1
|
Lee SH, Yoo S, Kim SH, Kim YM, Han SI, Lee H. Nature-inspired surface modification strategies for implantable devices. Mater Today Bio 2025; 31:101615. [PMID: 40115053 PMCID: PMC11925587 DOI: 10.1016/j.mtbio.2025.101615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/17/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
Medical and implantable devices are essential instruments in contemporary healthcare, improving patient quality of life and meeting diverse clinical requirements. However, ongoing problems such as bacterial colonization, biofilm development, foreign body responses, and insufficient device-tissue adhesion hinder the long-term effectiveness and stability of these devices. Traditional methods to alleviate these issues frequently prove inadequate, necessitating the investigation of nature-inspired alternatives. Biomimetic surfaces, inspired by the chemical and physical principles found in biological systems, present potential opportunities to address these challenges. Recent breakthroughs in manufacturing techniques, including lithography, vapor deposition, self-assembly, and three-dimensional printing, now permit precise control of surface properties at the micro- and nanoscale. Biomimetic coatings can diminish inflammation, prevent bacterial adherence, and enhance stable tissue integration by replicating the antifouling, antibacterial, and adhesive properties observed in creatures such as geckos, mussels, and biological membranes. This review emphasizes the cutting-edge advancements in biomimetic surfaces for medical and implantable devices, outlining their design methodologies, functional results, and prospective clinical applications. Biomimetic coatings, by integrating biological inspiration with advanced surface engineering, have the potential to revolutionize implantable medical devices, providing safer, more lasting, and more effective interfaces for prolonged patient benefit.
Collapse
Affiliation(s)
- Soo-Hwan Lee
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sungjae Yoo
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sung Hoon Kim
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Young-Min Kim
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Biomedical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Sang Ihn Han
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Biomedical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyojin Lee
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Biomedical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
- SKKU-KIST, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| |
Collapse
|
2
|
Tasdemir NK, Kilicarslan B, Imren G, Karaosmanoglu B, Taskiran EZ, Bayram C. Hierarchical TiO 2 nanotube arrays enhance mesenchymal stem cell adhesion and regenerative potential through surface nanotopography. J R Soc Interface 2025; 22:20240642. [PMID: 39999880 PMCID: PMC11858746 DOI: 10.1098/rsif.2024.0642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/20/2024] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
The concept of preconditioning mesenchymal stem cells (MSCs) under different stress conditions or with bioactive molecules is introduced to optimize their therapeutic potential. This study investigates the physicochemical effect of hierarchical TiO2 nanotube arrays, a versatile and easy-to-prepare nanosurface, on MSC behaviour. By precisely controlling the nanotopography through anodization, we demonstrate the significant influence of surface properties on MSC adhesion, proliferation and differentiation. Electrostatic interactions between surface charge and proteins play a crucial role in these cellular responses. In addition, preconditioning MSCs under specific conditions enhances their therapeutic potential by optimizing paracrine signalling and homing properties. Higher surface charges and increasing spiky character of surface roughness of titania samples after anodization at 60 V significantly upregulated chemokine receptor type 4 (CXCR4) and vascular endothelial growth factor A (VEGFA), indicating the enhanced migratory and angiogenic potential of MSCs. The study reveals the mechanotransductive effects of nanotopography on MSC differentiation, suggesting that tailored surface features can direct cellular fate. These findings highlight the potential of hierarchical TiO2 nanotube arrays as a promising platform for regenerative medicine, offering a novel approach to improve tissue engineering and therapeutic outcomes.
Collapse
Affiliation(s)
- Nur Kubra Tasdemir
- Department of Medical and Surgical Research, Hacettepe University, Institute of Health Sciences, Ankara, Turkey
| | - Bogac Kilicarslan
- Department of Nanotechnology and Nanomedicine, Graduate School of Science and Engineering, Hacettepe University, Ankara, Turkey
- Advanced Technologies Application and Research Centre, Hacettepe University, Ankara, Turkey
| | - Gozde Imren
- Department of Medical and Surgical Research, Hacettepe University, Institute of Health Sciences, Ankara, Turkey
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Beren Karaosmanoglu
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ekim Z. Taskiran
- Department of Medical and Surgical Research, Hacettepe University, Institute of Health Sciences, Ankara, Turkey
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Cem Bayram
- Department of Nanotechnology and Nanomedicine, Graduate School of Science and Engineering, Hacettepe University, Ankara, Turkey
- Advanced Technologies Application and Research Centre, Hacettepe University, Ankara, Turkey
| |
Collapse
|
3
|
Yi J, Li M, Zhu J, Wang Z, Li X. Recent development and applications of electrodeposition biocoatings on medical titanium for bone repair. J Mater Chem B 2024; 12:9863-9893. [PMID: 39268681 DOI: 10.1039/d4tb01081g] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Bioactive coatings play a crucial role in enhancing the osseointegration of titanium implants for bone repair. Electrodeposition offers a versatile and efficient technique to deposit uniform coatings onto titanium surfaces, endowing implants with antibacterial properties, controlled drug release, enhanced osteoblast adhesion, and even smart responsiveness. This review summarizes the recent advancements in bioactive coatings for titanium implants used in bone repair, focusing on various electrodeposition strategies based on material-structure synergy. Firstly, it outlines different titanium implant materials and bioactive coating materials suitable for bone repair. Then, it introduces various electrodeposition methods, including electrophoretic deposition, anodization, micro-arc oxidation, electrochemical etching, electrochemical polymerization, and electrochemical deposition, discussing their applications in antibacterial, osteogenic, drug delivery, and smart responsiveness. Finally, it discusses the challenges encountered in the electrodeposition of coatings for titanium implants in bone repair and potential solutions.
Collapse
Affiliation(s)
- Jialong Yi
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Ming Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Jixiang Zhu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - ZuHang Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xiaoyan Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
4
|
Zhang G, Deng L, Jiang Z, Xiang G, Zeng Z, Zhang H, Wang Y. Titanium nanoparticles released from orthopedic implants induce muscle fibrosis via activation of SNAI2. J Nanobiotechnology 2024; 22:522. [PMID: 39215337 PMCID: PMC11363368 DOI: 10.1186/s12951-024-02762-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Titanium alloys represent the prevailing material employed in orthopedic implants, which are present in millions of patients worldwide. The prolonged presence of these implants in the human body has raised concerns about possible health effects. This study presents a comprehensive analysis of titanium implants and surrounding tissue samples obtained from patients who underwent revision surgery for therapeutic reasons. The surface of the implants exhibited nano-scale corrosion defects, and nanoparticles were deposited in adjacent samples. In addition, muscle in close proximity to the implant showed clear evidence of fibrotic proliferation, with titanium content in the muscle tissue increasing the closer it was to the implant. Transcriptomics analysis revealed SNAI2 upregulation and activation of PI3K/AKT signaling. In vivo rodent and zebrafish models validated that titanium implant or nanoparticles exposure provoked collagen deposition and disorganized muscle structure. Snai2 knockdown significantly reduced implant-associated fibrosis in both rodent and zebrafish models. Cellular experiments demonstrated that titanium dioxide nanoparticles (TiO2 NPs) induced fibrotic gene expression at sub-cytotoxic doses, whereas Snai2 knockdown significantly reduced TiO2 NPs-induced fibrotic gene expression. The in vivo and in vitro experiments collectively demonstrated that Snai2 plays a pivotal role in mediating titanium-induced fibrosis. Overall, these findings indicate a significant release of titanium nanoparticles from the implants into the surrounding tissues, resulting in muscular fibrosis, partially through Snai2-dependent signaling.
Collapse
Affiliation(s)
- Gengming Zhang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Linhua Deng
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhongjing Jiang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Gang Xiang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhuotong Zeng
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Hunan University, Ministry of Education, Changsha, 410082, PR China
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, 410011, PR China
| | - Hongqi Zhang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yunjia Wang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
5
|
Zhang J, Ren K, Qiu J, Chen B, Duan W, Liu J, Li G, Li D. Nanotexture and crystal phase regulation for synergistic enhancement in re-endothelialization on medical pure titanium surface. Mater Today Bio 2024; 25:100968. [PMID: 38312801 PMCID: PMC10835003 DOI: 10.1016/j.mtbio.2024.100968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024] Open
Abstract
Re-endothelialization has been recognized as a promising strategy to address the tissue hyperplasia and subsequent restenosis which are major complications associated with vascular implant/interventional titanium devices. However, the uncontrollable over-proliferation of smooth muscle cells (SMCs) limits the clinical application of numerous modified strategies. Herein, a novel modified strategy involving with a two-step anodic oxidation and annealing treatment was proposed to achieve rapid re-endothelialization function regulated by regular honeycomb nanotexture and specific anatase phase on the titanium surface. Theoretical calculation revealed that the presence of nanotexture reduced the polar component of surface energy, while the generation of anatase significantly enhanced the polar component and total surface energy. Meanwhile, the modified surface with regular nanotexture and anatase phase produced positive effect on the expression of CD31, VE-Cadherin and down-regulated α-SMA proteins expression, indicating excellent capacity of pro-endothelial regeneration and inhibition of SMCs proliferation and migration. One-month in vivo implantation in rabbit carotid arteries further confirmed that modified tube implant surface effectively accelerated confluent endothelial monolayer formation and promoted native-like endothelium tissue regeneration. By contrast, original titanium tube implant induced a disorganized tissue proliferation in the lumen with a high risk of restenosis. Collectively, this study opens us an alternative route to achieve the function that selectively promotes endothelial cells (ECs) growth and suppresses SMCs on the medical titanium surface, which has a great potential in facilitating re-endothelialization on the surface of blood-contacting titanium implant.
Collapse
Affiliation(s)
- Jing Zhang
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shenzhen Research Institute of Shandong University, Shandong University, Jinan, Shandong, PR China
| | - Kai Ren
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, PR China
| | - Jingru Qiu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Baolan Chen
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shenzhen Research Institute of Shandong University, Shandong University, Jinan, Shandong, PR China
| | - Weixun Duan
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, PR China
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, PR China
| | - Guiling Li
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shenzhen Research Institute of Shandong University, Shandong University, Jinan, Shandong, PR China
| | - Donghai Li
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shenzhen Research Institute of Shandong University, Shandong University, Jinan, Shandong, PR China
| |
Collapse
|
6
|
Zou K, Li Q, Li D, Jiao Y, Wang L, Li L, Wang J, Li Y, Gao R, Li F, He E, Ye T, Tang W, Song J, Lu J, Li X, Zhang H, Cao X, Zhang Y. A Highly Selective Implantable Electrochemical Fiber Sensor for Real-Time Monitoring of Blood Homovanillic Acid. ACS NANO 2024; 18:7485-7495. [PMID: 38415599 DOI: 10.1021/acsnano.3c11641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Homovanillic acid (HVA) is a major dopamine metabolite, and blood HVA is considered as central nervous system (CNS) dopamine biomarker, which reflects the progression of dopamine-associated CNS diseases and the behavioral response to therapeutic drugs. However, facing blood various active substances interference, particularly structurally similar catecholamines and their metabolites, real-time and accurate monitoring of blood HVA remains a challenge. Herein, a highly selective implantable electrochemical fiber sensor based on a molecularly imprinted polymer is reported to accurately monitor HVA in vivo. The sensor exhibits high selectivity, with a response intensity to HVA 12.6 times greater than that of catecholamines and their metabolites, achieving 97.8% accuracy in vivo. The sensor injected into the rat caudal vein tracked the real-time changes of blood HVA, which paralleled the brain dopamine fluctuations and indicated the behavioral response to dopamine increase. This study provides a universal design strategy for improving the selectivity of implantable electrochemical sensors.
Collapse
Affiliation(s)
- Kuangyi Zou
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Qianming Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Dan Li
- Department of Immunology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yiding Jiao
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Lie Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Luhe Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Jiacheng Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Yiran Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Rui Gao
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Fangyan Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Er He
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Tingting Ye
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Wentao Tang
- Department of Immunology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jie Song
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Jiang Lu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Xusong Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Hanting Zhang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Xinyin Cao
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Ye Zhang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
7
|
Duan X, Yang Y, Zhang T, Zhu B, Wei G, Li H. Research progress of metal biomaterials with potential applications as cardiovascular stents and their surface treatment methods to improve biocompatibility. Heliyon 2024; 10:e25515. [PMID: 38375258 PMCID: PMC10875388 DOI: 10.1016/j.heliyon.2024.e25515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/21/2024] Open
Abstract
Facing the growing issue of cardiovascular diseases, metallic materials with higher tensile strength and fatigue resistance play an important role in treating diseases. This review lists the advantages and drawbacks of commonly used medical metallic materials for vascular stents. To avoid post-procedural threats such as thrombosis and in-stent restenosis, surface treatments, and coating methods have been used to further improve the biocompatibility of these materials. Surface treatments including laser, plasma treatment, polishing, oxidization, and fluorination can improve biocompatibility by modifying the surface charges, surface morphology, and surface properties of the material. Coating methods based on polymer coatings, carbon-based coatings, and drug-functional coatings can regulate the surface properties, and also serve as an effective barrier to the interaction of metallic biomaterial surfaces with biomolecules, which can be used to improve corrosion resistance and stability, as well as improve their biocompatibility. Biocompatibility serves as the most fundamental property of cardiovascular stents, and maintaining the excellent and stable biocompatibility of cardiovascular stent surfaces is a current research bottleneck. Few reviews have been published on metallic biomaterials as cardiovascular stents and their surface treatments. For the purpose of advancing research on cardiovascular stents, common metal biomaterials, surface treatment methods, and coating methods to improve biocompatibility and comprehensive properties of the materials are described in this review. Finally, we suggest future directions for stent development, including continuously improving the durability and stability of permanent stents, accelerating the development of biodegradable stents, and strengthening feedback to improve the safety and reliability of cardiovascular stents.
Collapse
Affiliation(s)
- Xuejia Duan
- College of Materials and Chemistry, China Jiliang University, Hangzhou, Zhejiang 310018, China
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China
| | - Yumeng Yang
- College of Materials and Chemistry, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Tianji Zhang
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China
| | - Benfeng Zhu
- College of Materials and Chemistry, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Guoying Wei
- College of Materials and Chemistry, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Hongmei Li
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China
| |
Collapse
|
8
|
Wang X, Liu S, Zhang W, Peng H, Zhang M, Li Y, Guo Q, Wang W, Huang N, Liu L, Liu D. Silicon nanowire array overcomes chemotherapeutic resistance by inducing the differentiation of breast cancer stem cells. J Biomed Mater Res B Appl Biomater 2023. [PMID: 36929288 DOI: 10.1002/jbm.b.35249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/18/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023]
Abstract
Currently, traditional cancer treatment strategies are greatly challenged by the existence of cancer stem cells (CSCs), which are root cause of chemotherapy resistance. Differentiation therapy presents a novel therapeutic strategy for CSC-targeted therapy. However, there are very few studies on the induction of CSCs differentiation so far. Silicon nanowire array (SiNWA) with many unique properties is considered to be an excellent material for various applications ranging from biotechnology to biomedical applications. In this study, we report the SiNWA differentiates MCF-7-derived breast CSCs (BCSCs) into non-CSCs by modulating the morphology of cells. In vitro, the differentiated BCSCs lose the stemness properties and thus become sensitive to chemotherapeutic drugs, eventually leading to the death of BCSCs. Therefore, this work suggests a potential approach for overcoming chemotherapeutic resistance.
Collapse
Affiliation(s)
- Xiaotong Wang
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, People's Republic of China
| | - Sisi Liu
- Cheng'an County Hospital of Traditional Chinese Medicine, Handan, People's Republic of China
| | - Wei Zhang
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, People's Republic of China
| | - Haotong Peng
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, People's Republic of China
| | - Miao Zhang
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, People's Republic of China
| | - Yaping Li
- College of Public Health, Hebei University, Baoding, People's Republic of China
| | - Qi Guo
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, People's Republic of China
| | - Wenjing Wang
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, People's Republic of China
| | - Na Huang
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, People's Republic of China
| | - LiYan Liu
- Medical Comprehensive Experimental Centrer, Hebei University, Baoding, People's Republic of China
| | - Dandan Liu
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, People's Republic of China
| |
Collapse
|
9
|
Qu Z, Wei H, Du T, Qiao A. Computational simulation of stent thrombosis induced by various degrees of stent malapposition. Front Bioeng Biotechnol 2022; 10:1062529. [PMID: 36452211 PMCID: PMC9701824 DOI: 10.3389/fbioe.2022.1062529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 07/02/2024] Open
Abstract
Percutaneous coronary intervention with stent implantation is one of the most commonly used approaches to treat coronary artery stenosis. Stent malapposition (SM) can increase the incidence of stent thrombosis, but the quantitative association between SM distance and stent thrombosis is poorly clarified. The objective of this study is to determine the biomechanical reaction mechanisms underlying stent thrombosis induced by SM and to quantify the effect of different SM severity grades on thrombosis. The thrombus simulation was performed in a continuous model based on the diffusion-convection response of blood substance transport. Simulated models included well-apposed stents and malapposed stents with various severities where the detachment distances ranged from 0 to 400 μm. The abnormal shear stress induced by SM was considered a critical contributor affecting stent thrombosis, which was dependent on changing SM distances in the simulation. The results illustrate that the proportion of thrombus volume was 1.88% at a SM distance of 75 μm (mild), 3.46% at 150 μm, and 3.93% at 400 μm (severe), but that a slight drop (3.18%) appeared at the detachment distance of 225 μm (intermediate). The results indicate that when the SM distance was less than 150 μm, the thrombus rose notably as the gap distance increased, whereas the progression of thrombogenicity weakened when it exceeded 150 μm. Therefore, more attention should be paid when SM is present at a gap distance of 150 μm. Moreover, when the SM length of stents are the same, thrombus tends to accumulate downstream towards the distal end of the stent as the SM distance increases.
Collapse
Affiliation(s)
| | | | | | - Aike Qiao
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| |
Collapse
|