1
|
Wang W, Chang J, Chen L, Weng D, Yu Y, Hou Y, Yu G, Wang J, Wang X. A laser-processed micro/nanostructures surface and its photothermal de-icing and self-cleaning performance. J Colloid Interface Sci 2024; 655:307-318. [PMID: 37944378 DOI: 10.1016/j.jcis.2023.10.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/14/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Micro/nanostructures have garnered significant attention and widespread applications in areas such as photocatalysis, coated fabrics, microchips, and sensors. However, high-resolution and multifunctional micro/nanostructures fabrication remains a great challenge. In this work, a novel self-assembly-femtosecond laser processing for the regular micro squares and nano bumps surface on steel substrates is proposed, and a great potential in the field of anti-icing/de-icing and self-cleaning is demonstrated. The surface tension gradient-driven liquid-air self-assembly provides a silica microsphere monolayer, while the post-femtosecond laser process can give precise micro/nano decoration. We systematically explore the impact of laser repetition frequency, scanning speed, and laser incident power on the size and shape of micro/nano decorations that have been studied. The different performances of self-cleaning effects, ice adhesion, and the photothermal de-icing capability due to the change in surface wettability have been demonstrated. This research shows a new pathway for the creation of smart micro/nanostructures surface which possess stable super hydrophilic and highly adhesive superhydrophobic properties, as well as high abrasion resistance. The discovery achieves a suitable blend of multiple functions on the surface of a single material, which can be applied to various surface engineering fields.
Collapse
Affiliation(s)
- Weiling Wang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Jinlin Chang
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Lei Chen
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| | - Ding Weng
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Yadong Yu
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Yacong Hou
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Guoxu Yu
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Jiadao Wang
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| | - Xueguang Wang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
2
|
Wang Q, Yu S, Ye Q, Yang B, Zhang Y, Wang X, Li L. Controlled Preparation of Highly Stretchable, Crack-Free Wrinkled Surfaces with Tunable Wetting and Optical Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2102-2110. [PMID: 38227966 DOI: 10.1021/acs.langmuir.3c02920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Constructing wrinkles by utilizing strain-driven surface instability in film-substrate systems is a general method to prepare micronano structures, which have a wide range of applications in smart surfaces and devices such as flexible electronics, reversible wetting, friction, and optics. However, cracks generated during the preparation and use process significantly affect the uniformity of wrinkled surfaces and degrade the functional properties of the film devices. The realization of crack-free wrinkles with high stretchability in hard film systems is still a great challenge. Here, we report on a facile technique for controllable preparation of large-area, highly stretchable, crack-free wrinkled surfaces by ultraviolet ozone (UVO) treatment of Ecoflex. The thickness dependence of the wrinkles and the in situ wrinkling process during mechanical loading are investigated. The wrinkles including striped, labyrinth-like, herringbone, and transitional structures are controllable by changing strain mode (uniaxial or biaxial), loading history (simultaneous or sequential), strain anisotropy, and gradient loading. The wrinkled surfaces obtained using UVO-treated Ecoflex have tunable wetting and optical properties and can maintain excellent mechanical stability under large strains. This study provides a facile method for the preparation of large-area, crack-free wrinkles, which is simple, fast, low-cost, and robust. The resulting wrinkled surfaces remain stable under high stretching, which is beneficial for many practical applications, especially in the cases of large strains.
Collapse
Affiliation(s)
- Qiaofan Wang
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Senjiang Yu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Qianqian Ye
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Bo Yang
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Yongju Zhang
- College of Mechanical Engineering, Taizhou University, Jiaojiang 318000, P. R. China
| | - Xin Wang
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Lingwei Li
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| |
Collapse
|
3
|
Lu C, Gao Y, Chan X, Yu W, Wang H, Hu L, Li L. A cross-scale honeycomb architecture-based flexible piezoresistive sensor for multiscale pressure perception and fine-grained identification. MATERIALS HORIZONS 2024; 11:510-518. [PMID: 37975415 DOI: 10.1039/d3mh01387a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Trade-off between sensitivity and the pressure sensing range remains a great challenge for flexible pressure sensors. Micro-nano surface structure-based sensors usually show high sensitivity only in a limited pressure regime, while porous structure-based sensors possess a broad pressure-response range with sensitivity being sacrificed. Here, we report a design strategy based on a cross-scale architecture consisting of a microscale tip and macroscale base, which provides continuous deformation ability over a broad pressure regime (10-4-104 kPa). The cross-scale honeycomb architecture (CHA)-based piezoresistive sensor exhibits an excellent sensitivity over a wide pressure range (0.5 Pa-0.56 kPa: S1 ∼ 27.97 kPa-1; 0.56-20.40 kPa: S2 ∼ 2.30 kPa-1; 20.40-460 kPa: S3 ∼ 0.13 kPa-1). As a result, the CHA-based sensor shows multiscale pressure perception and fine-grained identification ability from 0.5 Pa to 40 MPa. Additionally, the cross-scale architecture will be a general structure to design other types of sensors for highly sensitive pressure perception in a wide pressure range and its unit size from microscale to macroscale is beneficial for large-scale preparation, compared with micro-nano surface structures or internal pores.
Collapse
Affiliation(s)
- Chenxi Lu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, P. R. China.
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yuan Gao
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, P. R. China.
| | - Xiaoao Chan
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, P. R. China.
| | - Wei Yu
- Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, P. R. China
| | - Haifeng Wang
- Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, P. R. China
| | - Liang Hu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, P. R. China.
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
| | - Lingwei Li
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, P. R. China.
- Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, P. R. China
| |
Collapse
|
4
|
Kan L, Zhang L, Wang P, Liu Q, Wang J, Su B, Song B, Shi Y. Robust Superhydrophobicity through Surface Defects from Laser Powder Bed Fusion Additive Manufacturing. Biomimetics (Basel) 2023; 8:598. [PMID: 38132537 PMCID: PMC10741415 DOI: 10.3390/biomimetics8080598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
The robustness of superhydrophobic objects conflicts with both the inevitable introduction of fragile micro/nanoscale surfaces and three-dimensional (3D) complex structures. The popular metal 3D printing technology can manufacture robust metal 3D complex components, but the hydrophily and mass surface defects restrict its diverse application. Herein, we proposed a strategy that takes the inherent ridges and grooves' surface defects from laser powder bed fusion additive manufacturing (LPBF-AM), a metal 3D printing process, as storage spaces for hydrophobic silica (HS) nanoparticles to obtain superhydrophobic capacity and superior robustness. The HS nanoparticles stored in the grooves among the laser-melted tracks serve as the hydrophobic guests, while the ridges' metal network provides the mechanical strength, leading to robust superhydrophobic objects with desired 3D structures. Moreover, HS nanoparticles coated on the LPBF-AM-printed surface can inhibit corrosion behavior caused by surface defects. It was found that LPBF-AM-printed objects with HS nanoparticles retained superior hydrophobicity after 150 abrasion cycles (~12.5 KPa) or 50 cycles (~37.5 KPa). Furthermore, LPBF-AM-printed ships with superhydrophobic coating maintained great water repellency even after 10,000 cycles of seawater swashing, preventing dynamic corrosion upon surfaces. Our proposed strategy, therefore, provides a low-cost, highly efficient, and robust superhydrophobic coating, which is applicable to metal 3D architectures toward corrosion-resistant requirements.
Collapse
Affiliation(s)
- Longxin Kan
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (L.K.); (L.Z.); (B.S.); (Y.S.)
- Department of Mechanical Engineering, National University of Singapore, Singapore 119077, Singapore
| | - Lei Zhang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (L.K.); (L.Z.); (B.S.); (Y.S.)
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Pengfei Wang
- Advanced Materials and Energy Center, China Academy of Aerospace Science and Innovation, Beijing 100176, China;
| | - Qi Liu
- Science and Technology on Power Beam Processes Laboratory, Beijing Key Laboratory of High Power Beam Additive Manufacturing Technology and Equipment, Aeronautical Key Laboratory for Additive Manufacturing Technologies, AVIC Manufacturing Technology Institute, Beijing 100024, China; (Q.L.); (J.W.)
| | - Jihao Wang
- Science and Technology on Power Beam Processes Laboratory, Beijing Key Laboratory of High Power Beam Additive Manufacturing Technology and Equipment, Aeronautical Key Laboratory for Additive Manufacturing Technologies, AVIC Manufacturing Technology Institute, Beijing 100024, China; (Q.L.); (J.W.)
| | - Bin Su
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (L.K.); (L.Z.); (B.S.); (Y.S.)
| | - Bo Song
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (L.K.); (L.Z.); (B.S.); (Y.S.)
| | - Yusheng Shi
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (L.K.); (L.Z.); (B.S.); (Y.S.)
| |
Collapse
|
5
|
Li S, Zhang J, He J, Liu W, Wang Y, Huang Z, Pang H, Chen Y. Functional PDMS Elastomers: Bulk Composites, Surface Engineering, and Precision Fabrication. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304506. [PMID: 37814364 DOI: 10.1002/advs.202304506] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Indexed: 10/11/2023]
Abstract
Polydimethylsiloxane (PDMS)-the simplest and most common silicone compound-exemplifies the central characteristics of its class and has attracted tremendous research attention. The development of PDMS-based materials is a vivid reflection of the modern industry. In recent years, PDMS has stood out as the material of choice for various emerging technologies. The rapid improvement in bulk modification strategies and multifunctional surfaces has enabled a whole new generation of PDMS-based materials and devices, facilitating, and even transforming enormous applications, including flexible electronics, superwetting surfaces, soft actuators, wearable and implantable sensors, biomedicals, and autonomous robotics. This paper reviews the latest advances in the field of PDMS-based functional materials, with a focus on the added functionality and their use as programmable materials for smart devices. Recent breakthroughs regarding instant crosslinking and additive manufacturing are featured, and exciting opportunities for future research are highlighted. This review provides a quick entrance to this rapidly evolving field and will help guide the rational design of next-generation soft materials and devices.
Collapse
Affiliation(s)
- Shaopeng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jiaqi Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jian He
- Yizhi Technology (Shanghai) Co., Ltd, No. 99 Danba Road, Putuo District, Shanghai, 200062, China
| | - Weiping Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- Center for Composites, COMAC Shanghai Aircraft Manufacturing Co. Ltd, Shanghai, 201620, China
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
- Maryland NanoCenter, University of Maryland, College Park, MD, 20742, USA
| | - Zhongjie Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yiwang Chen
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| |
Collapse
|
6
|
Han L, Guo Y, Ning F, Liu X, Yi J, Luo Q, Qu B, Yue J, Lu Y, Li Q. Lotus Effect Inspired Hydrophobic Strategy for Stable Zn Metal Anodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2308086. [PMID: 37830986 DOI: 10.1002/adma.202308086] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/12/2023] [Indexed: 10/14/2023]
Abstract
Zn-ion batteries (ZIBs) have long suffered from the unstable Zn metal anode, which faces numerous challenges concerning dendrite growth, corrosion, and hydrogen evolution reaction. The absence of H2 O adsorption control techniques has become a bottleneck for the further development of ZIBs. Using the stearic acid (SA)-modified Cu@Zn (SA-Cu@Zn) anode as an example, this work illustrates how the lotus effect controls the H2 O adsorption energy on the Zn metal anode. In situ integrated Cu nanorods arrays and hydrophobic long-chain alkyl groups are constructed, which provide zincophilic ordered channels and hydrophobic property. Consequently, the SA-Cu@Zn anode exhibits long-term cycling stability over 2000 h and high average Coulombic efficiency (CE) of 99.83% at 1 mA cm-2 for 1 mAh cm-2 , which improves the electrochemical performance of the Zn||V2 O5 full cell. Density functional theory (DFT) calculations combined with water contact angle (CA) measurements demonstrate that the SA-Cu@Zn exhibits larger water CA and weaker H2 O adsorption than Zn. Moreover, the presence of Cu ensures the selective adsorption of Zn on the SA-Cu@Zn anode, well explaining how the excellent reversibility is achieved. This work demonstrates the effectiveness of the lotus effect on controllable H2 O adsorption and Zn deposition mechanism, offering a universal strategy for achieving stable ZIB anodes.
Collapse
Affiliation(s)
- Lishun Han
- State Key Laboratory of Advanced Special Steel & School of Materials Science and Engineering and Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University, Shanghai, 200444, China
| | - Yiming Guo
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 20044, China
| | - Fanghua Ning
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 20044, China
| | - Xiaoyu Liu
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 20044, China
| | - Jin Yi
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 20044, China
| | - Qun Luo
- State Key Laboratory of Advanced Special Steel & School of Materials Science and Engineering and Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University, Shanghai, 200444, China
| | - Baihua Qu
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, China
- National Key Laboratory of Advanced Casting Technologies, Chongqing University, Chongqing, 400044, China
| | - Jili Yue
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, China
- National Key Laboratory of Advanced Casting Technologies, Chongqing University, Chongqing, 400044, China
| | - Yangfan Lu
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, China
- National Key Laboratory of Advanced Casting Technologies, Chongqing University, Chongqing, 400044, China
| | - Qian Li
- State Key Laboratory of Advanced Special Steel & School of Materials Science and Engineering and Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University, Shanghai, 200444, China
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, China
- National Key Laboratory of Advanced Casting Technologies, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
7
|
Wang Q, Wang W, Lu C, Hu L, Ni Y, Yu S. Retraction of "Three-Axial Strain-Triggered Multimode Wrinkles with Tuneable Frictional and Optical Performances". ACS APPLIED MATERIALS & INTERFACES 2023; 15:45538. [PMID: 37390007 DOI: 10.1021/acsami.3c06867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
|
8
|
Zhou X, Zang H, Guan Y, Li S, Liu M. Superhydrophobic Flexible Strain Sensors Constructed Using Nanomaterials: Their Fabrications and Sustainable Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2639. [PMID: 37836280 PMCID: PMC10574333 DOI: 10.3390/nano13192639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023]
Abstract
Superhydrophobic flexible strain sensors, which combine superhydrophobic coatings with highly sensitive flexible sensors, significantly enhance sensor performance and expand applications in human motion monitoring. Superhydrophobic coatings provide water repellency, surface self-cleaning, anti-corrosion, and anti-fouling properties for the sensors. Additionally, they enhance equipment durability. At present, many studies on superhydrophobic flexible sensors are still in the early research stage; the wear resistance and stability of sensors are far from reaching the level of industrial application. This paper discusses fundamental theories such as the wetting mechanism, tunneling effect, and percolation theory of superhydrophobic flexible sensors. Additionally, it reviews commonly used construction materials and principles of these sensors. This paper discusses the common preparation methods for superhydrophobic flexible sensors and summarizes the advantages and disadvantages of each method to identify the most suitable approach. Additionally, this paper summarizes the wide-ranging applications of the superhydrophobic flexible sensor in medical health, human motion monitoring, anti-electromagnetic interference, and de-icing/anti-icing, offering insights into these fields.
Collapse
Affiliation(s)
- Xiaodong Zhou
- School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China; (X.Z.); (H.Z.)
| | - Hongxin Zang
- School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China; (X.Z.); (H.Z.)
| | - Yong Guan
- Shandong Inov Polyurethane Co., Ltd., Zibo 255000, China
| | - Shuangjian Li
- National Engineering Laboratory of Modern Materials Surface Engineering Technology, Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510651, China
| | - Mingming Liu
- School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China; (X.Z.); (H.Z.)
| |
Collapse
|
9
|
Yun T, Du J, Ji X, Tao Y, Cheng Y, Lv Y, Lu J, Wang H. Waterproof and ultrasensitive paper-based wearable strain/pressure sensor from carbon black/multilayer graphene/carboxymethyl cellulose composite. Carbohydr Polym 2023; 313:120898. [PMID: 37182981 DOI: 10.1016/j.carbpol.2023.120898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/17/2023] [Accepted: 04/07/2023] [Indexed: 05/16/2023]
Abstract
Huge electronic wastes motivated the flourishing of biodegradable electrically conductive cellulosic paper-based functional materials as flexible wearable devices. However, the relatively low sensitivity and unstable output in combination with poor wet strength under high moisture circumstances impeded the practical application. Herein, a superhydrophobic cellulosic paper with ultrahigh sensitivity was proposed by innovatively employing ionic sodium carboxymethyl cellulose (CMC) as bridge to reinforce the interfacial interaction between carbon black (CB) and multilayer graphene (MG) and SiO2 nanoparticles as superhydrophobic layer. The resultant paper-based (PB) sensor displayed excellent strain sensing behaviors, wide working range (-1.0 %-1.0 %), ultrahigh sensitivity (gauge factor, GF = 70.2), and satisfied durability (>10,000 cycles). Moreover, the superhydrophobic surface offered well waterproof and self-cleaning properties, even stable running data without encapsulation under extremely high moisture conditions. Impressively, when the fabricated PB sensor was applied for electronic-skin (E-skin), the signal capture of spatial strain of E-skin upon bodily motion was breezily achieved. Thus, our work not only provides a new pathway for reinforcing the interfacial interaction of electrically conductive carbonaceous materials, but also promises a category of unprecedentedly superhydrophobic cellulosic paper-based strain sensors with ultra-sensitivity in human-machine interfaces field.
Collapse
Affiliation(s)
- Tongtong Yun
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jian Du
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xingxiang Ji
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yehan Tao
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Cheng
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yanna Lv
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jie Lu
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Haisong Wang
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
10
|
Rich SI, Takakuwa M, Fukuda K, Someya T. Simple Method for Creating Hydrophobic Ultraflexible Photovoltaics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12495-12501. [PMID: 36752719 DOI: 10.1021/acsami.2c18941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Optoelectronic devices, such as photodetectors and photovoltaics, are susceptible to surface contamination or water damage that can lead to reductions in performance or stability. Applying superhydrophobic coatings to these devices can introduce self-cleaning behavior and water resistance to extend their lifetime and improve their efficiency. However, existing methods for inducing superhydrophobicity have not been compatible with ultraflexible devices because of their thickness and complexity requirements. In this work, we introduce a procedure for inducing superhydrophobic and self-cleaning behavior on ultraflexible components using a combination of shrinkage-induced wrinkles and a low-surface-energy coating. We apply these techniques to an ultraflexible organic photovoltaics and demonstrate excellent hydrophobicity and self-cleaning behavior.
Collapse
Affiliation(s)
- Steven I Rich
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masahito Takakuwa
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Modern Mechanical Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Kenjiro Fukuda
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takao Someya
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Electrical and Electronic Engineering and Information Systems, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
11
|
Barthwal S, Barthwal S. A highly robust, non‐fluorinated, and economical
PDMS
‐based superhydrophobic flexible surface with repairable and flame‐retardant properties. J Appl Polym Sci 2023. [DOI: 10.1002/app.53766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Sumit Barthwal
- Nanomechatronics Lab Kookmin University Seoul South Korea
| | - Subodh Barthwal
- Department of Mechanical Engineering Amity University Greater Noida India
| |
Collapse
|
12
|
Hou S, Noh I, Shi X, Wang Y, Do Kim H, Ohkita H, Wang B. Facile fabrication of flexible superhydrophobic surfaces with high durability and good mechanical strength through embedding silica nanoparticle into polymer substrate by spraying method. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
13
|
Li S, Yu L, Xiong J, Xiong Y, Bi S, Quan H. Facile Fabrication of Superhydrophobic and Flame-Retardant Coatings on Cotton Fabrics. Polymers (Basel) 2022; 14:polym14235314. [PMID: 36501707 PMCID: PMC9736095 DOI: 10.3390/polym14235314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The hydrophilicity and inherent flammability of cotton textiles severely limit their usage. To solve these drawbacks, a superhydrophobic and flame-retardant (SFR) coating made of chitosan (CH), ammonium polyphosphate (APP), and TiO2-SiO2-HMDS composite was applied to cotton fabric using simple layer-by-layer assembly and dip-coating procedures. First, the fabric was alternately immersed in CH and APP water dispersions, and then immersed in TiO2-SiO2-HMDS composite to form a CH/APP@TiO2-SiO2-HMDS coating on the cotton fabric surface. SEM, EDS, and FTIR were used to analyze the surface morphology, element composition, and functional groups of the cotton fabric, respectively. Vertical burning tests, microscale combustion calorimeter tests, and thermogravimetric analyses were used to evaluate the flammability, combustion behavior, thermal degradation characteristics, and flame-retardant mechanism of this system. When compared to the pristine cotton sample, the deposition of CH and APP enhanced the flame retardancy, residual char, heat release rate, and total heat release of the cotton textiles. The superhydrophobic test results showed that the maximal contact angle of SFR cotton fabric was 153.7°, and possessed excellent superhydrophobicity. Meanwhile, the superhydrophobicity is not lost after 10 laundering cycles or 50 friction cycles. In addition, the UPF value of CH/APP@TiO2-SiO2-HMDS cotton was 825.81, demonstrating excellent UV-shielding properties. Such a durable SFR fabric with a facile fabrication process exhibits potential applications for both oil/water separation and flame retardancy.
Collapse
Affiliation(s)
- Shiwei Li
- Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
- Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
- High-Tech Organic Fibers Key Laboratory of Sichuan Province, Chengdu 610037, China
| | - Luyan Yu
- Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Jianhua Xiong
- Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Ying Xiong
- Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Shuguang Bi
- Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
- Correspondence: (S.B.); (H.Q.)
| | - Heng Quan
- Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
- Correspondence: (S.B.); (H.Q.)
| |
Collapse
|
14
|
Zhang Z, Pei G, Zhao K, Pang P, Gao W, Ye T, Ma B, Luo J, Deng J. Fresnel Diffraction Strategy Enables the Fabrication of Flexible Superomniphobic Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14508-14516. [PMID: 36377419 DOI: 10.1021/acs.langmuir.2c02658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Doubly re-entrant surfaces inspired by springtails exhibit excellent repellency to low-surface-tension liquid. However, the flexible doubly re-entrant surfaces are difficult to fabricate, especially for the overhang of the structure. Herein, we demonstrate a simple Fresnel aperture diffraction modulation strategy in microscale lithography coupled with a molding process to obtain the flexible doubly re-entrant superomniphobic surfaces with nanoscale overhangs. The negative nanoscale overhang features were formed in a single-layer photoresist due to the fine-modulation of the optical intensity fluctuation of the Fresnel aperture diffraction. The as-prepared flexible non-fluorinated polydimethylsiloxane (PDMS) doubly re-entrant microstructure based on the Fresnel aperture diffraction (D-BF) surface (without any additional treatments) could repel ethanol droplets (21.8 mN m-1) in the Cassie-Baxter state. The robust nanoscale overhangs obtained by the molding process enable the maximum breakthrough pressure for the low-surface-tension ethanol droplets on the D-BF surfaces up to about 230 Pa, allowing ethanol liquids with Weber numbers up to 8.7 to fully bounce off. The fabricated non-fluorinated D-BF superomniphobic surface maintains outstanding liquid repellency after the surface wettability modification and deformation test.
Collapse
Affiliation(s)
- Zhonggang Zhang
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, 127 Youyi Road, Xi'an710072, China
| | - Guangyao Pei
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, 127 Youyi Road, Xi'an710072, China
| | - Keli Zhao
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, 127 Youyi Road, Xi'an710072, China
| | - Peng Pang
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, 127 Youyi Road, Xi'an710072, China
| | - Wei Gao
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, 127 Youyi Road, Xi'an710072, China
| | - Tao Ye
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, 127 Youyi Road, Xi'an710072, China
| | - Binghe Ma
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, 127 Youyi Road, Xi'an710072, China
| | - Jian Luo
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, 127 Youyi Road, Xi'an710072, China
| | - Jinjun Deng
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, 127 Youyi Road, Xi'an710072, China
| |
Collapse
|
15
|
Gayle AJ, Lenef JD, Huff PA, Wang J, Fu F, Dadheech G, Dasgupta NP. Visible-Light-Driven Photocatalysts for Self-Cleaning Transparent Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11641-11649. [PMID: 36095297 DOI: 10.1021/acs.langmuir.2c01455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Highly transparent photocatalytic self-cleaning surfaces capable of harvesting near-visible (365-430 nm) photons were synthesized and characterized. This helps to address a current research gap in self-cleaning surfaces, in which photocatalytic coatings that exhibit activity at wavelengths longer than ultraviolet (UV) generally have poor optical transparency, because of broadband scattering and the attenuation of visible light. In this work, the wavelength-dependent photocatalytic activity of Pt-modified TiO2 (Pt-TiO2) particles was characterized, which exhibited activity for wavelengths up to 430 nm. Pt-TiO2 nanoparticles were embedded in a mesoporous SiO2 sol-gel matrix, forming a superhydrophilic surface that allowed for water adsorption and formation of reactive oxide species upon illumination, resulting in the removal of organic surface contaminants. These self-cleaning surfaces only interact strongly with near-visible light (∼365-430 nm), as characterized by photocatalytic self-cleaning tests. Broadband visible transparency was preserved by generating a morphology composed of small clusters of Pt-TiO2 surrounded by a matrix of SiO2, which limited diffuse visible light scattering and attenuation. The wavelength-dependent self-cleaning rate by the films was quantified using stearic acid degradation under both monochromatic and AM1.5G spectral illumination. By varying the film morphology, the average transmittance relative to bare glass can be tuned from ∼93%-99%, and the self-cleaning rate can be adjusted by more than an order of magnitude. Overall, the ability to utilize photocatalysts with tunable visible light activity, while maintaining broadband transparency, can enable the use of photocatalytic self-cleaning surfaces for applications where UV illumination is limited, such as touchscreen displays.
Collapse
Affiliation(s)
- Andrew J Gayle
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Julia D Lenef
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Park A Huff
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jing Wang
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Fenghe Fu
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Gayatri Dadheech
- General Motors Technical Center, Warren, Michigan 48093, United States
| | - Neil P Dasgupta
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
16
|
Nan X, Wang X, Kang T, Zhang J, Dong L, Dong J, Xia P, Wei D. Review of Flexible Wearable Sensor Devices for Biomedical Application. MICROMACHINES 2022; 13:1395. [PMID: 36144018 PMCID: PMC9505309 DOI: 10.3390/mi13091395] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 05/26/2023]
Abstract
With the development of cross-fertilisation in various disciplines, flexible wearable sensing technologies have emerged, bringing together many disciplines, such as biomedicine, materials science, control science, and communication technology. Over the past few years, the development of multiple types of flexible wearable devices that are widely used for the detection of human physiological signals has proven that flexible wearable devices have strong biocompatibility and a great potential for further development. These include electronic skin patches, soft robots, bio-batteries, and personalised medical devices. In this review, we present an updated overview of emerging flexible wearable sensor devices for biomedical applications and a comprehensive summary of the research progress and potential of flexible sensors. First, we describe the selection and fabrication of flexible materials and their excellent electrochemical properties. We evaluate the mechanisms by which these sensor devices work, and then we categorise and compare the unique advantages of a variety of sensor devices from the perspective of in vitro and in vivo sensing, as well as some exciting applications in the human body. Finally, we summarise the opportunities and challenges in the field of flexible wearable devices.
Collapse
Affiliation(s)
- Xueli Nan
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xin Wang
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Tongtong Kang
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Jiale Zhang
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Lanxiao Dong
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Jinfeng Dong
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Peng Xia
- School of Mathematical Sciences, Shanxi University, Taiyuan 030006, China
| | - Donglai Wei
- School of Mathematical Sciences, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
17
|
Yu S, Guo Y, Li H, Lu C, Zhou H, Li L. Tailoring Ordered Wrinkle Arrays for Tunable Surface Performances by Template-Modulated Gradient Films. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11989-11998. [PMID: 35192316 DOI: 10.1021/acsami.2c00926] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Complex wrinkled microstructures are ubiquitous in natural systems and living bodies. Although homogeneous wrinkles in film-substrate bilayers have been extensively investigated in the past 2 decades, tailoring heterogeneous wrinkles by a facile method is still a challenge. Here, we report on the controllable heterogeneous wrinkles in template-modulated thickness-gradient metal films sputter-deposited on polydimethylsiloxane substrates. It is found that the stress of the gradient film is strongly position-dependent and the wrinkles are always restricted in thinner film regions. The morphological characteristic and formation mechanism of the heterogeneous wrinkles are analyzed and discussed in detail based on the stress theory. Ordered wrinkle arrays are achieved by adjusting the deposition time, copper grid period, template shape, and lifting height. The surface performances (e.g., the friction property) are well controlled by the wrinkle arrays. This work could promote better understanding of the spontaneously heterogeneous wrinkles in template-modulated gradient films and controllable fabrication of various wrinkle arrays by independently tuning film deposition conditions and template parameters.
Collapse
Affiliation(s)
- Senjiang Yu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Yongjie Guo
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Huihua Li
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Chenxi Lu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Hong Zhou
- Department of Physics, China Jiliang University, Hangzhou 310018, P. R. China
| | - Lingwei Li
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| |
Collapse
|