1
|
Qiu J, Yu R, Du X, Zhou T, Chen Y, Sun J, Wu L, Zhu M, Pan S. Liquid Metal Gel Ink with Self-Activating Conductivity for 3D Printing of Multifunctional Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502722. [PMID: 40388652 DOI: 10.1002/smll.202502722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/26/2025] [Indexed: 05/21/2025]
Abstract
Liquid metal inks have emerged as promising conductive inks for the printing of soft circuits and multifunctional electronics. However, the printed patterns are typically nonconductive due to the native insulating oxide layer surrounding the liquid metal (LM) particles, which requires mechanical or chemical post-treatments to restore their electrical performance. In this study, the design and preparation of a self-activating LM gel ink are presented. This viscous gel ink consists of LM particles and supramolecular assemblies, which are formed by β-cyclodextrin (β-CD) and sodium dodecyl sulfate (SDS). These assemblies entangle to create a supramolecular gel network, which prevents the LM particles from settling and facilitates 3D printing. Moreover, the supramolecular assemblies are dissociated into host-guest complexes upon heating to 50 °C, thereby allowing the ink to transition its viscosity from ≈13 to ≈0.005 Pa·s at a shear rate of 1 s-1. This viscosity transition leads to the sedimentation of LM particles, resulting in the formation of a continuous liquid metal phase upon water evaporation, with a high electrical conductivity of 3.4 × 105 S m-1. The printed conductive patterns can subsequently be used in multifunctional devices, including stretchable displays, wireless power-transmission circuits, and fabric bioelectrodes.
Collapse
Affiliation(s)
- Jiexin Qiu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Rouhui Yu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiangheng Du
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Tao Zhou
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yaqi Chen
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jiale Sun
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Liang Wu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Meifang Zhu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Shaowu Pan
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
2
|
Fan Y, Shen Y, Zhang W, Zeng G, Liu T, Wang Y, Wang S, Zheng J, Hou X. Electrochemical Redox Synergism-Enhanced Liquid Metal Locomotion for Unrestricted Circuit Substrate Patterning. Angew Chem Int Ed Engl 2025; 64:e202424637. [PMID: 39948716 DOI: 10.1002/anie.202424637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/13/2025] [Indexed: 02/26/2025]
Abstract
The critical challenge in advancing liquid metal circuits (LMCs) lies in achieving interfacial compatibility with diverse substrates while dynamically balancing fabrication efficiency and quality to ensure robust conductive stability. Here we introduce an electrochemical redox synergistic liquid metal (E-rsLM) that enables the controllable generation of diverse intermetallic bond transition layers (Cu, Au, or Fe-based) between liquid metal and unrestricted substrate surfaces, applicable in pH-universal electrolytes. It involves enhanced locomotion of the liquid metal, driven by synergistic electrochemical energy transduction from cyclic changes in gallium redox states. Characterized by expansion-contraction-expansion, it enables unique self-propelled bouncing, tuning spreading speed (up to ~26.8 mm/s) and elongation rate (up to 1192 %) with a volume of only 80 μL. Additionally, we demonstrate the adaptability of E-rsLM fabrication across 30 different substrates, highlighting its versatility. The patterning displays the superimposed efficiency and self-indicated quality, leading to superior conductivity (with time-cost savings of 30.7 % and 13.4 % in heating-cooling cycles, and a nearly 90 % reduction in output resistance). The practical viability of these circuits is further showcased by the assembly of integrated circuits, marking a significant step in expanding LMCs applications beyond laboratory-scale prototypes.
Collapse
Affiliation(s)
- Yi Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Gating Inspired Future Technology Co., Ltd., Xiamen, 361005, China
| | - Yigang Shen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Machinery and Smart Structure, Research Center for Micro-Nano Device and System, College of Engineering, Zhejiang Normal University, Jinhua, 321004, China
| | - Wenli Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Guochao Zeng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Tete Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yilan Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shuli Wang
- Fujian Engineering Research Center for Solid-State Lighting, Department of Electronic Science, School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005, China
| | - Jing Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xu Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Institute of Artificial Intelligence, Xiamen University, Xiamen, 361005, China
- Institute of Electrochemical Science and Engineering, Xiamen University, Xiamen, 361005, China
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| |
Collapse
|
3
|
Wang S, Zhai H, Zhang Q, Hu X, Li Y, Xiong X, Ma R, Wang J, Chang Y, Wu L. Trends in Flexible Sensing Technology in Smart Wearable Mechanisms-Materials-Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:298. [PMID: 39997861 PMCID: PMC11858378 DOI: 10.3390/nano15040298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025]
Abstract
Flexible sensors are revolutionizing our lives as a key component of intelligent wearables. Their pliability, stretchability, and diverse designs enable foldable and portable devices while enhancing comfort and convenience. Advances in materials science have provided numerous options for creating flexible sensors. The core of their application in areas like electronic skin, health medical monitoring, motion monitoring, and human-computer interaction is selecting materials that optimize sensor performance in weight, elasticity, comfort, and flexibility. This article focuses on flexible sensors, analyzing their "sensing mechanisms-materials-applications" framework. It explores their development trajectory, material characteristics, and contributions in various domains such as electronic skin, health medical monitoring, and human-computer interaction. The article concludes by summarizing current research achievements and discussing future challenges and opportunities. Flexible sensors are expected to continue expanding into new fields, driving the evolution of smart wearables and contributing to the intelligent development of society.
Collapse
Affiliation(s)
- Sen Wang
- School of Mechanical Engineering, Yancheng Institute of Technology, Yancheng 224051, China;
| | - Haorui Zhai
- School of Automotive Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (Q.Z.); (Y.L.); (X.X.)
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China;
| | - Qiang Zhang
- School of Automotive Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (Q.Z.); (Y.L.); (X.X.)
| | - Xueling Hu
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (X.H.); (L.W.)
- CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Yujiao Li
- School of Automotive Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (Q.Z.); (Y.L.); (X.X.)
| | - Xin Xiong
- School of Automotive Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (Q.Z.); (Y.L.); (X.X.)
| | - Ruhong Ma
- School of Mechanical Engineering, Yancheng Institute of Technology, Yancheng 224051, China;
| | - Jianlei Wang
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (X.H.); (L.W.)
- CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Ying Chang
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China;
| | - Lixin Wu
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (X.H.); (L.W.)
- CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| |
Collapse
|
4
|
Liu X, Xu H, Li J, Liu Y, Fan H. Review of Liquid Metal Fiber Based Biosensors and Bioelectronics. BIOSENSORS 2024; 14:490. [PMID: 39451703 PMCID: PMC11506175 DOI: 10.3390/bios14100490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
Liquid metal, as a novel material, has become ideal for the fabrication of flexible conductive fibers and has shown great potential in the field of biomedical sensing. This paper presents a comprehensive review of the unique properties of liquid metals such as gallium-based alloys, including their excellent electrical conductivity, mobility, and biocompatibility. These properties make liquid metals ideal for the fabrication of flexible and malleable biosensors. The article explores common preparation methods for liquid metal conductive fibers, such as internal liquid metal filling, surface printing with liquid metal, and liquid metal coating techniques, and their applications in health monitoring, neural interfaces, and wearable devices. By summarizing and analyzing the current research, this paper aims to reveal the current status and challenges of liquid metal conductive fibers in the field of biosensors and to look forward to their development in the future, which will provide valuable references and insights for researchers in the field of biomedical engineering.
Collapse
Affiliation(s)
| | | | | | - Yanqing Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (X.L.); (J.L.)
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (X.L.); (J.L.)
| |
Collapse
|
5
|
Wu T, Ren S, Akram W, Li T, Zhu X, Li X, Niu L, Fan H, Sun Z, Fang J. High-Performance Wearable Joule Heater Derived from Sea-Island Microfiber Nonwoven Fabric. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51565-51574. [PMID: 39276071 DOI: 10.1021/acsami.4c13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
A three-dimensional (3D) hierarchical microfiber bundle-based scaffold integrated with silver nanowires (AgNWs) and porous polyurethane (PU) was designed for the Joule heater via a facile dip-coating method. The interconnected micrometer-sized voids and unique hierarchical structure benefit uniform AgNWs anchored and the formation of a high-efficiency 3D conductive network. As expected, this composite exhibits a superior electrical conductivity of 1586.4 S/m and the best electrothermal conversion performance of 118.6 °C at 2.0 V compared to reported wearable Joule heaters to date. Moreover, the durable microfiber bundle-PU network provides strong mechanical properties, allowing for the stable and durable electrothermal performance of such a composite to resist twisting, bending, abrasion, and washing. Application studies show that this kind of Joule heater is suitable for a wide range of applications, such as seat heating, a heating jacket, personal thermal management, etc.
Collapse
Affiliation(s)
- Tong Wu
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Song Ren
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Wasim Akram
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Tingshan Li
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Xiangyu Zhu
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Xinran Li
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Li Niu
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Haojun Fan
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Zhe Sun
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Jian Fang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| |
Collapse
|
6
|
Lin Z, Qiu X, Cai Z, Li J, Zhao Y, Lin X, Zhang J, Hu X, Bai H. High internal phase emulsions gel ink for direct-ink-writing 3D printing of liquid metal. Nat Commun 2024; 15:4806. [PMID: 38839743 PMCID: PMC11153652 DOI: 10.1038/s41467-024-48906-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
3D printing of liquid metal remains a big challenge due to its low viscosity and large surface tension. In this study, we use Carbopol hydrogel and liquid gallium-indium alloy to prepare a liquid metal high internal phase emulsion gel ink, which can be used for direct-ink-writing 3D printing. The high volume fraction (up to 82.5%) of the liquid metal dispersed phase gives the ink excellent elastic properties, while the Carbopol hydrogel, as the continuous phase, provides lubrication for the liquid metal droplets, ensuring smooth flow of the ink during shear extrusion. These enable high-resolution and shape-stable 3D printing of three-dimensional structures. Moreover, the liquid metal droplets exhibit an electrocapillary phenomenon in the Carbopol hydrogel, which allows for demulsification by an electric field and enables electrical connectivity between droplets. We have also achieved the printing of ink on flexible, non-planar structures, and demonstrated the potential for alternating printing with various materials.
Collapse
Affiliation(s)
- Zewen Lin
- College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Xiaowen Qiu
- College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Zhouqishuo Cai
- College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Jialiang Li
- College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Yanan Zhao
- College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Xinping Lin
- College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Jinmeng Zhang
- College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Xiaolan Hu
- College of Materials, Xiamen University, Xiamen, 361005, PR China.
| | - Hua Bai
- College of Materials, Xiamen University, Xiamen, 361005, PR China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China.
| |
Collapse
|
7
|
Vazquez R, Motovilova E, Winkler SA. Stretchable Sensor Materials Applicable to Radiofrequency Coil Design in Magnetic Resonance Imaging: A Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:3390. [PMID: 38894182 PMCID: PMC11174967 DOI: 10.3390/s24113390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Wearable sensors are rapidly gaining influence in the diagnostics, monitoring, and treatment of disease, thereby improving patient outcomes. In this review, we aim to explore how these advances can be applied to magnetic resonance imaging (MRI). We begin by (i) introducing limitations in current flexible/stretchable RF coils and then move to the broader field of flexible sensor technology to identify translatable technologies. To this goal, we discuss (ii) emerging materials currently used for sensor substrates, (iii) stretchable conductive materials, (iv) pairing and matching of conductors with substrates, and (v) implementation of lumped elements such as capacitors. Applicable (vi) fabrication methods are presented, and the review concludes with a brief commentary on (vii) the implementation of the discussed sensor technologies in MRI coil applications. The main takeaway of our research is that a large body of work has led to exciting new sensor innovations allowing for stretchable wearables, but further exploration of materials and manufacturing techniques remains necessary, especially when applied to MRI diagnostics.
Collapse
Affiliation(s)
- Rigoberto Vazquez
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 10065, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Simone Angela Winkler
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 10065, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
8
|
Ye C, Zhao L, Yang S, Li X. Recent Research on Preparation and Application of Smart Joule Heating Fabrics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309027. [PMID: 38072784 DOI: 10.1002/smll.202309027] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/10/2023] [Indexed: 05/03/2024]
Abstract
Multifunctional wearable heaters have attracted much attention for their effective applications in personal thermal management and medical therapy. Compared to passive heating, Joule heating offers significant advantages in terms of reusability, reliable temperature control, and versatile coupling. Joule-heated fabrics make wearable electronics smarter. This review critically discusses recent advances in Joule-heated smart fabrics, focusing on various fabrication strategies based on material-structure synergy. Specifically, various applicable conductive materials with Joule heating effect are first summarized. Subsequently, different preparation methods for Joule heating fabrics are compared, and then their various applications in smart clothing, healthcare, and visual indication are discussed. Finally, the challenges faced in developing these smart Joule heating fabrics and their possible solutions are discussed.
Collapse
Affiliation(s)
- Chunfa Ye
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Longqi Zhao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Sihui Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiaoyan Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
9
|
Lu G, Ni E, Jiang Y, Wu W, Li H. Room-Temperature Liquid Metals for Flexible Electronic Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304147. [PMID: 37875665 DOI: 10.1002/smll.202304147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/26/2023] [Indexed: 10/26/2023]
Abstract
Room-temperature gallium-based liquid metals (RT-GaLMs) have garnered significant interest recently owing to their extraordinary combination of fluidity, conductivity, stretchability, self-healing performance, and biocompatibility. They are ideal materials for the manufacture of flexible electronics. By changing the composition and oxidation of RT-GaLMs, physicochemical characteristics of the liquid metal can be adjusted, especially the regulation of rheological, wetting, and adhesion properties. This review highlights the advancements in the liquid metals used in flexible electronics. Meanwhile related characteristics of RT-GaLMs and underlying principles governing their processing and applications for flexible electronics are elucidated. Finally, the diverse applications of RT-GaLMs in self-healing circuits, flexible sensors, energy harvesting devices, and epidermal electronics, are explored. Additionally, the challenges hindering the progress of RT-GaLMs are discussed, while proposing future research directions and potential applications in this emerging field. By presenting a concise and critical analysis, this paper contributes to the advancement of RT-GaLMs as an advanced material applicable for the new generation of flexible electronics.
Collapse
Affiliation(s)
- Guixuan Lu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Erli Ni
- The Institute for Advanced Studies of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Weikang Wu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| |
Collapse
|
10
|
Xu G, Huang X, Shi R, Yang Y, Wu P, Zhou J, He X, Li J, Zen Y, Jiao Y, Zhang B, Li J, Zhao G, Liu Y, Huang Y, Wu M, Zhang Q, Yang Z, Yu X. Triboelectric Nanogenerator Enabled Sweat Extraction and Power Activation for Sweat Monitoring. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202310777] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Indexed: 04/02/2025]
Abstract
AbstractWearable sweat sensors can detect and monitor various substances in sweat, providing valuable information for healthcare monitoring and clinical diagnostics. Recent advances in flexible electronic technologies have enabled the development of wearable sweat sensors that can measure sweat rate and biochemical substances in real time, although several challenges remain, such as power management and sweat extraction issues. Here, a passive sweat extraction strategy as well as a self‐powered monitoring system (SEMS) is reported to be designed for sedentary individuals, i.e., elders. The SEMS system comprises a wearable triboelectric nanogenerator (TENG) for sweat extraction, a sweat‐activated battery (SAB) as the integrated power source, carbachol‐loaded iontophoresis electrodes for sweat extraction, microfluidics with biosensors for detecting physiological information in sweat, and near field communication (NFC)‐based wireless microelectronics for data communication, processing, and collection. By tapping the TENG, sedentary people can passively extract sweat based on the iontophoresis process, allowing the sensors to detect biological information in sweat. The good flexibility of the SEMS device enables real‐time and non‐invasive detection of sweat analytes in a wearable format. This system offers a new strategy of sweat collection and analysis for the elderly group, and therefore can help to understand human physiology and personalize health monitoring deeply.
Collapse
Affiliation(s)
- Guoqiang Xu
- Department of Biomedical Engineering City University of Hong Kong Kowloong Tong Hong Kong 999077 China
| | - Xingcan Huang
- Department of Biomedical Engineering City University of Hong Kong Kowloong Tong Hong Kong 999077 China
| | - Rui Shi
- Department of Biomedical Engineering City University of Hong Kong Kowloong Tong Hong Kong 999077 China
| | - Yawen Yang
- Department of Biomedical Engineering City University of Hong Kong Kowloong Tong Hong Kong 999077 China
| | - Pengchen Wu
- Department of Biomedical Engineering City University of Hong Kong Kowloong Tong Hong Kong 999077 China
| | - Jingkun Zhou
- Department of Biomedical Engineering City University of Hong Kong Kowloong Tong Hong Kong 999077 China
- Hong Kong Center for Cerebra‐Cardiovascular Health Engineering Hong Kong Science Park New Territories Hong Kong 999077 China
| | - Xinxin He
- Department of Biomedical Engineering City University of Hong Kong Kowloong Tong Hong Kong 999077 China
| | - Jialin Li
- Department of Biomedical Engineering City University of Hong Kong Kowloong Tong Hong Kong 999077 China
| | - Yuyang Zen
- Department of Biomedical Engineering City University of Hong Kong Kowloong Tong Hong Kong 999077 China
| | - Yanli Jiao
- Department of Biomedical Engineering City University of Hong Kong Kowloong Tong Hong Kong 999077 China
- Hong Kong Center for Cerebra‐Cardiovascular Health Engineering Hong Kong Science Park New Territories Hong Kong 999077 China
| | - Binbin Zhang
- Department of Biomedical Engineering City University of Hong Kong Kowloong Tong Hong Kong 999077 China
- Hong Kong Center for Cerebra‐Cardiovascular Health Engineering Hong Kong Science Park New Territories Hong Kong 999077 China
| | - Jiyu Li
- Department of Biomedical Engineering City University of Hong Kong Kowloong Tong Hong Kong 999077 China
- Hong Kong Center for Cerebra‐Cardiovascular Health Engineering Hong Kong Science Park New Territories Hong Kong 999077 China
| | - Guangyao Zhao
- Department of Biomedical Engineering City University of Hong Kong Kowloong Tong Hong Kong 999077 China
| | - Yiming Liu
- Department of Biomedical Engineering City University of Hong Kong Kowloong Tong Hong Kong 999077 China
| | - Ya Huang
- Department of Biomedical Engineering City University of Hong Kong Kowloong Tong Hong Kong 999077 China
- Hong Kong Center for Cerebra‐Cardiovascular Health Engineering Hong Kong Science Park New Territories Hong Kong 999077 China
| | - Mengge Wu
- Department of Biomedical Engineering City University of Hong Kong Kowloong Tong Hong Kong 999077 China
| | - Qiang Zhang
- Department of Biomedical Engineering City University of Hong Kong Kowloong Tong Hong Kong 999077 China
| | - Zhihui Yang
- Department of Pathology The Affiliated Hospital of Southwest Medical University Luzhou Sichuan 646000 China
| | - Xinge Yu
- Department of Biomedical Engineering City University of Hong Kong Kowloong Tong Hong Kong 999077 China
- Hong Kong Center for Cerebra‐Cardiovascular Health Engineering Hong Kong Science Park New Territories Hong Kong 999077 China
| |
Collapse
|
11
|
Lin S, Zhang L, Cong L. A micro-vibration-driven direct ink write printing method of gallium-indium alloys. Sci Rep 2023; 13:3914. [PMID: 36890208 PMCID: PMC9995487 DOI: 10.1038/s41598-023-31091-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/06/2023] [Indexed: 03/10/2023] Open
Abstract
Combining liquid fluidity and metallic conductivity, gallium-indium (Ga-In) alloys are making a splash in areas such as stretchable electronic circuits and wearable medical devices. Due to high flexibility, direct ink write printing is already widely employed for printing Ga-In alloys. Currently, pneumatic extrusion is the main method of direct ink write printing, but the oxide skin and low viscosity of the Ga-In alloys make it challenging to control after extrusion. This work proposed a method for direct ink write printing of Ga-In alloys utilizing micro-vibration-driven extrusion. Micro-vibration reduces the surface tension of Ga-In alloy droplets and avoids the appearance of random droplets during printing. Under micro-vibration, the nozzle tip pierces the oxide skin to form small droplets which have a high moldability. The droplet growth process is significantly slowed down by optimizing suitable micro-vibration parameters. Therefore, the Ga-In alloy droplets with high moldability can be maintained at the nozzle for a long period, which improves printability. Furthermore, better printing outcomes were obtained with micro-vibrations by choosing the proper nozzle height and printing speed. Experiment results demonstrated the superiority of the method in terms of Ga-In alloys extrusion control. With this method, the printability of the liquid metals is enhanced.
Collapse
Affiliation(s)
- Sheng Lin
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian, 116028, People's Republic of China
| | - Long Zhang
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian, 116028, People's Republic of China.
| | - Liang Cong
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian, 116028, People's Republic of China
| |
Collapse
|
12
|
Kong X, Li H, Wang J, Wang Y, Zhang L, Gong M, Lin X, Wang D. Direct Writing of Silver Nanowire Patterns with Line Width down to 50 μm and Ultrahigh Conductivity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9906-9915. [PMID: 36762969 DOI: 10.1021/acsami.2c22885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Direct writing of one-dimensional nanomaterials with large aspect ratios into customized, highly conductive, and high-resolution patterns is a challenging task. In this work, thin silver nanowires (AgNWs) with a length-to-diameter ratio of 730 are employed as a representative example to demonstrate a potent direct ink writing (DIW) strategy, in which aqueous inks using a natural polymer, sodium alginate, as the thickening agent can be easily patterned with arbitrary geometries and controllable structural features on a variety of planar substrates. With the aid of a quick spray-and-dry postprinting treatment at room temperature, the electrical conductivity and substrate adhesion of the written AgNWs-patterns improve simultaneously. This simple, environment benign, and low-temperature DIW strategy is effective for depositing AgNWs into patterns that are high-resolution (with line width down to 50 μm), highly conductive (up to 1.26 × 105 S/cm), and mechanically robust and have a large alignment order of NWs, regardless of the substrate's hardness, smoothness, and hydrophilicity. Soft electroadhesion grippers utilizing as-manufactured interdigitated AgNWs-electrodes exhibit an increased shear adhesion force of up to 15.5 kPa at a driving voltage of 3 kV, indicating the strategy is very promising for the decentralized and customized manufacturing of soft electrodes for future soft electronics and robotics.
Collapse
Affiliation(s)
- Xiangyi Kong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hejian Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianping Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yangyang Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Liang Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Min Gong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiang Lin
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dongrui Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
13
|
Pozarycki TA, Hwang D, Barron EJ, Wilcox BT, Tutika R, Bartlett MD. Tough Bonding of Liquid Metal-Elastomer Composites for Multifunctional Adhesives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203700. [PMID: 36098240 DOI: 10.1002/smll.202203700] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Liquid metal (LM) composites, which consist of LM droplets dispersed in highly deformable elastomers, have recently gained interest as a multifunctional material for soft robotics and electronics. The incorporation of LM into elastic solids allows for unique combinations of material properties such as high stretchability with thermal and electrical conductivity comparable to metals. However, it is currently a challenge to incorporate LM composites into integrated systems consisting of diverse materials and components due to a lack of adhesion control. Here, a chemical anchoring methodology to increase adhesion of LM composites to diverse substrates is presented. The fracture energy increases up to 100× relative to untreated surfaces, with values reaching up to 7800 J m-2 . Furthermore, the fracture energy, tensile modulus, and thermal conductivity can be tuned together by controlling the microstructure of LM composites. Finally, the bonding technique is used to integrate LM composites with functional electronic components without encapsulation or clamping, allowing for extreme deformations while maintaining exceptional thermal and electrical conductivity. These findings can accelerate the adoption of LM composites into complex soft robotic and electronic systems where strong, reliable bonding between diverse materials and components is required.
Collapse
Affiliation(s)
- Tyler A Pozarycki
- Mechanical Engineering, Soft Materials and Structures Lab, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Dohgyu Hwang
- Mechanical Engineering, Soft Materials and Structures Lab, Virginia Tech, Blacksburg, VA, 24061, USA
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Edward J Barron
- Mechanical Engineering, Soft Materials and Structures Lab, Virginia Tech, Blacksburg, VA, 24061, USA
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Brittan T Wilcox
- Mechanical Engineering, Soft Materials and Structures Lab, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ravi Tutika
- Mechanical Engineering, Soft Materials and Structures Lab, Virginia Tech, Blacksburg, VA, 24061, USA
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Michael D Bartlett
- Mechanical Engineering, Soft Materials and Structures Lab, Virginia Tech, Blacksburg, VA, 24061, USA
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
14
|
Shi W, Wang Z, Song H, Chang Y, Hou W, Li Y, Han G. High-Sensitivity and Extreme Environment-Resistant Sensors Based on PEDOT:PSS@PVA Hydrogel Fibers for Physiological Monitoring. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35114-35125. [PMID: 35862578 DOI: 10.1021/acsami.2c09556] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The rapid development of flexible electronic devices has caused a boom in researching flexible sensors based on hydrogels, but most of the flexible sensors can only work at room temperature, and they are difficult to adapt to extremely cold or dry environments. Here, the flexible hydrogel fibers (PEDOT:PSS@PVA) with excellent resistance to extreme environments have been prepared by adding glycerin (GL) to the mixture of poly(vinyl alcohol) (PVA) and poly 3,4-dioxyethylene thiophene:polystyrene sulfonic acid (PEDOT:PSS) because GL molecules can form dynamic hydrogen bonds with an elastic matrix of PVA molecules. It is found that the prepared sensor exhibits very good flexibility and mechanical strength, and the ultimate tensile strength can reach up to 13.76 MPa when the elongation at break is 519.9%. Furthermore, the hydrogel fibers possess excellent water retention performance and low-temperature resistance. After being placed in the atmospheric environment for 1 year, the sensor still shows good flexibility. At a low temperature of -60 °C, the sensor can stably endure 1000 repeated stretches and shrinks (10% elongation). In addition to the response to a large strain, this fiber sensor can also detect extremely small strains as low as 0.01%. It is proved that complex human movements such as knuckle bending, vocalization, pulse, and others can be monitored perfectly by this fiber sensor. The above results mean that the PEDOT:PSS@PVA fiber sensor has great application prospects in physiological monitoring.
Collapse
|
15
|
Shak Sadi M, Kumpikaitė E. Advances in the Robustness of Wearable Electronic Textiles: Strategies, Stability, Washability and Perspective. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2039. [PMID: 35745378 PMCID: PMC9229712 DOI: 10.3390/nano12122039] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023]
Abstract
Flexible electronic textiles are the future of wearable technology with a diverse application potential inspired by the Internet of Things (IoT) to improve all aspects of wearer life by replacing traditional bulky, rigid, and uncomfortable wearable electronics. The inherently prominent characteristics exhibited by textile substrates make them ideal candidates for designing user-friendly wearable electronic textiles for high-end variant applications. Textile substrates (fiber, yarn, fabric, and garment) combined with nanostructured electroactive materials provide a universal pathway for the researcher to construct advanced wearable electronics compatible with the human body and other circumstances. However, e-textiles are found to be vulnerable to physical deformation induced during repeated wash and wear. Thus, e-textiles need to be robust enough to withstand such challenges involved in designing a reliable product and require more attention for substantial advancement in stability and washability. As a step toward reliable devices, we present this comprehensive review of the state-of-the-art advances in substrate geometries, modification, fabrication, and standardized washing strategies to predict a roadmap toward sustainability. Furthermore, current challenges, opportunities, and future aspects of durable e-textiles development are envisioned to provide a conclusive pathway for researchers to conduct advanced studies.
Collapse
Affiliation(s)
| | - Eglė Kumpikaitė
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentų Str. 56, LT-51424 Kaunas, Lithuania;
| |
Collapse
|