1
|
Chen G, Yang G, He C, Lan T, He S, Yang H, Liu L, Yang W, Jian S, Zhang Q. High Capacitive Performance of N,O-Codoped Carbon Aerogels Synthesized via a One-Step Chemical Blowing and In Situ Activation Process. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39255345 DOI: 10.1021/acs.langmuir.4c02011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Biomass and its derivatives, with their renewable characteristics, cost-effectiveness, and controllable structural and compositional properties, are promising precursors for carbon materials. Herein, N,O-codoped carbon aerogels were synthesized by carbonization and zinc nitrate activation of histidine. The specific surface area (SSA) was markedly increased with the addition of zinc nitrate, and the maximum value achieved 853 m2 g-1 for ZHC-11 obtained with the molar ratio of 1:1 between histidine and zinc nitrate. The D/G-band intensity ratio increased from 1.55 for the histidine-derived control sample HC to 1.65 for ZHC-11, indicating the enhancement of amorphous feature. The nitrogen content increased from 6.5% for HC to 1.60 for ZHC-11. The optimized microstructure and enriched heteroatom doping are beneficial to the capacitance performance. The optimum electrode exhibited 234.1 F g-1 at 0.1 A g-1 and maintained 116.5 F g-1 at 60 A g-1 in a three-electrode system. In particular, the symmetric supercapacitor showed 121.9 F g-1 and 19.5 Wh kg-1 at 0.2 A g-1. This research offers guidance on the cost-effective synthesis of carbon materials for supercapacitors, while also providing novel insights to realize the complete utilization of biomass derivatives.
Collapse
Affiliation(s)
- Guoqing Chen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Guangjie Yang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chenweijia He
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Tiancheng Lan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Shuijian He
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Haoqi Yang
- College of Electrical, Energy and Power Engineering, Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Li Liu
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Weisen Yang
- Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
| | - Shaoju Jian
- Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
| | - Qian Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China
- Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
| |
Collapse
|
2
|
Ghasemlou M, Pn N, Alexander K, Zavabeti A, Sherrell PC, Ivanova EP, Adhikari B, Naebe M, Bhargava SK. Fluorescent Nanocarbons: From Synthesis and Structure to Cancer Imaging and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312474. [PMID: 38252677 DOI: 10.1002/adma.202312474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Nanocarbons are emerging at the forefront of nanoscience, with diverse carbon nanoforms emerging over the past two decades. Early cancer diagnosis and therapy, driven by advanced chemistry techniques, play a pivotal role in mitigating mortality rates associated with cancer. Nanocarbons, with an attractive combination of well-defined architectures, biocompatibility, and nanoscale dimension, offer an incredibly versatile platform for cancer imaging and therapy. This paper aims to review the underlying principles regarding the controllable synthesis, fluorescence origins, cellular toxicity, and surface functionalization routes of several classes of nanocarbons: carbon nanodots, nanodiamonds, carbon nanoonions, and carbon nanohorns. This review also highlights recent breakthroughs regarding the green synthesis of different nanocarbons from renewable sources. It also presents a comprehensive and unified overview of the latest cancer-related applications of nanocarbons and how they can be designed to interface with biological systems and work as cancer diagnostics and therapeutic tools. The commercial status for large-scale manufacturing of nanocarbons is also presented. Finally, it proposes future research opportunities aimed at engendering modifiable and high-performance nanocarbons for emerging applications across medical industries. This work is envisioned as a cornerstone to guide interdisciplinary teams in crafting fluorescent nanocarbons with tailored attributes that can revolutionize cancer diagnostics and therapy.
Collapse
Affiliation(s)
- Mehran Ghasemlou
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
- Center for Sustainable Products, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Navya Pn
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Katia Alexander
- School of Engineering, The Australian National University, Canberra, ACT, 2601, Australia
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Peter C Sherrell
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Elena P Ivanova
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
| | - Benu Adhikari
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Minoo Naebe
- Carbon Nexus, Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Suresh K Bhargava
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| |
Collapse
|
3
|
Gupta H, Dahiya Y, Rathore HK, Awasthi K, Kumar M, Sarkar D. Energy-Dense Zinc Ion Hybrid Supercapacitors with S, N Dual-Doped Porous Carbon Nanocube Based Cathodes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42685-42696. [PMID: 37653567 DOI: 10.1021/acsami.3c09202] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Zinc ion hybrid supercapacitors (ZIHSCs) are truly promising as next-generation high-performance energy storage systems because they could offer high energy density like batteries while exhibiting high power output and long cycle life traits of supercapacitors. The key point of constructing a high-performance ZIHSC is to couple the Zn anode with an appropriate cathode material, which has high theoretical capacity, cost-effectiveness, and intrinsic safety features. In this work, we have demonstrated the potentiality of S, N co-doped porous carbon nanocubes (S, N-CNCs) as a cathode material for devising a ZIHSC with excellent energy density and cycle life. The S, N-CNCs are prepared from a zeolitic imidazolate framework (ZIF)-8 precursor via a simultaneous pyrolyzing-doping strategy in an inert atmosphere. Resultant CNCs are monodisperse with an average size of around 65 nm and porous in nature, with uniform N and S doping throughout the structure. Benefitted from such hierarchical porous architecture and the presence of abundant heteroatoms, the assembled ZIHSC with S, N-CNC as the cathode and Zn-foil as the anode in a ZnSO4 aqueous electrolyte could reach a specific capacity as high as 165.5 mA h g-1 (331 F g-1) at 1 A g-1, which corresponds to a satisfactory energy density of 148.9 W h kg-1 at the power density of 900 W kg-1. The ZIHSC has displayed a good cycle stability with more than 70% capacity retention after 10,000 charge-discharge cycles. Furthermore, to verify the practical feasibility of such a cathode material, an aqueous 3D Zn@Cu//S, N-CNC full-cell device is fabricated, which has demonstrated a satisfactory specific capacity (49.6 mAh g-1 at 0.25 A g-1) and an impressive energy density (42.2 Wh kg-1 with 212.2 W kg-1). Full ZIHSC devices are also found to be efficient in powering light-emitting diodes, further substantiating their feasibility in next-generation energy storage applications.
Collapse
Affiliation(s)
- Himanshu Gupta
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan 302017, India
| | - Yogita Dahiya
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan 302017, India
| | - Hem Kanwar Rathore
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan 302017, India
| | - Kamlendra Awasthi
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan 302017, India
| | - Manoj Kumar
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan 302017, India
| | - Debasish Sarkar
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan 302017, India
| |
Collapse
|
4
|
Zhang Y, Song Z, Miao L, Lv Y, Gan L, Liu M. All-Round Enhancement in Zn-Ion Storage Enabled by Solvent-Guided Lewis Acid-Base Self-Assembly of Heterodiatomic Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37440355 DOI: 10.1021/acsami.3c06849] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Designing zincophilic and stable carbon nanostructures is critical for Zn-ion storage with superior capacitive activity and durability. Here, we report solvent-guided Lewis acid-base self-assembly to customize heterodiatomic carbon nanotubes, triggered by the reaction between iron chloride and α,α'-dichloro-p-xylene. In this strategy, modulating the solvent-precursor interaction through the optimization of solvent formula stimulates differential thermodynamic solubilization, growth kinetics, and self-assembly behaviors of Lewis polymeric chains, thereby accurately tailoring carbon nanoarchitectures to evoke superior Zn-ion storage. Featured with open hollow interiors and porous tubular topologies, the solvent-optimized carbon nanotubes allow low ion-migration barriers to deeply access the built-in zincophilic sites by high-kinetics physical Zn2+/CF3SO3- adsorption and robust chemical Zn2+ redox with pyridine/carbonyl motifs, which maximizes the spatial capacitive charge storage density. Thus, as-designed heterodiatomic carbon nanotube cathodes provide all-round improvement in Zn-ion storage, including a high energy density (140 W h kg-1), a large current activity (100 A g-1), and an exceptional long-term cyclability (100,000 cycles at 50 A g-1). This study provides appealing insights into the solvent-mediated Lewis pair self-assembly design of nanostructured carbons toward advanced Zn-ion energy storage.
Collapse
Affiliation(s)
- Yehui Zhang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Ziyang Song
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Ling Miao
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Yaokang Lv
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Lihua Gan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Mingxian Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
5
|
Zhang H, Wang L, Zhang Y, Liu Y, Zhang J, Sun L, Feng F, Zhang Y. Oxygen-enriched lignin-derived porous carbon nanosheets promote Zn 2+ storage. J Colloid Interface Sci 2023; 635:94-104. [PMID: 36577358 DOI: 10.1016/j.jcis.2022.12.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Carbon-based zinc-ion capacitors (ZICs) have sparked intense research enthusiasm because of large power density, good rate capability and cycling stability. However, there is still a long way to go before they achieve commercial applications. Herein, oxygen-enriched lignin-derived porous carbon nanosheets (OLCKs) were prepared by one-step carbonization-activation method, and more O-containing functional groups were generated on the surface of the porous carbon by post-surface functionalization strategy. The self-doped N can change the electron distribution of carbon skeleton and decrease energy barrier of chemical absorption of Zn2+/H+. Meanwhile, the carbonyl group can significantly enhance the wettability of OLCKs. Furthermore, the diffusion-controlled reactions mainly exist at high and low potential ranges in CV curves, which demonstrates the occurred Faradaic reaction. Consequently, the assembled aqueous ZICs based on OLCKs demonstrate a capacity of 121.7 mAh/g at 0.3 A/g, energy density of 94.3 Wh kg-1 and good cyclic stability. Besides, the assembled Zn//PVA/LiCl/ZnCl2(gel)//OLCK4 ZIC can also achieve energy density of 134.4 Wh kg-1 at 0.1 A/g. This work provides a novel design strategy by incorporating abundant O and N-containing functional groups to enhance energy density.
Collapse
Affiliation(s)
- Hanfang Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Lingchao Wang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.
| | - Yanran Liu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Jiahe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Li Sun
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.
| | - Feng Feng
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Yingge Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
6
|
Wang Y, Sun S, Wu X, Liang H, Zhang W. Status and Opportunities of Zinc Ion Hybrid Capacitors: Focus on Carbon Materials, Current Collectors, and Separators. NANO-MICRO LETTERS 2023; 15:78. [PMID: 36988736 PMCID: PMC10060505 DOI: 10.1007/s40820-023-01065-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/05/2023] [Indexed: 06/10/2023]
Abstract
Zinc ion hybrid capacitors (ZIHCs), which integrate the features of the high power of supercapacitors and the high energy of zinc ion batteries, are promising competitors in future electrochemical energy storage applications. Carbon-based materials are deemed the competitive candidates for cathodes of ZIHC due to their cost-effectiveness, high electronic conductivity, chemical inertness, controllable surface states, and tunable pore architectures. In recent years, great research efforts have been devoted to further improving the energy density and cycling stability of ZIHCs. Reasonable modification and optimization of carbon-based materials offer a remedy for these challenges. In this review, the structural design, and electrochemical properties of carbon-based cathode materials with different dimensions, as well as the selection of compatible, robust current collectors and separators for ZIHCs are discussed. The challenges and prospects of ZIHCs are showcased to guide the innovative development of carbon-based cathode materials and the development of novel ZIHCs.
Collapse
Affiliation(s)
- Yanyan Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, People's Republic of China
| | - Shirong Sun
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, People's Republic of China
| | - Xiaoliang Wu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, People's Republic of China.
| | - Hanfeng Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Wenli Zhang
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, People's Republic of China.
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang, 515200, People's Republic of China.
- School of Advanced Manufacturing, Guangdong University of Technology (GDUT), Jieyang, 522000, People's Republic of China.
| |
Collapse
|
7
|
Wang B, Zeng Y, Chen P, Hu J, Gao P, Xu J, Guo K, Liu J. Mechanical Insights into the Electrochemical Properties of Thornlike Micro-/Nanostructures of PDA@MnO 2@NMC Composites in Aqueous Zn Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36079-36091. [PMID: 35881687 DOI: 10.1021/acsami.2c06368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As emerging energy storage devices, aqueous zinc ion batteries (AZIBs) with outstanding advantages of high safety, high energy density, and environmental friendliness have attracted much research interest. Herein, the favorable thornlike MnO2 micro-/nanostructures (PDA@MnO2@NMC) are rationally constructed by the incorporation of both carbon substrates (NMC) and polydopamine (PDA) surface modifications. Ex situ X-ray diffraction and Raman characteristics show the formation of MnOOH and ZnMn2O4 products, corresponding to H+ and Zn2+ insertions in two discharge platforms. Density functional theory (DFT) calculations also demonstrate that PDA can firmly anchor onto MnO2 surfaces and prevent the dissolution of MnOOH. In addition, PDA with more hydrophilic groups can capture more H+ together with the increased surface capacitance and the extension of the first discharge platform, while the NMC carbon substrate can provide abundant active sites for the overgrown MnO2 nanowires, improve the conductivity, and promote fast ion and electron transportations. Further, electrochemical impedance spectroscopy (EIS) and GITT results show that the ohmic resistance of PDA@MnO2@NMC decreases to almost half and, in particular, the ion diffusion coefficient increases more than 30 times of pure MnO2. As such, PDA@MnO2@NMC in the AZIB cathode exhibits excellent electrochemical performance compared to the pure MnO2, which is expected to have favorable competitiveness in energy storage devices.
Collapse
Affiliation(s)
- Bin Wang
- College of Materials Science and Engineering, Hunan University, Hunan joint international laboratory of advanced materials and technology for clean energy, Changsha 410082, P. R. China
| | - Ying Zeng
- College of Materials Science and Engineering, Hunan University, Hunan joint international laboratory of advanced materials and technology for clean energy, Changsha 410082, P. R. China
| | - Peng Chen
- College of Materials Science and Engineering, Hunan University, Hunan joint international laboratory of advanced materials and technology for clean energy, Changsha 410082, P. R. China
| | - Jian Hu
- College of Materials Science and Engineering, Hunan University, Hunan joint international laboratory of advanced materials and technology for clean energy, Changsha 410082, P. R. China
| | - Peng Gao
- College of Materials Science and Engineering, Hunan University, Hunan joint international laboratory of advanced materials and technology for clean energy, Changsha 410082, P. R. China
| | - Jiangtao Xu
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Kunkun Guo
- College of Materials Science and Engineering, Hunan University, Hunan joint international laboratory of advanced materials and technology for clean energy, Changsha 410082, P. R. China
| | - Jilei Liu
- College of Materials Science and Engineering, Hunan University, Hunan joint international laboratory of advanced materials and technology for clean energy, Changsha 410082, P. R. China
| |
Collapse
|