1
|
Qi L, Guan J. Orbital hybridizations in single-atom catalysts for electrocatalysis. Sci Bull (Beijing) 2025:S2095-9273(25)00358-5. [PMID: 40240226 DOI: 10.1016/j.scib.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/13/2025] [Accepted: 03/12/2025] [Indexed: 04/18/2025]
Abstract
Single-atom catalysts (SACs) are rapidly standing at the forefront of catalytic development due to their unique structures with significantly different catalytic activity, selectivity, and stability from conventional nanocatalysts. The electronic properties and catalytic performances of SACs hinge on the results of orbital hybridization of isolated central atoms with ligand atoms as well as of central atoms with bonding atoms provided by intermediates. Therefore, we conduct multifaceted explorations around orbital hybridizations in single-atom catalysis to elucidate the structure-activity relationships. Firstly, we introduce the basic theoretical knowledge related to orbital hybridizations, and summarize the main descriptors of orbital hybridizations, focusing on the discussion of the types of orbital hybridizations in single-atom catalysis. Then, we briefly sum up the application of orbital hybridizations in single-atom electrocatalysis and put forward important strategies for regulating orbital hybridizations in SACs to improve the catalytic performances. Finally, we present a personal perspective on the future challenges and opportunities of orbital hybridizations in single-atom catalysis.
Collapse
Affiliation(s)
- Luoluo Qi
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China.
| |
Collapse
|
2
|
Han L, Xiang Z. Intelligent design and synthesis of energy catalytic materials. FUNDAMENTAL RESEARCH 2025; 5:624-639. [PMID: 40242526 PMCID: PMC11997564 DOI: 10.1016/j.fmre.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 04/18/2025] Open
Abstract
Efficient energy conversion and storage are crucial for the sustainable development and growth of renewable energy sources. However, the limited varieties of traditional energy catalytic materials cannot match the fast-expansion requirement of raising various clean energy for industrial applications. Thus, accelerating the design and synthesis of high-performance catalysts is necessary for the application of energy equipment. Recently, with artificial intelligence (AI) technology being advanced by leaps and bounds, it is feasible to efficiently and precisely screen materials and optimize synthesis conditions in a huge unknown space. Here, we introduce and review AI techniques used in the development of catalytic materials in detail. We describe the workflow for designing and synthesizing new materials using machine learning (ML) and robotics. We summarize the sources of data collection, the intelligent algorithms commonly used to build ML models, and the laboratory modules for the intelligent synthesis of materials. We provide the illustrations of predicting the properties of catalytic materials with ML assistance in different material types. In addition, we present the potential strategies for finding material synthesis pathways, and advances in robotics to accelerate high-performance catalytic materials synthesis in the review. Finally, the summary, challenges, and potential directions in the development of AI-assisted catalytic materials are presented and discussed.
Collapse
Affiliation(s)
- Linkai Han
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhonghua Xiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
3
|
Guerra Demingos P, Chen Z, Ni X, Singh CV. Computational Engineering of Non-van der Waals 2D Magnetene for Enhanced Oxygen Evolution and Reduction Reactions. CHEMSUSCHEM 2025; 18:e202401157. [PMID: 39213478 PMCID: PMC11789998 DOI: 10.1002/cssc.202401157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/21/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Non-van der Waals two-dimensional materials containing exposed transition metal atoms are promising catalysts for green energy storage and conversion. For instance, hematene and ilmenene have been successfully applied as catalysts. Building on these reports, this work is the first investigation of recently synthesized magnetene towards the Oxygen Evolution Reaction (OER) and Oxygen Reduction Reaction (ORR). Using Density Functional Theory (DFT) calculations, we unveil the mechanism, performance and ideal conditions for OER and ORR on magnetene. With overpotentials of ηOER=0.50 V and ηORR=0.41 V, the material is not only a bifunctional catalyst, but also superior to state-of-the-art systems such as Pt and IrO2. Additionally, its catalytic properties can be further enhanced through engineering strategies such as point defects and in-plane compression. It reaches ηORR=0.28 V at a compressive strain of only 2 %, while the presence of Ni boosts it to ηOER=0.39 V and ηORR=0.31 V, comparable to many reported single-atom catalysts. Overall, this work demonstrates that magnetene is a promising bifunctional catalyst for applications such as regenerative fuel cells and metal-air batteries.
Collapse
Affiliation(s)
- Pedro Guerra Demingos
- Department of Materials Science and EngineeringUniversity of Toronto184 College StreetTorontoON M5S 3E4
| | - Zhiwen Chen
- Department of Materials Science and EngineeringUniversity of Toronto184 College StreetTorontoON M5S 3E4
| | - Xiang Ni
- Department of Materials Science and EngineeringUniversity of Toronto184 College StreetTorontoON M5S 3E4
| | - Chandra Veer Singh
- Department of Materials Science and EngineeringUniversity of Toronto184 College StreetTorontoON M5S 3E4
| |
Collapse
|
4
|
Xie L, Zhou W, Qu Z, Huang Y, Li L, Yang C, Li J, Meng X, Sun F, Gao J, Zhao G. Edge-doped substituents as an emerging atomic-level strategy for enhancing M-N 4-C single-atom catalysts in electrocatalysis of the ORR, OER, and HER. NANOSCALE HORIZONS 2025; 10:322-335. [PMID: 39552526 DOI: 10.1039/d4nh00424h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
M-N4-C single-atom catalysts (MN4) have gained attention for their efficient use at the atomic level and adjustable properties in electrocatalytic reactions like the ORR, OER, and HER. Yet, understanding MN4's activity origin and enhancing its performance remains challenging. Edge-doped substituents profoundly affect MN4's activity, explored in this study by investigating their interaction with MN4 metal centers in ORR/OER/HER catalysis (Sub@MN4, Sub = B, N, O, S, CH3, NO2, NH2, OCH3, SO4; M = Fe, Co, Ni, Cu). The results show overpotential variations (0 V to 1.82 V) based on Sub and metal centers. S and SO4 groups optimize FeN4 for peak ORR activity (overpotential at 0.48 V) and reduce OER overpotentials for NiN4 (0.48 V and 0.44 V). N significantly reduces FeN4's HER overpotential (0.09 V). Correlation analysis highlights the metal center's key role, with ΔG*H and ΔG*OOH showing mutual predictability (R2 = 0.92). Eg proves a reliable predictor for Sub@CoN4 (ΔG*OOH/ΔG*H, R2 = 0.96 and 0.72). Machine learning with the KNN model aids catalyst performance prediction (R2 = 0.955 and 0.943 for ΔG*OOH/ΔG*H), emphasizing M-O/M-H and the d band center as crucial factors. This study elucidates edge-doped substituents' pivotal role in MN4 activity modulation, offering insights for electrocatalyst design and optimization.
Collapse
Affiliation(s)
- Liang Xie
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China.
| | - Wei Zhou
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China.
| | - Zhibin Qu
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China.
| | - Yuming Huang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China.
| | - Longhao Li
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China.
| | - Chaowei Yang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China.
| | - Junfeng Li
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China.
| | - Xiaoxiao Meng
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China.
| | - Fei Sun
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China.
| | - Jihui Gao
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China.
| | - Guangbo Zhao
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China.
| |
Collapse
|
5
|
Ding R, Chen J, Chen Y, Liu J, Bando Y, Wang X. Unlocking the potential: machine learning applications in electrocatalyst design for electrochemical hydrogen energy transformation. Chem Soc Rev 2024; 53:11390-11461. [PMID: 39382108 DOI: 10.1039/d4cs00844h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Machine learning (ML) is rapidly emerging as a pivotal tool in the hydrogen energy industry for the creation and optimization of electrocatalysts, which enhance key electrochemical reactions like the hydrogen evolution reaction (HER), the oxygen evolution reaction (OER), the hydrogen oxidation reaction (HOR), and the oxygen reduction reaction (ORR). This comprehensive review demonstrates how cutting-edge ML techniques are being leveraged in electrocatalyst design to overcome the time-consuming limitations of traditional approaches. ML methods, using experimental data from high-throughput experiments and computational data from simulations such as density functional theory (DFT), readily identify complex correlations between electrocatalyst performance and key material descriptors. Leveraging its unparalleled speed and accuracy, ML has facilitated the discovery of novel candidates and the improvement of known products through its pattern recognition capabilities. This review aims to provide a tailored breakdown of ML applications in a format that is readily accessible to materials scientists. Hence, we comprehensively organize ML-driven research by commonly studied material types for different electrochemical reactions to illustrate how ML adeptly navigates the complex landscape of descriptors for these scenarios. We further highlight ML's critical role in the future discovery and development of electrocatalysts for hydrogen energy transformation. Potential challenges and gaps to fill within this focused domain are also discussed. As a practical guide, we hope this work will bridge the gap between communities and encourage novel paradigms in electrocatalysis research, aiming for more effective and sustainable energy solutions.
Collapse
Affiliation(s)
- Rui Ding
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Junhong Chen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Yuxin Chen
- Department of Computer Science, University of Chicago, Chicago, IL 60637, USA.
| | - Jianguo Liu
- Institute of Energy Power Innovation, North China Electric Power University, Beijing, 102206, China
| | - Yoshio Bando
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Xuebin Wang
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
6
|
Xu J, Wang Y, Yu X, Fang J, Yue X, Galvão BRL, Li J. Single-Atom Doped Fullerene (MN 4-C 54) as Bifunctional Catalysts for the Oxygen Reduction and Oxygen Evolution Reactions. J Phys Chem A 2024; 128:9167-9174. [PMID: 39395011 DOI: 10.1021/acs.jpca.4c03413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Development of high-performance oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) catalysts is crucial to realizing the electrolytic water cycle. C60 is an ideal substrate material for single atom catalysts (SACs) due to its unique electron-withdrawing properties and spherical structure. In this work, we screened for a novel single-atom catalyst based on C60, which anchored transition metal atoms in the C60 molecule by coordination with N atoms. Through first-principles calculations, we evaluated the stability and activity of MN4-C54 (M = Fe, Co, Ni, Cu, Rh, Ru, Pd, Ag, Pt, Ir, Au). The results indicate that CuN4-C54, which is based only on earth-abundant elements, exhibited low overpotentials of 0.46 and 0.47 V for the OER and ORR, respectively, and was considered a promising bifunctional catalyst, showing better performance than the noble-metal ones. In addition, according to the linear relationship of intermediates, we established volcano plots to describe the activity trends of the OER and ORR on MN4-C54. Finally, d-band center and crystal orbital Hamiltonian populations methods were used to explain the catalytic origin. Suitable d-band centers lead to moderate adsorption strength, further leading to good catalytic performances.
Collapse
Affiliation(s)
- Junkai Xu
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Yunhao Wang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Xiaoxue Yu
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Jianjun Fang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Xianfang Yue
- Department of Physics and Information Engineering, Jining University, Qufu 273155, China
| | - Breno R L Galvão
- Centro Federal de Educação Tecnológica de Minas Gerais, CEFET-MG, Av. Amazonas 5253, 30421-169 Belo Horizonte, Minas Gerais Brazil
| | - Jing Li
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| |
Collapse
|
7
|
Li B, Liu J, Zhao C, Hu A, Sun X, Mei B, Long J. Carbothermal Reduction-Assisted Synthesis of a Carbon-Supported Highly Dispersed PtSn Nanoalloy for the Oxygen Reduction Reaction. Inorg Chem 2024; 63:19322-19331. [PMID: 39361814 DOI: 10.1021/acs.inorgchem.4c03099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Exploring high-performance and low-platinum-based electrocatalysts to accelerate the oxygen reduction reaction (ORR) at the air cathode of zinc-air batteries remains crucial. Herein, by combining electroless deposition and carbothermal reduction, a nitrogen-doped carbon-supported highly dispersed PtSn alloy nanocatalyst (PtSn/NC) was prepared for a high-efficiency ORR process. Electrochemical measurements show that PtSn/NC exhibits excellent electrocatalytic ORR activity with a half-wave potential of 0.850 V versus reversible hydrogen electrode (RHE), which is higher than that of commercial Pt/C (0.815 V). The PtSn/NC-based (20 μgPt cm-2) rechargeable Zn-air battery exhibited astonishing performance with a maximum power density of up to 150.1 mW cm-2, as well as excellent rate performance and charge/discharge stability. Physical characterization reveals that carbothermal reduction could compel the transformation of Sn oxide into metallic Sn, which then alloys with the deposited Pt atoms to form the PtSn nanoalloy, in which electrons are transferred from Sn atoms to neighboring Pt atoms, thereby improving the ability of Pt-based active sites to catalyze the ORR process in PtSn/NC by optimizing the unoccupied d-band of Pt atoms. This work provides a reliable and innovative route for the rational design of highly dispersed Pt-based alloy ORR electrocatalysts.
Collapse
Affiliation(s)
- Bin Li
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| | - Jing Liu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| | - Chuan Zhao
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| | - Anjun Hu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| | - Xuping Sun
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bingbao Mei
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201800, P. R. China
| | - Jianping Long
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| |
Collapse
|
8
|
Li W, Bu Y, Ge X, Li F, Han GF, Baek JB. Recent Advances in Iridium-based Electrocatalysts for Acidic Electrolyte Oxidation. CHEMSUSCHEM 2024; 17:e202400295. [PMID: 38362788 DOI: 10.1002/cssc.202400295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/17/2024]
Abstract
Ongoing research to develop advanced electrocatalysts for the oxygen evolution reaction (OER) is needed to address demand for efficient energy conversion and carbon-free energy sources. In the OER process, acidic electrolytes have higher proton concentration and faster response than alkaline ones, but their harsh strongly acidic environment requires catalysts with greater corrosion and oxidation resistance. At present, iridium oxide (IrO2) with its strong stability and excellent catalytic performance is the catalyst of choice for the anode side of commercial PEM electrolysis cells. However, the scarcity and high cost of iridium (Ir) and the unsatisfactory activity of IrO2 hinder industrial scale application and the sustainable development of acidic OER catalytic technology. This highlights the importance of further research on acidic Ir-based OER catalysts. In this review, recent advances in Ir-based acidic OER electrocatalysts are summarized, including fundamental understanding of the acidic OER mechanism, recent insights into the stability of acidic OER catalysts, highly efficient Ir-based electrocatalysts, and common strategies for optimizing Ir-based catalysts. The future challenges and prospects of developing highly effective Ir-based catalysts are also discussed.
Collapse
Affiliation(s)
- Wanqing Li
- UNIST-NUIST Environment and Energy Jointed Lab, UNNU), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, P. R. China
| | - Yunfei Bu
- UNIST-NUIST Environment and Energy Jointed Lab, UNNU), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, P. R. China
| | - Xinlei Ge
- UNIST-NUIST Environment and Energy Jointed Lab, UNNU), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, P. R. China
| | - Feng Li
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan, Shanghai, 200433, P. R. China
| | - Gao-Feng Han
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Jong-Beom Baek
- School of Energy and Chemical Engineering/Center for Dimension Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan, 44919, South Korea
| |
Collapse
|
9
|
Gao C, Yao H, Wang P, Zhu M, Shi XR, Xu S. Carbon-Based Composites for Oxygen Evolution Reaction Electrocatalysts: Design, Fabrication, and Application. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2265. [PMID: 38793344 PMCID: PMC11122737 DOI: 10.3390/ma17102265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
The four-electron oxidation process of the oxygen evolution reaction (OER) highly influences the performance of many green energy storage and conversion devices due to its sluggish kinetics. The fabrication of cost-effective OER electrocatalysts via a facile and green method is, hence, highly desirable. This review summarizes and discusses the recent progress in creating carbon-based materials for alkaline OER. The contents mainly focus on the design, fabrication, and application of carbon-based materials for alkaline OER, including metal-free carbon materials, carbon-based supported composites, and carbon-based material core-shell hybrids. The work presents references and suggestions for the rational design of highly efficient carbon-based OER materials.
Collapse
Affiliation(s)
| | | | | | | | - Xue-Rong Shi
- School of Material Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Shusheng Xu
- School of Material Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
10
|
Dai Y, Zhao X, Zheng D, Zhao Q, Feng J, Feng Y, Ge X, Chen X. Constructing highly efficient bifunctional catalysts for oxygen reduction and oxygen evolution by modifying MXene with transition metal. J Colloid Interface Sci 2024; 660:628-636. [PMID: 38266344 DOI: 10.1016/j.jcis.2024.01.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Exploring highly active electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) has become a growing interest in recent years. Herein, an efficient pathway for designing MXene-based ORR/OER catalysts is proposed. It involves introducing non-noble metals into Vo (vacancy site), H1 and H2 (the hollow sites on top of C and the metal atom, respectively) sites on M2CO2 surfaces, named TM-VO/H1/H2-M2CO2 (TM = Fe, Co, Ni, M = V, Nb, Ta). Among these recombination catalysts, Co-H1-V2CO2 and Ni-H1-V2CO2 exhibit the most promising ORR catalytic activities, with low overpotential values of 0.35 and 0.37 V, respectively. Similarly, Fe-H1-V2CO2, Co-VO-Nb2CO2, and Ni-H2-Nb2CO2 possess low OER overpotential values of 0.29, 0.39, and 0.44 V, respectively, suggesting they have enormous potential as effective catalysts for OER. Notably, Co-H2-Ta2CO2 possesses the lowest potential gap value of 0.53 V, demonstrating it has an extraordinary bifunctional catalytic activity. The excellent catalytic performance of these recombination catalysts can be elucidated through an electronic structure analysis, which primarily relies on the electron-donating capacity and synergistic effects between transition metals and sub-metals. These results provide theoretical guidance for designing new ORR and OER catalysts using 2D MXene materials.
Collapse
Affiliation(s)
- Yu Dai
- Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Xiuyun Zhao
- Department of Technical Physics, University of Eastern Finland, Kuopio 70211, Finland
| | - Desheng Zheng
- School of Computer Science, Southwest Petroleum University, Chengdu 610500, China
| | - Qingrui Zhao
- Department of Catalytic Science, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Jing Feng
- Department of Catalytic Science, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Yingjie Feng
- Department of Catalytic Science, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Xingbo Ge
- Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Xin Chen
- Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China.
| |
Collapse
|
11
|
Nesterova V, Korostelev V, Klyukin K. Unveiling the Role of Termination Groups in Stabilizing MXenes in Contact with Water. J Phys Chem Lett 2024; 15:3698-3704. [PMID: 38546143 DOI: 10.1021/acs.jpclett.4c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
MXenes are versatile 2D materials demonstrating outstanding electrochemical and physical properties, but their practical use is limited, because of fast degradation in an aqueous environment. To prevent the degradation of MXenes, it is essential to understand the atomistic details of the reaction and to identify active sites. In this letter, we provided a computational analysis of the degradation processes at the interface between MXene basal planes and water using enhanced sampling ab initio molecular dynamics simulations and symbolic regression analysis. Our results indicate that the reactivity of Ti sites toward the water attack reaction depends on both local coordination and chemical composition of the MXene surfaces. Decreasing the work function of the Ti3C2Tx surfaces and avoiding Ti sites that are loosely anchored to the subsurface (e.g., O-coordinated) can improve surface stability. The developed computational framework can be further used to investigate other possible culprits of the degradation reaction, including the role of defects and edges.
Collapse
Affiliation(s)
- Valentina Nesterova
- Department of Mechanical and Materials Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Vladislav Korostelev
- Department of Mechanical and Materials Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Konstantin Klyukin
- Department of Mechanical and Materials Engineering, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
12
|
Gao Y, Liu L, Jiang Y, Yu D, Zheng X, Wang J, Liu J, Luo D, Zhang Y, Shi Z, Wang X, Deng YP, Chen Z. Design Principles and Mechanistic Understandings of Non-Noble-Metal Bifunctional Electrocatalysts for Zinc-Air Batteries. NANO-MICRO LETTERS 2024; 16:162. [PMID: 38530476 PMCID: PMC11250732 DOI: 10.1007/s40820-024-01366-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/26/2024] [Indexed: 03/28/2024]
Abstract
Zinc-air batteries (ZABs) are promising energy storage systems because of high theoretical energy density, safety, low cost, and abundance of zinc. However, the slow multi-step reaction of oxygen and heavy reliance on noble-metal catalysts hinder the practical applications of ZABs. Therefore, feasible and advanced non-noble-metal electrocatalysts for air cathodes need to be identified to promote the oxygen catalytic reaction. In this review, we initially introduced the advancement of ZABs in the past two decades and provided an overview of key developments in this field. Then, we discussed the working mechanism and the design of bifunctional electrocatalysts from the perspective of morphology design, crystal structure tuning, interface strategy, and atomic engineering. We also included theoretical studies, machine learning, and advanced characterization technologies to provide a comprehensive understanding of the structure-performance relationship of electrocatalysts and the reaction pathways of the oxygen redox reactions. Finally, we discussed the challenges and prospects related to designing advanced non-noble-metal bifunctional electrocatalysts for ZABs.
Collapse
Affiliation(s)
- Yunnan Gao
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Ling Liu
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Yi Jiang
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.
| | - Dexin Yu
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Xiaomei Zheng
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, People's Republic of China
| | - Jiayi Wang
- Institute of Carbon Neutrality, Zhejiang Wanli University, Ningbo, 315100, People's Republic of China
| | - Jingwei Liu
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Dan Luo
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Yongguang Zhang
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.
| | - Zhenjia Shi
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Xin Wang
- Institute of Carbon Neutrality, Zhejiang Wanli University, Ningbo, 315100, People's Republic of China
| | - Ya-Ping Deng
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - Zhongwei Chen
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.
| |
Collapse
|
13
|
Huang T, Yang ZX, Li L, Wan H, Leng C, Huang GF, Hu W, Huang WQ. Dipole Effect on Oxygen Evolution Reaction of 2D Janus Single-Atom Catalysts: A Case of Rh Anchored on the P6 m2-NP Configurations. J Phys Chem Lett 2024; 15:2428-2435. [PMID: 38394780 DOI: 10.1021/acs.jpclett.3c03148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Catalytic performance of single-atom catalysts (SACs) relies fundamentally on the electronic nature and local coordination environment of the active site. Here, based on a machine-learning (ML)-aided density functional theory (DFT) method, we reveal that the intrinsic dipole in Janus materials has a significant impact on the catalytic activity of SACs, using 2D γ-phosphorus carbide (γ-PC) as a model system. Specifically, a local dipole around the active site is a key degree to tune the catalytic activity and can be used as an important descriptor with a high feature importance of 17.1% in predicting the difference of adsorption free energy (ΔGO* - ΔGOH*) to assess the activity of the oxygen evolution reaction. As a result, the catalytic performance of SACs can be tuned by an intrinsic dipole, in stark contrast to those external stimuli strategies previously used. These results suggest that dipole engineering and the revolutionary DFT-ML hybrid scheme are novel approaches for designing high-performance catalysts.
Collapse
Affiliation(s)
- Tao Huang
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Zi-Xuan Yang
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Lei Li
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Hui Wan
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China
- School of Materials and Environmental Engineering, Changsha University, Changsha 410082, China
| | - Can Leng
- College of Intelligent Manufacture, Hunan First Normal University, Changsha 410205, China
| | - Gui-Fang Huang
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Wangyu Hu
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Wei-Qing Huang
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China
| |
Collapse
|
14
|
Zhang H, Liang Q, Xie K. How to rationally design homogeneous catalysts for efficient CO 2 electroreduction? iScience 2024; 27:108973. [PMID: 38327791 PMCID: PMC10847752 DOI: 10.1016/j.isci.2024.108973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
Electrified converting CO2 into valuable fuels and chemicals using a homogeneous electrochemical CO2 reduction (CO2ER) approach simplifies the operation, providing a potential option for decoupling energy harvesting and renewable chemical production. These merits benefit the scenarios where decentralization and intermittent power are key factors. This perspective aims to provide an overview of recent progress in homogeneous CO2ER. We introduce firstly the fundamentals chemistry of the homogeneous CO2ER, followed by a summary of the crucial factors and the important criteria broadly employed for evaluating the performance. We then highlight the recent advances in the most widely explored transition-metal coordinate complexes for the C1 and multicarbon (C2+) products from homogeneous CO2ER. Finally, we summarize the remaining challenges and opportunities for developing homogeneous electrocatalysts for efficient CO2ER. This perspective is expected to favor the rational design of efficient homogeneous electrocatalysts for selective CO2ER toward renewable fuels and feedstocks.
Collapse
Affiliation(s)
- Hui Zhang
- International Center for Quantum and Molecular Structures, College of Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Qinghua Liang
- Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou, Jiangxi 341000, P.R. China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi 341000, P.R. China
| | - Ke Xie
- Department of Chemistry, Northwestern Universiy, Evanston, IL 60208, USA
| |
Collapse
|
15
|
Li D, Zhang A, Feng Z, Wang W. Theoretical Insights on the Charge State and Bifunctional OER/ORR Electrocatalyst Activity in 4d-Transition-Metal-Doped g-C 3N 4 Monolayers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5779-5791. [PMID: 38270099 DOI: 10.1021/acsami.3c14995] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Exploring efficient and stable electrocatalysts for the bifunctional oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is vital to developing renewable energy technologies. However, due to the substantial and intricate design space associated with these bifunctional OER/ORR electrocatalysts, their development presents a formidable challenge, resulting in their cost-prohibitive nature in both experimental and computational studies. Herein, using the defect physics method, we systematically investigate the formation energies and bifunctional overpotential (ηBi) of 4d-transition-metal (4d-TM, 4d-TM = Zr, Nb, Mo, Ru, Rh, Pd, and Ag)-doped monolayer supercell g-C3N4 (4d-TM@C54N72) based on the density functional theory (DFT) calculations. Under N-rich and C-rich conditions, we find that the formation energies of RhN@C54N71 (Rh occupation N) and PdN@C54N71 (Pd occupation N) are smaller than that of other 4d-TMN@C54N71 (4d-TM occupation N site); for the 4d-TMint@C54N72 (4d-TM interstitial site occupation), the lowest-formation energy defects are Pdint@C54N72. These results indicate that they have better stabilities. Interestingly, for these formation energy lower systems, Pd0int@C54N72 (ηBi = 1.00 V) and Rh1+N@C54N71 (ηBi = 0.73 V) have ultralow overpotential and can be great candidates for bifunctional OER/ORR electrocatalysts. We find the reason is that adjusting the charge states of 4d-TM@C54N72 can tune the interaction strength between the oxygenated intermediates and the 4d-TM@C54N72, which plays a crucial role in the activity of reactions. Additionally, the data obtained through machine learning (ML) application suggest that the electronegativity (Nm) and bond length of 4d-TM and coordination atoms (dTM-OOH) are primary descriptors characterizing the OER and ORR activities, respectively. The charged defect tuning of the bifunctional OER/ORR activity for 4d-TM@C54N72 would enable electrocatalytic performance optimization and the development of potential electrocatalysts for renewable energy applications.
Collapse
Affiliation(s)
- Dongying Li
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China
| | - Aodi Zhang
- Institute for Computational Materials Science, School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Zhenzhen Feng
- Institute for Computational Materials Science, School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Wentao Wang
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China
| |
Collapse
|
16
|
Liu J, Zhang M, Li SD, Mu Y. Bifunctional diatomic site catalysts supported by β 12-borophene for efficient oxygen evolution and reduction reactions. Phys Chem Chem Phys 2023; 26:594-601. [PMID: 38086640 DOI: 10.1039/d3cp04543a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Efficient bifunctional catalysts for oxygen evolution and reduction reactions (OERs/ORRs) are of great importance for sustainable and renewable clean energy, especially for metal-air batteries. Herein, we investigated β12-borophene with double-hole sites capped with 3d transition metal atoms to explore its catalyst performance for hydrogen evolution reactions (HERs), OERs and ORRs. It was found that the borophene is a good platform for diatomic site catalysts (DASCs) due to their advantage of stability over the corresponding single-atom catalysts (SACs) or clusters. The HER performance of DASCs on β12-BM was further improved compared to the SAC case. Furthermore, the supported FeNi DASC exhibited good catalytic performance for both OERs and ORRs, the overpotentials for which were 0.43 and 0.55 V, respectively, better than those of the corresponding supported Ni or Fe SAC due to synergistic effects. We herein propose a novel descriptor involving the Bader charges of coordinated atoms explicitly, behaving much better than the d-band center and integrated crystal orbital Hamilton population (-ICOHP) for DASCs. The synergistic effect of Fe-Ni pairs balanced the too strong binding of OH and further activated OH to achieve better catalytic performance. The results of this study can provide theoretical guidance for the design of efficient bifunctional electrocatalysts.
Collapse
Affiliation(s)
- Jia Liu
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China.
| | - Minjing Zhang
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China.
| | - Si-Dian Li
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China.
| | - Yuewen Mu
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
17
|
Xue Z, Tan R, Wang H, Tian J, Wei X, Hou H, Zhao Y. A novel tetragonal T-C 2N supported transition metal atoms as superior bifunctional catalysts for OER/ORR: From coordination environment to rational design. J Colloid Interface Sci 2023; 651:149-158. [PMID: 37542890 DOI: 10.1016/j.jcis.2023.07.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/05/2023] [Accepted: 07/19/2023] [Indexed: 08/07/2023]
Abstract
Single-atom catalysts with particular electronic structures and precisely regulated coordination environments delivering excellent activity for oxygen-evolution reaction (OER) and oxygen-reduction reaction (ORR) are highly desirable for renewable energy applications. In this work, a novel tetragonal carbon nitride T-C2N monolayer with remarkable stability was predicted by using the RG2 method. Inspired by the well-defined atomic structures and just right N4 aperture of T-C2N substrate, the electrocatalytic performance of a series of transition metal single-atoms anchored on porous T-C2N matrix (TM@C2N) have been systematically investigated. In addition, machine learning (ML) method was employed with the gradient boosting regression GBR model to deeply explore the complex controlling factors and offer direct guidance for rational discovery of desirable catalysts. On this basis, the coordination environment of the central TM active sites has been tailored by incorporating heteroatoms. Impressively, the Co@C2N/B-C, Rh@C2N/SC and Rh@C2N/SN exhibit significantly enhanced OER/ORR activity with notably low ηOER/ηORR of 0.39/0.32, 0.26/0.35 and 0.37/0.27 V, respectively. Our work provides insights into the rational design, data-driven, performance regulation, mechanism analysis and practical application of TMNC catalysts. Such a systematic theoretical framework can also be expanded to many other kinds of catalysts for energy storage and conversion.
Collapse
Affiliation(s)
- Zhe Xue
- School of Materials Science and Engineering, Collaborative Innovation Center of Ministry of Education and Shanxi Province for High-performance Al/Mg Alloy Materials, North University of China, Taiyuan 030051, China
| | - Rui Tan
- Physics and Electronic Engineering, Hengyang Normal University, Hengyang 421002, China
| | - Hongxia Wang
- School of Materials Science and Engineering, Collaborative Innovation Center of Ministry of Education and Shanxi Province for High-performance Al/Mg Alloy Materials, North University of China, Taiyuan 030051, China
| | - Jinzhong Tian
- School of Materials Science and Engineering, Collaborative Innovation Center of Ministry of Education and Shanxi Province for High-performance Al/Mg Alloy Materials, North University of China, Taiyuan 030051, China
| | - Xiaolin Wei
- Physics and Electronic Engineering, Hengyang Normal University, Hengyang 421002, China.
| | - Hua Hou
- School of Materials Science and Engineering, Collaborative Innovation Center of Ministry of Education and Shanxi Province for High-performance Al/Mg Alloy Materials, North University of China, Taiyuan 030051, China; School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Yuhong Zhao
- School of Materials Science and Engineering, Collaborative Innovation Center of Ministry of Education and Shanxi Province for High-performance Al/Mg Alloy Materials, North University of China, Taiyuan 030051, China; Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Institute for Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang 110010, China.
| |
Collapse
|
18
|
Chen X, Han W, Yue Q, Zhang Q, Liang Y, Peng C, Yin H. The Isoelectronic Dopant in the Z-Scheme SnS 2/β-As Heterostructure Enhancing Photocatalytic Overall Water Splitting. Inorg Chem 2023; 62:17954-17960. [PMID: 37856310 DOI: 10.1021/acs.inorgchem.3c02850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
The catalytic field aims to decrease reaction barriers, accelerate reaction processes, and enhance the selectivity toward a target product. This study uses first-principles calculations to design a modified direct Z-scheme SnS2/β-As heterostructure as a potential photocatalyst for overall water splitting. Our previous investigations have demonstrated that the SnS2/β-As heterostructure can realize a hydrogen evolution reaction (HER) under light, while the oxygen evolution reaction (OER) follows a pathway involving the intermediate HOOH*. Interestingly, by substituting an S atom of SnS2 with a Se or Te atom, the rate-determining step of the OER is significantly reduced from 3.76 eV to 2.56 or 2.22 eV. Moreover, the OER can occur directly without the transition via HOOH*. Isoelectronic doping effectively trades off the adsorption strength of OER intermediates and promotes the OER process. This work highlights the dual benefits of isoelectronic doping, namely lowering the reaction barrier of the rate-determining step and promoting the selectivity of end products. These findings provide insights into the rational design of high-efficiency photocatalysts for water splitting.
Collapse
Affiliation(s)
- Xuefeng Chen
- Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Wenna Han
- Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Qian Yue
- Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Qingmin Zhang
- Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Yong Liang
- Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Chengxiao Peng
- Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Huabing Yin
- Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| |
Collapse
|
19
|
Zhang H, Xue XX, Guo G, Meng H, Qi X, Zhong J, Huang Z. Building up a view and understanding of the multifunctional activity of black phosphorous nanosheet modified with the metal atom. J Chem Phys 2023; 159:164702. [PMID: 37873962 DOI: 10.1063/5.0172525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023] Open
Abstract
Constructing metal-semiconductor interfaces by loading metal atoms onto two-dimensional material to build atomically dispersed single-atom catalysts (SACs) has emerged as a new frontier for improving atom utilization and designing multifunctional electrocatalysts. Nowadays, studies on black phosphorus nanosheets in electrocatalysis have received much attention and the successful preparation of metal nanoparticle/black phosphorus (BP) hybrid electrocatalysts indicates BP nanosheets can serve as a potential support platform for SACs. Herein, by using large-scale ab initio calculations, we explored a large composition space of SACs with transition metal atoms supported on BP monolayer (M-BP) and built a comprehensive picture of activity trend, stability, and electronic origin towards oxygen reduction and evolution reaction (ORR and OER) and hydrogen evolution reaction (HER). The results show that the catalytic activity can be widely tuned by reasonable regulation of metal atoms. Ni-, Pd-, and Pt-BP could effectively balance the binding strength of the target intermediates, thus achieving efficient bifunctional activity for OER and ORR. Favorable bifunctional catalytic performance for OER and HER can be realized on Rh-BP. Especially, Pt-BP exhibits promising trifunctional activity towards OER, ORR, and HER. Multiple-level corrections among overpotential, Gibbs free energy, orbital population, and d-band center reveal that the trend and origin of catalytic activity are intrinsically determined by the d-band center of metal sites. The thermodynamic and dynamic stability simulations demonstrate that the active metal centers are firmly anchored on BP substrate with intact M-P bonds. These findings provide a theoretical basis for the rational design of BP-based SACs toward promising multifunctional activity.
Collapse
Affiliation(s)
- Hongyu Zhang
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China
| | - Xiong-Xiong Xue
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China
| | - Gencai Guo
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China
| | - Haiyu Meng
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China
| | - Xiang Qi
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China
| | - Jianxin Zhong
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China
| | - Zongyu Huang
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
20
|
Yao Y, Wu J, Feng Q, Zeng K, Wan J, Zhang J, Mao B, Hu K, Chen L, Zhang H, Gong Y, Yang K, Zhou H, Huang Z, Li H. Spontaneous Internal Electric Field in Heterojunction Boosts Bifunctional Oxygen Electrocatalysts for Zinc-Air Batteries: Theory, Experiment, and Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302015. [PMID: 37222119 DOI: 10.1002/smll.202302015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/28/2023] [Indexed: 05/25/2023]
Abstract
Heterojunctions are a promising class of materials for high-efficiency bifunctional oxygen electrocatalysts in both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). However, the conventional theories fail to explain why many catalysts behave differently in ORR and OER, despite a reversible path (* O2 ⇋* OOH⇋* O⇋* OH). This study proposes the electron-/hole-rich catalytic center theory (e/h-CCT) to supplement the existing theories, it suggests that the Fermi level of catalysts determines the direction of electron transfer, which affects the direction of the oxidation/reduction reaction, and the density of states (DOS) near the Fermi level determines the accessibility for injecting electrons and holes. Additionally, heterojunctions with different Fermi levels form electron-/hole-rich catalytic centers near the Fermi levels to promote ORR/OER, respectively. To verify the universality of the e/h-CCT theory, this study reveals the randomly synthesized heterostructural Fe3 N-FeN0.0324 (Fex N@PC with DFT calculations and electrochemical tests. The results show that the heterostructural F3 N-FeN0.0324 facilitates the catalytic activities for ORR and OER simultaneously by forming an internal electron-/hole-rich interface. The rechargeable ZABs with Fex N@PC cathode display a high open circuit potential of 1.504 V, high power density of 223.67 mW cm-2 , high specific capacity of 766.20 mAh g-1 at 5 mA cm-2 , and excellent stability for over 300 h.
Collapse
Affiliation(s)
- Yong Yao
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jiexing Wu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Qiaoxia Feng
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Kui Zeng
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Jing Wan
- Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK
| | - Jincan Zhang
- Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK
| | - Boyang Mao
- Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK
| | - Kui Hu
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Liming Chen
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Hao Zhang
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Yi Gong
- Advanced Technology Institute, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Kai Yang
- Advanced Technology Institute, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Haihui Zhou
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zhongyuan Huang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Huanxin Li
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
- Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK
| |
Collapse
|
21
|
Chen Z, Qi H, Wang H, Yue C, Liu Y, Yang Z, Pu M, Lei M. The rational design of high-performance graphene-based single-atom electrocatalysts for the ORR using machine learning. Phys Chem Chem Phys 2023. [PMID: 37409650 DOI: 10.1039/d3cp01224g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
In this work, high-performance two-dimensional (2D) graphene-based single-atom electrocatalysts (ZZ/ZA-MNxCy) for the oxygen reduction reaction (ORR) were screened out using machine learning (ML). A model was built for the fast prediction of electrocatalysts and two descriptors valence electron correction (VEc) and degree of construction differences (DC) were proposed to improve the accuracy of the model prediction. Two evaluation criteria, high-performance catalyst retention rate rR and high-performance catalyst occupancy rate rO, were proposed to evaluate the accuracy of ML models in high-performance catalyst screening. The addition of VEc and DC in the model could change the mean absolute error (MAEtest) of the test set, the coefficient of determination (R2test) of the test set, rO, and rR from 0.334 V, 0.683, 0.222, and 0.360 to 0.271 V, 0.774, 0.421, and 0.671, respectively. The partially screened potential high-performance ORR electrocatalysts such as ZZ-CoN4 and ZZ-CoN3C1 were also further investigated using a Density Functional Theory (DFT) method, which confirmed the accuracy of the ML model (MAE = 0.157 V, R2 = 0.821).
Collapse
Affiliation(s)
- Ziqiang Chen
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Hexiang Qi
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Haohao Wang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Caiwei Yue
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yangqiu Liu
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Zuoyin Yang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Min Pu
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
22
|
Zhang D, Zhang Q, Peng C, Long Z, Zhuang G, Kramer D, Komarneni S, Zhi C, Xue D. Recent advances in developing multiscale descriptor approach for the design of oxygen redox electrocatalysts. iScience 2023; 26:106624. [PMID: 37138778 PMCID: PMC10149376 DOI: 10.1016/j.isci.2023.106624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Oxygen redox electrocatalysis is the crucial electrode reaction among new-era energy sources. The prerequisite to rationally design an ideal electrocatalyst is accurately identifying the structure-activity relationship based on the so-called descriptors which link the catalytic performance with structural properties. However, the quick discovery of those descriptors remains challenging. In recent, the high-throughput computing and machine learning methods were identified to present great prospects for accelerating the screening of descriptors. That new research paradigm improves cognition in the way of oxygen evolution reaction/oxygen reduction reaction activity descriptor and reinforces the understanding of intrinsic physical and chemical features in the electrocatalytic process from a multiscale perspective. This review summarizes those new research paradigms for screening multiscale descriptors, especially from atomic scale to cluster mesoscale and bulk macroscale. The development of descriptors from traditional intermediate to eigen feature parameters has been addressed which provides guidance for the intelligent design of new energy materials.
Collapse
Affiliation(s)
- Dantong Zhang
- Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qi Zhang
- Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chao Peng
- Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Corresponding author
| | - Zhi Long
- Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guilin Zhuang
- College of Chemical Engineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, Zhejiang Province 310032, China
| | - Denis Kramer
- Helmut-Schmidt-University, University of the Armed Forces, Hamburg 22043, Germany
| | - Sridhar Komarneni
- Materials Research Institute, Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Corresponding author
| | - Dongfeng Xue
- Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Corresponding author
| |
Collapse
|
23
|
Wan K, Chu T, Li B, Ming P, Zhang C. Rational Design of Atomically Dispersed Metal Site Electrocatalysts for Oxygen Reduction Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203391. [PMID: 36717282 PMCID: PMC10104677 DOI: 10.1002/advs.202203391] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/29/2022] [Indexed: 06/18/2023]
Abstract
Future renewable energy supply and a cleaner Earth greatly depend on various crucial catalytic reactions for the society. Atomically dispersed metal site electrocatalysts (ADMSEs) have attracted tremendous research interest and are considered as the next-generation promising oxygen reduction reaction (ORR) electrocatalysts due to the maximum atom utilization efficiency, tailorable catalytic sites, and tunable electronic structures. Despite great efforts have been devoted to the development of ADMSEs, the systematic summary for design principles of high-efficiency ADMSEs is not sufficiently highlighted for ORR. In this review, the authors first summarize the fundamental ORR mechanisms for ADMSEs, and further discuss the intrinsic catalytic mechanism from the perspective of theoretical calculation. Then, the advanced characterization techniques to identify the active sites and effective synthesis methods to prepare catalysts for ADMSEs are also showcased. Subsequently, a special emphasis is placed on effective strategies for the rational design of the advanced ADMSEs. Finally, the present challenges to be addressed in practical application and future research directions are also proposed to overcome the relevant obstacles for developing high-efficiency ORR electrocatalysts. This review aims to provide a deeper understanding for catalytic mechanisms and valuable design principles to obtain the advanced ADMSEs for sustainable energy conversion and storage techniques.
Collapse
Affiliation(s)
- Kechuang Wan
- Clean Energy Automotive Engineering Center and School of Automotive StudiesTongji University4800 Cao'an RoadShanghai201804China
| | - Tiankuo Chu
- Clean Energy Automotive Engineering Center and School of Automotive StudiesTongji University4800 Cao'an RoadShanghai201804China
| | - Bing Li
- Clean Energy Automotive Engineering Center and School of Automotive StudiesTongji University4800 Cao'an RoadShanghai201804China
| | - Pingwen Ming
- Clean Energy Automotive Engineering Center and School of Automotive StudiesTongji University4800 Cao'an RoadShanghai201804China
| | - Cunman Zhang
- Clean Energy Automotive Engineering Center and School of Automotive StudiesTongji University4800 Cao'an RoadShanghai201804China
| |
Collapse
|
24
|
Steinmann SN, Wang Q, Seh ZW. How machine learning can accelerate electrocatalysis discovery and optimization. MATERIALS HORIZONS 2023; 10:393-406. [PMID: 36541226 DOI: 10.1039/d2mh01279k] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Advances in machine learning (ML) provide the means to bypass bottlenecks in the discovery of new electrocatalysts using traditional approaches. In this review, we highlight the currently achieved work in ML-accelerated discovery and optimization of electrocatalysts via a tight collaboration between computational models and experiments. First, the applicability of available methods for constructing machine-learned potentials (MLPs), which provide accurate energies and forces for atomistic simulations, are discussed. Meanwhile, the current challenges for MLPs in the context of electrocatalysis are highlighted. Then, we review the recent progress in predicting catalytic activities using surrogate models, including microkinetic simulations and more global proxies thereof. Several typical applications of using ML to rationalize thermodynamic proxies and predict the adsorption and activation energies are also discussed. Next, recent developments of ML-assisted experiments for catalyst characterization, synthesis optimization and reaction condition optimization are illustrated. In particular, the applications in ML-enhanced spectra analysis and the use of ML to interpret experimental kinetic data are highlighted. Additionally, we also show how robotics are applied to high-throughput synthesis, characterization and testing of electrocatalysts to accelerate the materials exploration process and how this equipment can be assembled into self-driven laboratories.
Collapse
Affiliation(s)
| | - Qing Wang
- Univ Lyon, ENS de Lyon, CNRS, Laboratoire de Chimie UMR 5182, Lyon, France.
| | - Zhi Wei Seh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, 138634, Singapore.
| |
Collapse
|
25
|
Zhang W, Huang W, Tan J, Guo Q, Wu B. Heterogeneous catalysis mediated by light, electricity and enzyme via machine learning: Paradigms, applications and prospects. CHEMOSPHERE 2022; 308:136447. [PMID: 36116627 DOI: 10.1016/j.chemosphere.2022.136447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Energy crisis and environmental pollution have become the bottleneck of human sustainable development. Therefore, there is an urgent need to develop new catalysts for energy production and environmental remediation. Due to the high cost caused by blind screening and limited valuable computing resources, the traditional experimental methods and theoretical calculations are difficult to meet with the requirements. In the past decades, computer science has made great progress, especially in the field of machine learning (ML). As a new research paradigm, ML greatly accelerates the theoretical calculation methods represented by first principal calculation and molecular dynamics, and establish the physical picture of heterogeneous catalytic processes for energy and environment. This review firstly summarized the general research paradigms of ML in the discovery of catalysts. Then, the latest progresses of ML in light-, electricity- and enzyme-mediated heterogeneous catalysis were reviewed from the perspective of catalytic performance, operating conditions and reaction mechanism. The general guidelines of ML for heterogeneous catalysis were proposed. Finally, the existing problems and future development trend of ML in heterogeneous catalysis mediated by light, electricity and enzyme were summarized. We highly expect that this review will facilitate the interaction between ML and heterogeneous catalysis, and illuminate the development prospect of heterogeneous catalysis.
Collapse
Affiliation(s)
- Wentao Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Wenguang Huang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou, 510655, People's Republic of China.
| | - Jie Tan
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou, 510655, People's Republic of China
| | - Qingwei Guo
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou, 510655, People's Republic of China
| | - Bingdang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China; Key Laboratory of Suzhou Sponge City Technology, Suzhou, 215002, People's Republic of China.
| |
Collapse
|
26
|
Pu M, Guo Y, Guo W. Strain-mediated oxygen evolution reaction on magnetic two-dimensional monolayers. NANOSCALE HORIZONS 2022; 7:1404-1410. [PMID: 36043388 DOI: 10.1039/d2nh00318j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
By screening 56 magnetic 2D monolayers through first-principles calculations, it was found that 8 magnetic 2D monolayers (CoO2, FeO2, FeSe, FeTe, VS2, VSe2, VTe2 and CrSe2) can bind O*, OH* and OOH* intermediates of the oxygen evolution reaction (OER), in which the overpotentials of CoO2, FeO2, VSe2, and VTe2 monolayers are 0.684, 1.107, 0.863 and 0.837 V, respectively. After applying suitable biaxial tensile strains, the overpotentials of CoO2, FeO2 and VTe2 monolayers are reduced over 40%. In particular, the overpotentials of CoO2 and VTe2 monolayers decrease to 0.372 V and 0.491 V under the biaxial tensile strains of 4.0% and 3.0%, respectively, which are comparable to the reported overpotentials of noble metal and low-dimensional materials. Tensile strains modify the potential determining step for the OER and enhance the catalytic activity of metal atoms of magnetic 2D monolayers. Magnetic 2D monolayers could be activated by strain engineering as catalysts for the OER.
Collapse
Affiliation(s)
- Mingjie Pu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, MOE Key Laboratory for Intelligent Nano Materials and Devices, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Yufeng Guo
- State Key Laboratory of Mechanics and Control of Mechanical Structures, MOE Key Laboratory for Intelligent Nano Materials and Devices, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Wanlin Guo
- State Key Laboratory of Mechanics and Control of Mechanical Structures, MOE Key Laboratory for Intelligent Nano Materials and Devices, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| |
Collapse
|
27
|
Zhang L, Cui Z. Strain Effects on the Electronic and Optical Properties of Blue Phosphorene. Front Chem 2022; 10:951870. [PMID: 35873045 PMCID: PMC9300916 DOI: 10.3389/fchem.2022.951870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Monolayer blue phosphorene (BlueP) systems were investigated under biaxial strain range from −10% to +10%. All these systems exhibit excellent stability, accompanying changes in the electronic and optical properties. BlueP becomes metallic at −10% strain and transforms into a direct semiconductor at 10% strain while maintaining indirect semiconductor behaviors at −8% to +8% strain. The bandgap of BlueP decreases linearly with strain, and tensile strain exhibits a more moderate bandgap modulation than compressive strain. The real part of the dielectric function of BlueP is enhanced under compressive strain, while the optical absorption in the visible and the infrared light regions increases significantly under tensile strain. The maximum absorption coefficient of 0.52 ×105/cm occurs at 530 nm with the 10% strain. Our analysis indicates that the semiconductor–metal transition and the indirect–direct bandgap transition are the competition results of the energy states near the Fermi level under a massive strain. The potent compressive strain leads the py orbitals of the conduction band to move downward and pass through the Fermi level at the K point. The robust tensile strain guides the energy states at the Γ point to approach the Fermi level and become the band edges. Our results suggest that the energy storage capacity of BlueP can be significantly improved by compressive strain, while the visible light photocatalytic performance is enhanced by tensile strains of less than 8%. Our works provide a reference for the practical applications of BlueP in photocatalyst, photovoltaic cells, and electronic devices.
Collapse
Affiliation(s)
- Lin Zhang
- School of Science, Xi’an University of Technology, Xi’an, China
| | - Zhen Cui
- School of Automation and Information Engineering, Xi’an University of Technology, Xi’an, China
- *Correspondence: Zhen Cui,
| |
Collapse
|
28
|
Liu X, Liu T, Xiao W, Wang W, Zhang Y, Wang G, Luo Z, Liu JC. Strain engineering in single-atom catalysts: GaPS 4 for bifunctional oxygen reduction and evolution. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01047j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We report here a theoretical study on 34 transition metal doped two-dimensional GaPS4 catalysts denoted as transition metal transition metal@VS-GaPS4.
Collapse
Affiliation(s)
- Xuefei Liu
- School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China
| | - Tianyun Liu
- School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China
| | - Wenjun Xiao
- School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China
| | - Wentao Wang
- Guizhou Provincial Key Laboratory of computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China
| | - Yuefei Zhang
- School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China
| | - Gang Wang
- School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China
| | - Zijiang Luo
- College of Information, Guizhou University of Finance and Economics, Guiyang 550025, China
| | - Jin-Cheng Liu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
29
|
Chen X, Liu Q, Zhang H, Zhao X. Exploring high-efficiency electrocatalysts of metal-doped two-dimensional C 4N for oxygen reduction, oxygen evolution, and hydrogen evolution reactions by first-principles screening. Phys Chem Chem Phys 2022; 24:26061-26069. [DOI: 10.1039/d2cp03795e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The HER/ORR/OER on 3d, 4d, and 5d transition metal doped C4N are studied using DFT methods.
Collapse
Affiliation(s)
- Xin Chen
- Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Qifang Liu
- Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Hui Zhang
- Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Xiuyun Zhao
- Department of Applied Physics, University of Eastern Finland, Kuopio, 70211, Finland
| |
Collapse
|
30
|
Wang W, Wu Y, Chen D, Liu H, Xu M, Liu X, Xin L. The surface reconstruction induced enhancement of the oxygen evolution reaction on α-SnWO 4 (010) based on a density functional theory study. Phys Chem Chem Phys 2022; 24:19382-19392. [DOI: 10.1039/d2cp02159e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is possible to stabilize the O–W, O–Sn, R–OOSn and ST3 terminations of the α-SnWO4(010) surface. The O–Sn termination exhibits a low overpotential value of 0.51 V, showing remarkable oxygen evolution reaction (OER) performance.
Collapse
Affiliation(s)
- Wentao Wang
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China
| | - Yonggang Wu
- School of Physics and Electronic Science, Guizhou Education University, Guiyang 550018, China
| | - Deliang Chen
- School of Physics and Electronic Science, Guizhou Education University, Guiyang 550018, China
| | - Hongling Liu
- School of Physics and Electronic Science, Guizhou Education University, Guiyang 550018, China
| | - Mei Xu
- School of Physical and Electronic Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Xuefei Liu
- School of Physical and Electronic Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Lipeng Xin
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|