelators, copper ionophores, and copper complexes-based dynamic therapy) for cancer treatment. Additionally, we summarize the emerging data on copper complexes-based agents and copper ionophores to subdue tumor chemotherapy resistance in different types of cancers. We also review the small-molecule compounds and nanoparticles (NPs) that may kill cancer cells by inducing cuproptosis, which will shed new light on the development of anticancer drugs through inducing cuproptosis in the future. Finally, the important concepts and pressing questions of cuproptosis in future research that should be focused on were discussed. This review article suggests that targeting cuproptosis could be a novel antitumor therapy and treatment strategy to overcome cancer drug resistance.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, PR China.
| | - Yongming Chen
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, PR China
| | - Junjing Zhang
- Department of Hepato-Biliary Surgery, Department of Surgery, Huhhot First Hospital, Huhhot 010030, PR China
| | - Yihui Yang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yan Wang
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, PR China
| | - Jinhua Wang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, PR China
| | - Yuanfang Li
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, PR China.
| | - Hongquan Wang
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China.
| |
Collapse
|
6
|
Ye Q, Yuan E, Shen J, Ye M, Xu Q, Hu X, Shu Y, Pang H. Amphiphilic Polymer Capped Perovskite Compositing with Nano Zr-MOF for Nanozyme-Involved Biomimetic Cascade Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304149. [PMID: 37635202 PMCID: PMC10625115 DOI: 10.1002/advs.202304149] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/03/2023] [Indexed: 08/29/2023]
Abstract
CsPbX3 perovskite nanocrystal (NC) is considered as an excellent optical material and is widely applied in optoelectronics. However, its poor water stability impedes its study in enzyme-like activity, and further inhibits its application in biomimetic cascade catalysis. Herein, for the first time, the oxidase-like and ascorbate oxidase-like activities of an amphiphilic polymer capped CsPbX3 are demonstrated, and its catalytic mechanism is further explored. Furthermore, an all-nanozyme cascade system (multifunctional CsPbBr3 @Zr-metal organic framework (Zr-MOF) and Prussian blue as oxidase-like and peroxidase-like nanozyme) is constructed with a portable paper-based device for realizing the dual-mode (ratiometric fluorescence and colorimetric) detection of ascorbic acid in a point-of-care (POC) fashion. This is the first report on the utilization of all-inorganic CsPbX3 perovskite NC in biomimetic cascade catalysis, which opens a new avenue for POC clinical disease diagnosis.
Collapse
Affiliation(s)
- Qiuyu Ye
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225002P. R. China
| | - Enxian Yuan
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225002P. R. China
| | - Jin Shen
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225002P. R. China
| | - Mingli Ye
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225002P. R. China
| | - Qin Xu
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225002P. R. China
| | - Xiaoya Hu
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225002P. R. China
| | - Yun Shu
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225002P. R. China
| | - Huan Pang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225002P. R. China
| |
Collapse
|
7
|
Zhang X, Hu S, Huang L, Chen X, Wang X, Fu YN, Sun H, Li G, Wang X. Advance Progress in Assembly Mechanisms of Carrier-Free Nanodrugs for Cancer Treatment. Molecules 2023; 28:7065. [PMID: 37894544 PMCID: PMC10608994 DOI: 10.3390/molecules28207065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Nanocarriers have been widely studied and applied in the field of cancer treatment. However, conventional nanocarriers still suffer from complicated preparation processes, low drug loading, and potential toxicity of carriers themselves. To tackle the hindrance, carrier-free nanodrugs with biological activity have received increasing attention in cancer therapy. Extensive efforts have been made to exploit new self-assembly methods and mechanisms to expand the scope of carrier-free nanodrugs with enhanced therapeutic performance. In this review, we summarize the advanced progress and applications of carrier-free nanodrugs based on different types of assembly mechanisms and strategies, which involved noncovalent interactions, a combination of covalent bonds and noncovalent interactions, and metal ions-coordinated self-assembly. These carrier-free nanodrugs are introduced in detail according to their assembly and antitumor applications. Finally, the prospects and existing challenges of carrier-free nanodrugs in future development and clinical application are discussed. We hope that this comprehensive review will provide new insights into the rational design of more effective carrier-free nanodrug systems and advancing clinical cancer and other diseases (e.g., bacterial infections) infection treatment.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuyang Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lifei Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiyue Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ya-nan Fu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hui Sun
- Department of Hepatology, Tongliao Infectious Disease Hospital, Tongliao 028000, China
- Department of Interventional Ultrasound, PLA Medical College & Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Guofeng Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
8
|
Wan Y, Chen Z, Wang Y, Zhao W, Pei Z, Pu L, Lv Y, Li J, Li J, Pei Y. A hyaluronic acid modified cuprous metal-organic complex for reversing multidrug resistance via redox dyshomeostasis. Carbohydr Polym 2023; 311:120762. [PMID: 37028879 DOI: 10.1016/j.carbpol.2023.120762] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/12/2023] [Accepted: 02/25/2023] [Indexed: 03/08/2023]
Abstract
Multidrug resistance (MDR) which is often related to the overexpression of P-glycoprotein (P-gp) in drug-resistant cancer cells has been a major problem faced by current cancer chemotherapy. Reversing P-gp-related MDR by disrupting tumor redox homeostasis that regulates the expression of P-gp is a promising strategy. In this work, a hyaluronic acid (HA) modified nanoscale cuprous metal-organic complex (HA-CuTT) was developed to reverse P-gp-related MDR via two-way regulated redox dyshomeostasis, which was achieved by both Cu+-catalyzed generation of •OH and disulfide bonds-mediated depletion of glutathione (GSH). In vitro studies reveal that the DOX-loaded complex (HA-CuTT@DOX) has excellent targeting ability to HepG2-ADR cells due to the modification of HA and effectively induces redox dyshomeostasis in HepG2-ADR cells. Moreover, HA-CuTT@DOX can cause mitochondrial damage, decrease ATP level, and downregulate the P-gp expression, thereby leading to the reversal of MDR and the increased drug accumulation in HepG2-ADR cells. Importantly, in vivo experimental results show that it can achieve effective inhibition (89.6 %) of tumor growth in nude mice bearing HepG2-ADR cells. This is the first work to reverse P-gp-related MDR via two-way regulated redox dyshomeostasis based on a HA modified nanoscale cuprous metal-organic complex, providing a new therapeutic paradigm for effective treatment of MDR-related cancer.
Collapse
Affiliation(s)
- Yichen Wan
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Zelong Chen
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Yi Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Wenkang Zhao
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Zhichao Pei
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Liang Pu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Yinghua Lv
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Jiaxuan Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Jiahui Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Yuxin Pei
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
9
|
The Impact of P-Glycoprotein on Opioid Analgesics: What's the Real Meaning in Pain Management and Palliative Care? Int J Mol Sci 2022; 23:ijms232214125. [PMID: 36430602 PMCID: PMC9695906 DOI: 10.3390/ijms232214125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/01/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Opioids are widely used in cancer and non-cancer pain management. However, many transporters at the blood-brain barrier (BBB), such as P-glycoprotein (P-gp, ABCB1/MDR1), may impair their delivery to the brain, thus leading to opioid tolerance. Nonetheless, opioids may regulate P-gp expression, thus altering the transport of other compounds, namely chemotherapeutic agents, resulting in pharmacoresistance. Other kinds of painkillers (e.g., acetaminophen, dexamethasone) and adjuvant drugs used for neuropathic pain may act as P-gp substrates and modulate its expression, thus making pain management challenging. Inflammatory conditions are also believed to upregulate P-gp. The role of P-gp in drug-drug interactions is currently under investigation, since many P-gp substrates may also act as substrates for the cytochrome P450 enzymes, which metabolize a wide range of xenobiotics and endobiotics. Genetic variability of the ABCB1/MDR1 gene may be accountable for inter-individual variation in opioid-induced analgesia. P-gp also plays a role in the management of opioid-induced adverse effects, such as constipation. Peripherally acting mu-opioid receptors antagonists (PAMORAs), such as naloxegol and naldemedine, are substrates of P-gp, which prevent their penetration in the central nervous system. In our review, we explore the interactions between P-gp and opioidergic drugs, with their implications in clinical practice.
Collapse
|
10
|
Sun Z, Chen W, Huang D, Jiang C, Lu L. A mitochondria targeted cascade reaction nanosystem for improved therapeutic effect by overcoming cellular resistance. Biomater Sci 2022; 10:5947-5955. [PMID: 36043518 DOI: 10.1039/d2bm00956k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mitigating cellular resistance, which could enhance the sensitivity of tumor cells to treatment, is a promising approach for obtaining better therapeutic outcomes. However, the present designs of materials generally disregard this point, or only focus on a single specific resistance. Herein, a strategy based on a series of cascade reactions aiming to suppress multiple cellular resistances is designed by integrating photothermal and chemotherapy into a mitochondria targeted nanosystem (AuBPs@TD). The intelligent nanosystem is fabricated by modifying gold nanobipyramids (AuBPs) with triphenylphosphonium (TPP) functionalized dichloroacetic acid (DCA). TPP serves as a "navigation system" and facilitates the location of AuBPs@TD in the mitochondria. Moreover, the released DCA promoted by the photothermal effect of AuBPs, as the mitochondrial kinase inhibitor, could inhibit glycolysis, and lead to a repressed expression of heat shock protein 90, which is the main resistance protein in cancer cells against photothermal therapy (PTT). Thus, the photothermal antitumor effect can be significantly improved. For the other cascade passage, the hyperthermal atmosphere depresses the expression of P-glycoprotein, a protein associated with drug resistance, and consequently prevents DCA molecules from being expelled in return. Furthermore, the retained DCA molecules elevate the concentration of intracellular hydrogen peroxide, and due to the peroxidase-like activity of AuBPs, increased intracellular reactive oxygen species could be obtained to accelerate apoptosis. As a result, these cascade reactions lead to significant inhibition of cellular resistance and greatly improve the therapeutic performance. This work paves a new way for suppressing cellular resistance to achieve the desired therapeutic effect.
Collapse
Affiliation(s)
- Zhen Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,University of Science and Technology of China, Hefei 230026, China.
| | - Weihua Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Dianshuai Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,University of Science and Technology of China, Hefei 230026, China.
| | - Chunhuan Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,University of Science and Technology of China, Hefei 230026, China.
| | - Lehui Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|