1
|
Fan Y, Zhu J, Li J, Liu X, Liu P, Jin X, Wang K, Liu L. Design of a Dual-Action Aerogel Film with Enhanced Radiative Cooling and Moisture Permeability through Pore Size Modulation for Human Heat and Humidity Comfort. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40448615 DOI: 10.1021/acsami.5c01862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2025]
Abstract
Human thermal management technologies based on radiant cooling can achieve portable, lightweight, long-lasting, and zero-energy cooling. However, in a high-temperature environment, perspiration continues to accumulate and increased humidity reduces the efficiency of radiant cooling, thus affecting human thermal and humidity comfort. Therefore, we developed a radiation-cooled aerogel film with easily tunable pore sizes consisting of cellulose acetate, polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP), and aluminum oxide (Al2O3), which has excellent optical properties, moisture permeability, and thermal stability. The appropriate pore size distribution and porosity not only enhance the solar reflectivity of the film but also improve its surface wettability. High solar reflectance (R̅solar = 97.4%) and infrared emissivity (ε̅IR = 98.5%) enabled the film to produce subambient cooling of 8.1 °C at an irradiance of 794.1 W/m2. Furthermore, even under conditions of high humidity (relative humidity = 90%), the film is expected to achieve a maximum daytime cooling power of 57 W/m2. The aerogel film exhibited superior moisture permeability (WVT = 7224 g/m2·24 h) compared to commercial cotton fabric. This work has significant applications in the management of human heat and humidity in extreme heat environments.
Collapse
Affiliation(s)
- Yinan Fan
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Jianhua Zhu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Junmei Li
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Xiaoyuan Liu
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Ping Liu
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Xing Jin
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Keyi Wang
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Lifang Liu
- College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
2
|
Hasan KMF, Chen J, Chen S, Lin K, Wong MY, Liang L, Zhu Y, Pan A, Minale YF, Ho TC, Lin CSK, Tso CY. Advanced Bioinspired Personal Thermoregulation Textiles for Outdoor Radiative Cooling. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3436-3447. [PMID: 39743234 DOI: 10.1021/acsami.4c18812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Radiative cooling textiles designed to reflect incoming sunlight and enhance mid-infrared (MIR) emissivity show great potential for ensuring personal thermal comfort. Thus, these textiles are gaining prominence as a means of combating the heat stress induced by global warming. Nonetheless, integrating radiative cooling effects into scalable textile materials for personal thermoregulation remains a formidable challenge. To achieve optimal cooling performance, textiles must exhibit finely tuned optical properties and spectral selectivity. In this study, a radiative cooling smart textile was devised by drawing inspiration from the structure of greater flamingo (Phoenicopterus roseus) feathers, which have effective thermoregulatory properties. Specifically, a nanoporous nonwoven material was fabricated from polyacrylonitrile and alumina particles and integrated with a cellulosic cotton knit fabric through an efficient electrospinning and hot pressing process to produce smart textile metafabric (PAC@T) with superior optical properties and wearer comfort. PAC@T exhibited an average fiber diameter of 501.6 nm and pore size of 857.6 nm, resulting in a solar reflectance of 95 ± 1.2% and an MIR emissivity of 91.8 ± 0.98%. It also demonstrated an enhanced water vapor transmission rate (5.5 kg/m2/24 h), water vapor evaporation rate (334 ± 2.2 mg/h), and significant radiative cooling performance, leading to temperatures 6.1 °C cooler than those achieved by a traditional knitted textile. Thus, PAC@T offers several distinct advantages, namely superior cooling efficiency, long-term durability, and energy-free operation. In addition, it is formed from accessible raw materials via a potentially scalable process that is likely to have substantial applications in industrial generation of smart textiles for personal thermoregulation.
Collapse
Affiliation(s)
- K M Faridul Hasan
- School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Jianheng Chen
- School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Siru Chen
- School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Kaixin Lin
- School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Man Yi Wong
- School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Lin Liang
- School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Yihao Zhu
- School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Aiqiang Pan
- School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Yitbarek Firew Minale
- Department of Chemical Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar 6000, Ethiopia
- Institute of Energy, Ceramics, and Polymer Technology, University of Miskolc, Miskolc 3515, Hungary
| | - Tsz Chung Ho
- School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Carol S K Lin
- School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Chi Yan Tso
- School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong
| |
Collapse
|
3
|
Liu R, Zhao S, Wu X, Zhao Z, Wang K, Guo Z, Xi A, Lan F, Li R, Liu R, Ma M, Zang Y, Wang F, Jiang Q, Li Y, Lyu P, Zhang R. Radiative Cooling Meta-Fabric Integrated with Knitting Perspiration-Wicking and Coating Heat Conduction. ACS NANO 2025; 19:826-836. [PMID: 39810371 DOI: 10.1021/acsnano.4c12196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Radiative cooling is an emerging zero-energy-consumption technology for human body cooling in outdoor scenarios during hot seasons. However, existing radiative cooling textiles are limited by low intrinsic cooling power, high hydrophobicity, and heat-insulating properties, which seriously impede a satisfying cooling effect, perspiration-wicking, and heat dissipation, thus limiting human thermal comfort in practical situations. Here, we developed a radiative cooling meta-fabric that was integrated with high perspiration-wicking and thermal conduction capacity. The meta-fabric included a polyoxymethylene (POM) nanotextile on the front side as a selective radiative emitter, a skin-friendly silicone on the reverse side as a thermal conductor, and patterned bamboo yarns (a cellulose fiber derived from bamboo with excellent hydrophilicity) as the water transport channels. As a result, the meta-fabric could rapidly wick away perspiration (within seconds) and had a high thermal conductivity of 1.5 W/(m·K), exhibiting high-performance human body cooling with a temperature of 10.9 °C lower than the meta-fabric without perspiration. Besides, even without perspiration, the meta-fabric still exhibited a temperature of 9.6 °C lower than commercial cotton fabrics. The work provides an alternative method to design smart textiles for personal thermal management in real applications.
Collapse
Affiliation(s)
- Ruina Liu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- School of Chemistry & Material Science, Langfang Normal University, Langfang 065000, China
| | - Siming Zhao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xueke Wu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhuojing Zhao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Kangkang Wang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhenyu Guo
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Aike Xi
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Fan Lan
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Run Li
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Ruihong Liu
- School of Chemistry & Material Science, Langfang Normal University, Langfang 065000, China
| | - Mengzhu Ma
- School of Chemistry & Material Science, Langfang Normal University, Langfang 065000, China
| | - Yonglu Zang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Fei Wang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Qinyuan Jiang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yunrui Li
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Pei Lyu
- State Key Laboratory of New Textile Materials & Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Rufan Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Xu J, Wu X, Li Y, Zhao S, Lan F, Xi A, Huang Y, Ding Y, Zhang R. High-Performance Radiative Cooling Sunscreen. NANO LETTERS 2024; 24:15178-15185. [PMID: 39546330 DOI: 10.1021/acs.nanolett.4c04969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Radiative cooling is a zero-energy-consumption cooling technology that shows great potential for outdoor human thermal management. To keep human skin comfortable in hot days, we herein develop a radiative cooling (RC) sunscreen that exhibits a low ultraviolet (UV) transmissivity (4.86%), a high solar reflectivity (90.19%), and a high mid-infrared emissivity (92.09%) to effectively provide both UV protection and skin cooling. As a result, the RC sunscreen exhibits a high cooling performance for decreasing the human skin temperature by 2.3-6.1 °C more than commercial sunscreens and 4.2-6.0 °C more than bare skin in a variety of outdoor scenarios in summer (e.g., low-humidity sunny days, high-humidity sunny days, and high-humidity cloudy days). In addition, the RC sunscreen also shows a good UV stability (12 h, 125 W), a high water resistance (106°), a long working life (30 days), and a good biocompatibility, thereby exhibiting promising commercial potentials in the sunscreen market.
Collapse
Affiliation(s)
- Jiaqi Xu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xueke Wu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yunrui Li
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Siming Zhao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Fan Lan
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Aike Xi
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Ya Huang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yilin Ding
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Rufan Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Chen YJ, Fang CY, Huang YW, Hsu TF, Tang NT, Tsai HP, Lee RH, Lin SH, Hsuen HW, Lin KYA, Yang H. White Roman Goose Feather-Inspired Unidirectionally Inclined Conical Structure Arrays for Switchable Anisotropic Self-Cleaning. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36840-36850. [PMID: 38954505 DOI: 10.1021/acsami.4c09082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
White Roman goose (Anser anser domesticus) feathers, comprised of oriented conical barbules, are coated with gland-secreted preening oils to maintain a long-term nonwetting performance for surface swimming. The geese are accustomed to combing their plumages with flat bills in case they are contaminated with oleophilic substances, during which the amphiphilic saliva spread over the barbules greatly impairs their surface hydrophobicities and allows the trapped contaminants to be anisotropically self-cleaned by water flows. Particularly, the superhydrophobic behaviors of the goose feathers are recovered as well. Bioinspired by the switchable anisotropic self-cleaning functionality of white Roman geese, superhydrophobic unidirectionally inclined conical structures are engineered through the integration of a scalable colloidal self-assembly technology and a colloidal lithographic approach. The dependence of directional sliding properties on the shape, inclination angle, and size of conical structures is systematically investigated in this research. Moreover, their switchable anisotropic self-cleaning functionalities are demonstrated by Sudan blue II/water (0.01%) separation performances. The white Roman goose feather-inspired coatings undoubtedly offer a new concept for developing innovative applications that require directional transportation and the collection of liquids.
Collapse
Affiliation(s)
- You-Jie Chen
- Department of Chemical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| | - Cai-Yin Fang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yun-Wen Huang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ting-Fang Hsu
- Department of Chemical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| | - Nien-Ting Tang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| | - Hui-Ping Tsai
- Department of Civil Engineering, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Rong-Ho Lee
- Department of Chemical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| | - Shin-Hua Lin
- Department of Chemical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| | - Hsiang-Wen Hsuen
- Department of Chemical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, Taichung 40227, Taiwan
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Hongta Yang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
6
|
Ju Y, Yang P, He J, Tang S. Calcium-Salt-Enhanced Fiber Membrane with High Infrared Emission and Hydrophilicity for Efficient Passive Cooling. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16778-16787. [PMID: 38502968 DOI: 10.1021/acsami.4c00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Radiative cooling fabrics have gained significant attention for their ability to enhance comfort without consuming extra energy. Nevertheless, sweat accumulation on the skin and diminishing cooling efficiency usually exist in the reported polymer cooling membranes. Herein, we report a universal method to obtain a calcium (Ca)-salt-enhanced fiber membrane with high infrared emission and hydrophilicity for efficient passive cooling and flame retardancy. The modification by Ca salts (including CaSiO3, CaSO3, and CaHPO4) with strong infrared emission results in an improvement in hygrothermal management ability, especially for moisture absorption and perspiration regulation in hot and humid environments. As an example, the CaSiO3@PMMA fiber membrane exhibits exceptional reflectivity in the solar spectrum (∼94.5%), high emittance in the atmospheric window (∼96.7%), and superhydrophilicity with a contact angle of 31°. Under direct sunlight, the CaSiO3@PMMA membrane exhibits an obvious temperature drop of 11.7 °C and moisture management achieves an additional cooling of 8.9 °C, as further confirmed by the ability to reduce the rate of ice melting. Additionally, the composite membrane provides notable flame retardancy and UV resistance. This work paves a new path in developing new materials with perspiration management and flame retardancy for zero energy consumption cooling in hot and humid environments.
Collapse
Affiliation(s)
- Yanshan Ju
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
| | - Peng Yang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
| | - Jiajun He
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
| | - Shaochun Tang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
7
|
Lan C, Meng J, Pan C, Jia L, Pu X. Hierarchical porous dual-mode thermal management fabrics achieved by regulating solar and body radiations. MATERIALS HORIZONS 2024; 11:1760-1768. [PMID: 38305088 DOI: 10.1039/d3mh01938a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Personal thermal management (PTM) of fabrics is vital for human health; the ever-changing location of the human body poses a big challenge for fabrics to maintain a favorable metabolic temperature. Herein, a dual-mode thermal management fabric is designed to achieve both cooling and heating functions by regulating simultaneously solar and body radiations. The cooling or heating mode can be exchanged by flipping the fabric without an external energy supply. The passive cooling side consists of an electrospun polyacrylonitrile (PAN) fabric with a hierarchical porous structure, exhibiting high sunlight reflectance (91.42%) and an ∼14 °C temperature decrease under direct sunlight irradiation. The co-existence of nanoscale and microscale pores is proven to be essential for improved cooling performances. The other heating side, coated with an MXene layer, shows high photothermal conversion efficiency (37.5%) and outstanding heating capability outdoors. Furthermore, the contrary mid-infrared emissivity of the two sides (high emissivity of the cooling side while low emissivity of the heating side) leads to the dual-mode passive regulation of body thermal energy. Besides, this fabric demonstrates satisfactory wearability and excellent stability. Our work proposes an energy-saving and cost-effective approach for PTM fabrics potentially suitable for various scenarios (e.g., indoors/outdoors, summer/winter, low/high latitude areas).
Collapse
Affiliation(s)
- Chuntao Lan
- CAS Center for Excellent in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.
| | - Jia Meng
- CAS Center for Excellent in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.
| | - Chongxiang Pan
- CAS Center for Excellent in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.
| | - Luyao Jia
- CAS Center for Excellent in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiong Pu
- CAS Center for Excellent in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Xue S, Huang G, Chen Q, Wang X, Fan J, Shou D. Personal Thermal Management by Radiative Cooling and Heating. NANO-MICRO LETTERS 2024; 16:153. [PMID: 38478150 PMCID: PMC10937893 DOI: 10.1007/s40820-024-01360-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/16/2024] [Indexed: 03/17/2024]
Abstract
Maintaining thermal comfort within the human body is crucial for optimal health and overall well-being. By merely broadening the set-point of indoor temperatures, we could significantly slash energy usage in building heating, ventilation, and air-conditioning systems. In recent years, there has been a surge in advancements in personal thermal management (PTM), aiming to regulate heat and moisture transfer within our immediate surroundings, clothing, and skin. The advent of PTM is driven by the rapid development in nano/micro-materials and energy science and engineering. An emerging research area in PTM is personal radiative thermal management (PRTM), which demonstrates immense potential with its high radiative heat transfer efficiency and ease of regulation. However, it is less taken into account in traditional textiles, and there currently lies a gap in our knowledge and understanding of PRTM. In this review, we aim to present a thorough analysis of advanced textile materials and technologies for PRTM. Specifically, we will introduce and discuss the underlying radiation heat transfer mechanisms, fabrication methods of textiles, and various indoor/outdoor applications in light of their different regulation functionalities, including radiative cooling, radiative heating, and dual-mode thermoregulation. Furthermore, we will shine a light on the current hurdles, propose potential strategies, and delve into future technology trends for PRTM with an emphasis on functionalities and applications.
Collapse
Affiliation(s)
- Shidong Xue
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, People's Republic of China
- Future Intelligent Wear Centre, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, People's Republic of China
| | - Guanghan Huang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Qing Chen
- Shanghai International Fashion Innovation Center, Donghua University, Shanghai, 200051, People's Republic of China
| | - Xungai Wang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, People's Republic of China
| | - Jintu Fan
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, People's Republic of China
- Research Centre of Textiles for Future Fashion, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, People's Republic of China
| | - Dahua Shou
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, People's Republic of China.
- Future Intelligent Wear Centre, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, People's Republic of China.
- Research Centre of Textiles for Future Fashion, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, People's Republic of China.
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, People's Republic of China.
| |
Collapse
|
9
|
Li X, Guo W, Hsu PC. Personal Thermoregulation by Moisture-Engineered Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2209825. [PMID: 36751106 DOI: 10.1002/adma.202209825] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Personal thermal management can effectively manage the skin microenvironment, improve human comfort, and reduce energy consumption. In personal thermal-management technology, owing to the high latent heat of water evaporation in wet-response textiles, heat- and moisture-transfer coexist and interact with each other. In the last few years, with rapid advances in materials science and innovative polymers, humidity-sensitive textiles have been developed for personal thermal management. However, a large gap exists between the conceptual laboratory-scale design and actual textile. Here, moisture-responsive textiles based on flap opening and closing, those based on yarn/fiber deformation, and sweat-evaporation regulation based on textile design for personal thermoregulation are reviewed, and the corresponding mechanisms and research progress are discussed. Finally, the existing engineering and scientific limitations and future developments are considered to resolve the existing issues and accelerate the practical application of moisture-responsive textiles and related technologies.
Collapse
Affiliation(s)
- Xiuqiang Li
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Wanlin Guo
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Po-Chun Hsu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
10
|
Zhang X, Wang F, Guo H, Sun F, Li X, Zhang C, Yu C, Qin X. Advanced Cooling Textiles: Mechanisms, Applications, and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305228. [PMID: 38140792 PMCID: PMC10933611 DOI: 10.1002/advs.202305228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/28/2023] [Indexed: 12/24/2023]
Abstract
High-temperature environments pose significant risks to human health and safety. The body's natural ability to regulate temperature becomes overwhelmed under extreme heat, leading to heat stroke, dehydration, and even death. Therefore, the development of effective personal thermal-moisture management systems is crucial for maintaining human well-being. In recent years, significant advancements have been witnessed in the field of textile-based cooling systems, which utilize innovative materials and strategies to achieve effective cooling under different environments. This review aims to provide an overview of the current progress in textile-based personal cooling systems, mainly focusing on the classification, mechanisms, and fabrication techniques. Furthermore, the challenges and potential application scenarios are highlighted, providing valuable insights for further advancements and the eventual industrialization of personal cooling textiles.
Collapse
Affiliation(s)
- Xueping Zhang
- Key Laboratory of Textile Science & TechnologyMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| | - Fei Wang
- Key Laboratory of Textile Science & TechnologyMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| | - Hanyu Guo
- Key Laboratory of Textile Science & TechnologyMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| | - Fengqiang Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Xiangshun Li
- Key Laboratory of Textile Science & TechnologyMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| | - Chentian Zhang
- Key Laboratory of Textile Science & TechnologyMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| | - Chongwen Yu
- Key Laboratory of Science & Technology of Eco‐TextileMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| | - Xiaohong Qin
- Key Laboratory of Textile Science & TechnologyMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| |
Collapse
|
11
|
Yu L, Huang Y, Zhao Y, Rao Z, Li W, Chen Z, Chen M. Self-sustained and Insulated Radiative/Evaporative Cooler for Daytime Subambient Passive Cooling. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6513-6522. [PMID: 38273444 DOI: 10.1021/acsami.3c19223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Passive cooling technologies are one of the promising solutions to the global energy crisis due to no consumption of fossil fuels during operation. However, the existing radiative and evaporative coolers still have problems achieving daytime subambient cooling while maintaining evaporation over the long term. Here, we propose a self-sustained and insulated radiative/evaporative cooler (SIREC), which consists of a porous polyethylene film (P-PE) at the top, an air layer in the middle, and poly(vinyl alcohol) hydrogel with lithium bromide (PLH) at the bottom. In particular, the P-PE shows high solar reflectance (R̅solar = 0.91) and long-wave infrared transmittance (τ̅LWIR = 0.92), which reflects sunlight while enhancing the direct radiative heat transfer between outer space and PLH (ε̅LWIR = 0.96) for sky radiative cooling. In addition, the desirable vapor permeability (579 s m-1) of the P-PE also results in good compatibility with PLH for evaporative cooling (EC). Moreover, the PLH's ability to harvest atmospheric water at night provides self-sustainment for daytime EC. The air layer between P-PE and PLH further enhances the subambient cooling performance of the SIREC. These findings indicate promising prospects for the integration of passive cooling technologies.
Collapse
Affiliation(s)
- Li Yu
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Yimou Huang
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Yanwei Zhao
- Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Zhenghua Rao
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Weihong Li
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Zhuo Chen
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Meijie Chen
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
12
|
So S, Yun J, Ko B, Lee D, Kim M, Noh J, Park C, Park J, Rho J. Radiative Cooling for Energy Sustainability: From Fundamentals to Fabrication Methods Toward Commercialization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305067. [PMID: 37949679 PMCID: PMC10787071 DOI: 10.1002/advs.202305067] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/18/2023] [Indexed: 11/12/2023]
Abstract
Radiative cooling, a technology that lowers the temperature of terrestrial objects by dissipating heat into outer space, presents a promising ecologically-benign solution for sustainable cooling. Recent years witness substantial progress in radiative cooling technologies, bringing them closer to commercialization. This comprehensive review provides a structured overview of radiative cooling technologies, encompassing essential principles, fabrication techniques, and practical applications, with the goal of guiding researchers toward successful commercialization. The review begins by introducing the fundamentals of radiative cooling and the associated design strategies to achieve it. Then, various fabrication methods utilized for the realization of radiative cooling devices are thoroughly discussed. This discussion includes detailed assessments of scalability, fabrication costs, and performance considerations, encompassing both structural designs and fabrication techniques. Building upon these insights, potential fabrication approaches suitable for practical applications and commercialization are proposed. Further, the recent efforts made toward the practical applications of radiative cooling technology, including its visual appearance, switching capability, and compatibility are examined. By encompassing a broad range of topics, from fundamental principles to fabrication and applications, this review aims to bridge the gap between theoretical research and real-world implementation, fostering the advancement and widespread adoption of radiative cooling technology.
Collapse
Affiliation(s)
- Sunae So
- Graduate School of Artificial Intelligence, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Electro-Mechanical Systems Engineering, Korea University, Sejong, 30019, Republic of Korea
| | - Jooyeong Yun
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Byoungsu Ko
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Dasol Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Biomedical Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Minkyung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jaebum Noh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Cherry Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junkyeong Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673, Republic of Korea
| |
Collapse
|
13
|
Wang Y, Wang H, Lu B, Yu K, Xie R, Lan G, Xie J, Hu E, Lu F. A sandwich-like silk fibroin/polysaccharide composite dressing with continual biofluid draining for wound exudate management. Int J Biol Macromol 2023; 253:127000. [PMID: 37739294 DOI: 10.1016/j.ijbiomac.2023.127000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/06/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Optimal wound healing requires a wet microenvironment without over-hydration. Inspired by capillarity and transpiration, we have developed a sandwich-like fibers/sponge dressing with continuous exudate drainage to maintain appropriate wound moisture. This dressing is prepared by integrating a three-layer structure using the freeze-drying method. Layer I, as the side that contacts with the skin directly, consists of a hydrophobic silk fibroin membrane; Layer II, providing the pumping action, is made of superabsorbent chitosan-konjac glucomannan sponge; Layer III, accelerating evaporation sixfold compared to natural evaporation, is constructed with a graphene oxide soaked hydrophilic cellulose acetate membrane. Animal experiments showed that the composite dressing had superior wound-healing characteristics, with wounds decreasing to 24.8% of their original size compared to 28.5% for the commercial dressing and 43.2% for the control. The enhanced wound healing can be ascribed to the hierarchical porous structure serves as the fluid-driving factor in this effort; the hydrophilicity of a membrane composed of silk fibroin nanofibers is adjustable to regulate fluid-transporting capacity; and the photothermal effect of graphene oxide guarantees exudates that have migrated to the top layer to evaporate continuously. These findings indicate the unidirectional wicking dressing has the potential to become the next generation of clinical dressings.
Collapse
Affiliation(s)
- Yixin Wang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Haoyu Wang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Bitao Lu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Kun Yu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Ruiqi Xie
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Guangqian Lan
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Jing Xie
- Department of Stomatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Enling Hu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong.
| | - Fei Lu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China.
| |
Collapse
|
14
|
Hou L, Liu X, Ge X, Hu R, Cui Z, Wang N, Zhao Y. Designing of anisotropic gradient surfaces for directional liquid transport: Fundamentals, construction, and applications. Innovation (N Y) 2023; 4:100508. [PMID: 37753526 PMCID: PMC10518492 DOI: 10.1016/j.xinn.2023.100508] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023] Open
Abstract
Many biological surfaces are capable of transporting liquids in a directional manner without energy consumption. Inspired by nature, constructing asymmetric gradient surfaces to achieve desired droplet transport, such as a liquid diode, brings an incredibly valuable and promising area of research with a wide range of applications. Enabled by advances in nanotechnology and manufacturing techniques, biomimetics has emerged as a promising avenue for engineering various types of anisotropic material system. Over the past few decades, this approach has yielded significant progress in both fundamental understanding and practical applications. Theoretical studies revealed that the heterogeneous composition and topography mainly govern the wetting mechanisms and dynamics behavior of droplets, including the interdisciplinary aspects of materials, chemistry, and physics. In this review, we provide a concise overview of various biological surfaces that exhibit anisotropic droplet transport. We discussed the theoretical foundations and mechanisms of droplet motion on designed surfaces and reviewed recent research advances in droplet directional transport on designed plane surfaces and Janus membranes. Such liquid-diode materials yield diverse promising applications, involving droplet collection, liquid separation and delivery, functional textiles, and biomedical applications. We also discuss the recent challenges and ongoing approaches to enhance the functionality and application performance of anisotropic materials.
Collapse
Affiliation(s)
- Lanlan Hou
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
- School of Printing and Packaging Engineer, Beijing Institute of Graphic Communication, Beijing 102600, China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaofei Liu
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Xinran Ge
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Rongjun Hu
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Zhimin Cui
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Nü Wang
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Yong Zhao
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
15
|
Wang Y, Wang T, Liang J, Wu J, Yang M, Pan Y, Hou C, Liu C, Shen C, Tao G, Liu X. Controllable-morphology polymer blend photonic metafoam for radiative cooling. MATERIALS HORIZONS 2023; 10:5060-5070. [PMID: 37661692 DOI: 10.1039/d3mh01008b] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Incorporating radiative cooling photonic structures into the cooling systems of buildings presents a novel strategy to mitigate global warming and boost global carbon neutrality. Photonic structures with excellent solar reflection and thermal emission can be obtained by a rational combination of different materials. The current preparation strategies of radiative cooling materials are dominated by doping inorganic micro-nano particles into polymers, which usually possess insufficient solar reflectance. Here, a porous polymer metafoam was prepared with polycarbonate (PC) and polydimethylsiloxane (PDMS) using a simple thermally induced phase separation method. The metafoam exhibits strong solar reflectivity (97%), superior thermal emissivity (91%), and low thermal conductivity (46 mW m-1 K-1) due to the controllable morphology of the randomly dispersed light-scattering air voids. Cooling tests demonstrate that the metafoam could reduce the average temperature by 5.2 °C and 10.2 °C during the daytime and nighttime, respectively. In addition, the simulation of a cooling energy system of buildings indicates that the metafoam can save 3.2-26.7 MJ m-2 per year in different cities, which is an energy-saving percentage of 14.7-41%. The excellent comprehensive performances, including the passive cooling property, thermal insulation and self-cleaning of the metafoam makes it appropriate for practical outdoor applications, exhibiting its great potential as an energy-saving building cooling material.
Collapse
Affiliation(s)
- Yajie Wang
- College of Materials Science and Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Wenhua Road 97-1, Zhengzhou, 450002, P. R. China.
| | - Tiecheng Wang
- College of Materials Science and Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Wenhua Road 97-1, Zhengzhou, 450002, P. R. China.
| | - Jun Liang
- Wuhan National Laboratory for Optoelectronics, School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China.
| | - Jiawei Wu
- Wuhan National Laboratory for Optoelectronics, School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China.
| | - Maiping Yang
- Wuhan National Laboratory for Optoelectronics, School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China.
| | - Yamin Pan
- College of Materials Science and Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Wenhua Road 97-1, Zhengzhou, 450002, P. R. China.
| | - Chong Hou
- Wuhan National Laboratory for Optoelectronics, School of Optics and Electronic Information, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Chuntai Liu
- College of Materials Science and Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Wenhua Road 97-1, Zhengzhou, 450002, P. R. China.
| | - Changyu Shen
- College of Materials Science and Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Wenhua Road 97-1, Zhengzhou, 450002, P. R. China.
| | - Guangming Tao
- Wuhan National Laboratory for Optoelectronics, School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China.
| | - Xianhu Liu
- College of Materials Science and Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Wenhua Road 97-1, Zhengzhou, 450002, P. R. China.
| |
Collapse
|
16
|
Jung Y, Kim M, Kim T, Ahn J, Lee J, Ko SH. Functional Materials and Innovative Strategies for Wearable Thermal Management Applications. NANO-MICRO LETTERS 2023; 15:160. [PMID: 37386321 PMCID: PMC10310690 DOI: 10.1007/s40820-023-01126-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/13/2023] [Indexed: 07/01/2023]
Abstract
Highlights This article systematically reviews the thermal management wearables with a specific emphasis on materials and strategies to regulate the human body temperature. Thermal management wearables are subdivided into the active and passive thermal managing methods. The strength and weakness of each thermal regulatory wearables are discussed in details from the view point of practical usage in real-life. Abstract Thermal management is essential in our body as it affects various bodily functions, ranging from thermal discomfort to serious organ failures, as an example of the worst-case scenario. There have been extensive studies about wearable materials and devices that augment thermoregulatory functionalities in our body, employing diverse materials and systematic approaches to attaining thermal homeostasis. This paper reviews the recent progress of functional materials and devices that contribute to thermoregulatory wearables, particularly emphasizing the strategic methodology to regulate body temperature. There exist several methods to promote personal thermal management in a wearable form. For instance, we can impede heat transfer using a thermally insulating material with extremely low thermal conductivity or directly cool and heat the skin surface. Thus, we classify many studies into two branches, passive and active thermal management modes, which are further subdivided into specific strategies. Apart from discussing the strategies and their mechanisms, we also identify the weaknesses of each strategy and scrutinize its potential direction that studies should follow to make substantial contributions to future thermal regulatory wearable industries.
Collapse
Affiliation(s)
- Yeongju Jung
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Minwoo Kim
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Taegyeom Kim
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jiyong Ahn
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jinwoo Lee
- Department of Mechanical, Robotics, and Energy Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, South Korea.
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
- Institute of Advanced Machinery and Design (SNU-IAMD), Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
- Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
17
|
Zhang D, Zhang H, Xu Z, Zhao Y. Recent Advances in Electrospun Membranes for Radiative Cooling. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103677. [PMID: 37241303 DOI: 10.3390/ma16103677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
Radiative cooling is an approach that maximizes the thermal emission through the atmospheric window in order to dissipate heat, while minimizing the absorption of incoming atmospheric radiation, to realize a net cooling effect without consuming energy. Electrospun membranes are made of ultra-thin fibers with high porosity and surface area, which makes them suitable for radiative cooling applications. Many studies have investigated the use of electrospun membranes for radiative cooling, but a comprehensive review that summarizes the research progress in this area is still lacking. In this review, we first summarize the basic principles of radiative cooling and its significance in achieving sustainable cooling. We then introduce the concept of radiative cooling of electrospun membranes and discuss the selection criteria for materials. Furthermore, we examine recent advancements in the structural design of electrospun membranes for improved cooling performance, including optimization of geometric parameters, incorporation of highly reflective nanoparticles, and designing multilayer structure. Additionally, we discuss dual-mode temperature regulation, which aims to adapt to a wider range of temperature conditions. Finally, we provide perspectives for the development of electrospun membranes for efficient radiative cooling. This review will provide a valuable resource for researchers working in the field of radiative cooling, as well as for engineers and designers interested in commercializing and developing new applications for these materials.
Collapse
Affiliation(s)
- Dongxue Zhang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Haiyan Zhang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Zhiguang Xu
- China-Australia Institute for Advanced Materials and Manufacturing, Jiaxing University, Jiaxing 314001, China
| | - Yan Zhao
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
18
|
Li Z, Lu Y, Guo N, Feng W, Fu S, Zhang P. Hygroscopic and cool boron nitride Nanosheets/Regenerated flax fiber material microstructure Dual-Cooling composite fabric. J Colloid Interface Sci 2023; 633:489-499. [PMID: 36463818 DOI: 10.1016/j.jcis.2022.11.130] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
Developing cooling textiles with unidirectional water transport performances and high thermal conductivities is essential for personal thermal and wet comfort in human activities. We report a green, degradable, hygroscopic cooling material and dual-cooling composite fabric (d-CCF). A boron nitride nanosheet/regenerated flax fiber (BNNS/RFF) material with a high thermal conductivity was prepared by dissolving recovered flax fibers with a green, efficient 1-butyl-3-methylimidazole chloride/dimethyl sulfoxide system and adding BNNSs. The 60- wt% BNNS/RFF materials had excellent thermal conductivity and hydrophilicity, the breaking strength reached 120 MPa, and the elongation was 15.8 %. The d-CCF consisted of cool polyester (CPET) yarn (inner layer), CPET/bamboo composite yarn (middle layer), bamboo yarn, and 60- wt% BNNS/RFF (outer layer) with unobstructed heat dissipation and evaporation cooling for effective moisture and thermal management. This d-CCF had distinct advantages, including a high one-way water transport index (468 %), an extremely high evaporation rate (0.3818 g h-1), inner layer maximum heat flux (0.191 W cm-2), and outer layer maximum heat flux (0.249 W cm-2), providing a cooling sensation upon contact. Compared to cotton fabrics, the d-CCF could keep the skin cooler by 2.5 °C. This work provides a strategy to fabricate environmentally friendly BNNS/RFF materials and a facile pathway for cooling textile development for human health management.
Collapse
Affiliation(s)
- Zhijiang Li
- College of Textiles, Donghua University, 2999 Renmin North Road, Shanghai 201620, China; College of Mechanical and Electrical Engineering, Tarim University, 705 Hongqiao South Road, Alar, Xinjiang 843300, China
| | - Yanping Lu
- College of Textiles, Donghua University, 2999 Renmin North Road, Shanghai 201620, China
| | - Ning Guo
- College of Textiles, Donghua University, 2999 Renmin North Road, Shanghai 201620, China
| | - Wei Feng
- College of Mechanical and Electrical Engineering, Tarim University, 705 Hongqiao South Road, Alar, Xinjiang 843300, China
| | - Shaoju Fu
- College of Textiles, Donghua University, 2999 Renmin North Road, Shanghai 201620, China.
| | - Peihua Zhang
- College of Textiles, Donghua University, 2999 Renmin North Road, Shanghai 201620, China.
| |
Collapse
|
19
|
Zhang Q, Li K, Li Y, Li Y, Zhang X, Du Y, Tian D. Gradient monolayered porous membrane for liquid manipulation: from fabrication to application. NANOSCALE ADVANCES 2022; 4:3495-3503. [PMID: 36134360 PMCID: PMC9400516 DOI: 10.1039/d2na00421f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 06/16/2023]
Abstract
The controlled transport of liquid on a smart material surface has important applications in the fields of microreactors, mass and heat transfer, water collection, microfluidic devices and so on. Porous membranes with special wettability have attracted extensive attention due to their unique unidirectional transport behavior, that is, liquid can easily penetrate in one direction while reverse transport is prevented, which shows great potential in functional textiles, fog collection, oil/water separation, sensors, etc. However, many porous membranes are synthesized from multilayer structural materials with poor mechanical properties and are currently prone to delamination, which limits their stability. While a monolayered porous membrane, especially for gradient structure, is an efficient, stable and durable material owing to its good durability and difficult stratification. Therefore, it is of great significance to fabricate a monolayered porous membrane for controllable liquid manipulation. In this minireview, we briefly introduce the classification and fabrication of typical monolayered porous membranes. And the applications of monolayered porous membranes in unidirectional penetration, selective separation and intelligent response are further emphasized and discussed. Finally, the controllable preparation and potential applications of porous membranes are featured and their prospects discussed on the basis of their current development.
Collapse
Affiliation(s)
- Qiuya Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University Beijing 100191 P. R. China
- School of Physics, Beihang University Beijing 100191 P. R. China
| | - Ke Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University Beijing 100191 P. R. China
| | - Yuliang Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University Beijing 100191 P. R. China
| | - Yan Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University Beijing 100191 P. R. China
| | - Xiaofang Zhang
- School of Mathematics and Physics, University of Science & Technology Beijing Beijing 100083 P. R. China
| | - Yi Du
- School of Physics, Beihang University Beijing 100191 P. R. China
| | - Dongliang Tian
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University Beijing 100191 P. R. China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University Beijing 100191 P. R. China
| |
Collapse
|
20
|
Qi G, Tan X, Tu Y, Yang X, Qiao Y, Wang Y, Geng J, Yao S, Chen X. Ordered-Porous-Array Polymethyl Methacrylate Films for Radiative Cooling. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31277-31284. [PMID: 35771521 DOI: 10.1021/acsami.2c06809] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Passive radiative cooling is a spontaneous pattern of reflecting sunlight and radiating heat into the cold outer space through transparent atmosphere windows. In this work, an ordered-porous-array polymethyl methacrylate (OPA-PMMA) film with the properties of excellent radiative cooling is designed and studied. An ultra-high emissivity of 98.4% in the mid-infrared region (3-25 μm) and a good solar reflectance of 85% in the ultraviolet and near-infrared solar spectra (0.2-2.5 μm) were achieved. The surface temperature of the OPA-PMMA film is 16 °C lower than that of the smooth-surface PMMA films and is 8.6 °C lower than that of the commercial white paint in the outdoor test. The structure of the OPA plays an important role in improving solar reflectivity and emissivity. The films are fabricated using a one-step low-cost process that can be applied for large-scale production. It is vital for promoting radiative cooling as a viable energy technology for buildings, fabric, or equipment that need a cooling environment.
Collapse
Affiliation(s)
- Guiguang Qi
- Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Electrical Engineering & New Energy, China Three Gorges University, Yichang, Hubei 443002, P. R. China
| | - Xinyu Tan
- Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Electrical Engineering & New Energy, China Three Gorges University, Yichang, Hubei 443002, P. R. China
| | - Yiteng Tu
- Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Electrical Engineering & New Energy, China Three Gorges University, Yichang, Hubei 443002, P. R. China
| | - Xiongbo Yang
- College of Science, China Three Gorges University, Yichang 443002, China
| | - Yulong Qiao
- Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Electrical Engineering & New Energy, China Three Gorges University, Yichang, Hubei 443002, P. R. China
| | - Yunqi Wang
- Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Electrical Engineering & New Energy, China Three Gorges University, Yichang, Hubei 443002, P. R. China
| | - Jialin Geng
- Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Electrical Engineering & New Energy, China Three Gorges University, Yichang, Hubei 443002, P. R. China
| | - Shumin Yao
- Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Electrical Engineering & New Energy, China Three Gorges University, Yichang, Hubei 443002, P. R. China
| | - Xiaobo Chen
- Department of Chemistry, University of Missouri-Kansas City, Kansas City, Missouri 64110, United States
| |
Collapse
|