1
|
Tong F, Wang T, Li M, Yin B, Li Y, Yang Y, Tian M. Bioinspired Tunable Helical Fiber-Shaped Strain Sensor with Sensing Controllability for the Rehabilitation of Hemiplegic Patients. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5165-5175. [PMID: 39797768 DOI: 10.1021/acsami.4c17207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
Fiber-based strain sensors, as wearable integrated devices, have shown substantial promise in health monitoring. However, current sensors suffer from limited tunability in sensing performance, constraining their adaptability to diverse human motions. Drawing inspiration from the structure of the spiranthes sinensis, this study introduces a unique textile wrapping technique to coil flexible silver (Ag) yarn around the surface of multifilament elastic polyurethane (PU), thereby constructing a helical structure fiber-based strain sensor. The synergistic interaction between the elastic PU core and the outer helical Ag yarn enhances the mechanical strength and stretchability of the sensor, while the external helical Ag yarn offers high conductivity. By adjusting the spacing of Ag yarn coils on the surface of the fiber-based sensor, we achieve precise control over both sensing sensitivity and strain range. Specifically, experimental results show that with a pitch of 1.25 mm, the strain range reaches up to 150%, and the gauge factor (GF) is 2.6; when the pitch is adjusted to 5 mm, within a 60% strain range, the GF value significantly increases to 9.3. Based on these excellent performance metrics, we further apply the sensor as a conductor in ECG monitoring garments, successfully verifying its practicality in cardiac monitoring. Additionally, we developed a smart glove for hand function rehabilitation training, utilizing wireless signal transmission to promote hand function recovery in hemiplegic patients. The sensor is also capable of effectively monitoring respiratory rate and pulse, showing broad prospects in the fields of rehabilitation medicine and smart healthcare.
Collapse
Affiliation(s)
- Feiyu Tong
- Textile and Clothing College, Qingdao University, Qingdao 266071, China
| | - Ting Wang
- Textile College, Donghua University, Shanghai 201620, China
| | - Ming Li
- Textile and Clothing College, Qingdao University, Qingdao 266071, China
| | - Bowen Yin
- Textile and Clothing College, Qingdao University, Qingdao 266071, China
| | - Yutian Li
- Textile and Clothing College, Qingdao University, Qingdao 266071, China
| | - Yingkui Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Mingwei Tian
- Textile and Clothing College, Qingdao University, Qingdao 266071, China
| |
Collapse
|
2
|
Banerjee H, Leber A, Laperrousaz S, La Polla R, Dong C, Mansour S, Wan X, Sorin F. Soft Multimaterial Magnetic Fibers and Textiles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212202. [PMID: 37080546 DOI: 10.1002/adma.202212202] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/17/2023] [Indexed: 05/03/2023]
Abstract
Magnetically responsive soft materials are promising building blocks for the next generation of soft robotics, prosthesis, surgical tools, and smart textiles. To date, however, the fabrication of highly integrated magnetic fibers with extreme aspect ratios, that can be used as steerable catheters, endoscopes, or within functional textiles remains challenging. Here, multimaterial thermal drawing is proposed as a material and processing platform to realize 10s of meters long soft, ultrastretchable, yet highly resilient magnetic fibers. Fibers with a diameter as low as 300 µm and an aspect ratio of 105 are demonstrated, integrating nanocomposite domains with ferromagnetic microparticles embedded in a soft elastomeric matrix. With the proper choice of filler content that must strike the right balance between magnetization density and mechanical stiffness, fibers withstanding strains of >1000% are shown, which can be magnetically actuated and lift up to 370 times their own weight. Magnetic fibers can also integrate other functionalities like microfluidic channels, and be weaved into conventional textiles. It is shown that the novel magnetic textiles can be washed and sustain extreme mechanical constraints, as well as be folded into arbitrary shapes when magnetically actuated, paving the way toward novel intriguing opportunities in medical textiles and soft magnetic systems.
Collapse
Affiliation(s)
- Hritwick Banerjee
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Andreas Leber
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Stella Laperrousaz
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Rémi La Polla
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Chaoqun Dong
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Syrine Mansour
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Xue Wan
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Fabien Sorin
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
3
|
Hu S, Zheng M, Wang Q, Li L, Xing J, Chen K, Qi F, He P, Mao L, Shi Z, Su B, Yang G. Cellulose hydrogel-based biodegradable and recyclable magnetoelectric composites for electromechanical conversion. Carbohydr Polym 2022; 298:120115. [DOI: 10.1016/j.carbpol.2022.120115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/29/2022] [Accepted: 09/11/2022] [Indexed: 11/17/2022]
|
4
|
Wang W, Yu A, Wang Y, Jia M, Guo P, Ren L, Guo D, Pu X, Wang ZL, Zhai J. Elastic Kernmantle E-Braids for High-Impact Sports Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202489. [PMID: 35758560 PMCID: PMC9443433 DOI: 10.1002/advs.202202489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Indexed: 06/15/2023]
Abstract
The kernmantle construction, a kind of braiding structure that is characterized by the kern absorbing most of the stress and the mantle protecting the kern, is widely employed in the field of loading and rescue services, but rarely in flexible electronics. Here, a novel kernmantle electronic braid (E-braid) for high-impact sports monitoring, is proposed. The as-fabricated E-braids not only demonstrate high strength (31 Mpa), customized elasticity, and nice machine washability (>500 washes) but also exhibit excellent electrical stability (>200 000 cycles) during stretching. For demonstration, the E-braids are mounted to different parts of the trampoline for athletes' locomotor behavior monitoring. Furthermore, the E-braids are proved to act as multifarious intelligent sports gear or wearable equipment such as electronic jump rope and respiration monitoring belt. This study expands the kernmantle structure to soft flexible electronics and then accelerates the development of quantitative analysis in modern sports industry and athletes' healthcare.
Collapse
Affiliation(s)
- Wei Wang
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Aifang Yu
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- Center on Nanoenergy ResearchSchool of Physical Science and TechnologyGuangxi UniversityNanning530004P. R. China
| | - Yulong Wang
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- Center on Nanoenergy ResearchSchool of Physical Science and TechnologyGuangxi UniversityNanning530004P. R. China
| | - Mengmeng Jia
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Pengwen Guo
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Lele Ren
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Di Guo
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- Center on Nanoenergy ResearchSchool of Physical Science and TechnologyGuangxi UniversityNanning530004P. R. China
| | - Xiong Pu
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- Center on Nanoenergy ResearchSchool of Physical Science and TechnologyGuangxi UniversityNanning530004P. R. China
| | - Zhong Lin Wang
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Junyi Zhai
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- Center on Nanoenergy ResearchSchool of Physical Science and TechnologyGuangxi UniversityNanning530004P. R. China
| |
Collapse
|
5
|
Zhang B, Zhang X, Song H, Nguyen DH, Zhang C, Liu T. Strong-Weak Response Network-Enabled Ionic Conductive Hydrogels with High Stretchability, Self-Healability, and Self-Adhesion for Ionic Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32551-32560. [PMID: 35796233 DOI: 10.1021/acsami.2c07963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The requirement of ionic conductive hydrogels with tailor-made superelasticity and high chain mobility is highly desired while meeting a challenge. Herein, ionic conductive hydrogels with the design of strong-weak response networks were synthesized via the free-radical copolymerization of monomers of 1-methyl-3-(4-vinylbenzyl)imidazolium chloride and sodium 2-acrylamino-2-methylpropanesulfonate in water. The as-formed strong-weak response networks in ionic conductive hydrogels included binary interactions of strong electrostatic forces and weak hydrogen bonds. The electrostatic forces imparted excellent mechanical elasticity, and the hydrogen-bonded interactions served as highly active and reversible networks to dissipate fracture energy during the deformation. Importantly, the resultant ionic conductive hydrogels exhibited high toughness of ∼2205 kJ m-3, satisfying fatigue resistance, and excellent healing efficiency of >90%. Moreover, the tailoring of counterion concentrations in hydrogels by adding various concentrations of inorganic salts could regulate the electrostatic forces within hydrogels as well as the finally mechanical strengths. Ascribing to the combination of large stretchability and large chain mobility, the resultant ionic conductive hydrogels could directly act as a stretchable ionic conductor for the assembly of self-healable and self-adhesive capacitance-type ionic sensors which are capable of detecting large and tiny human activities. This study could offer a promising strategy for the design and manufacturing of emerging ionic conductors with high mechanical elasticity and large segment mobility.
Collapse
Affiliation(s)
- Bing Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xu Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Hui Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Dai Hai Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam
| | - Chao Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Tianxi Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|