1
|
Que M, Xu Y, Wu Q, Chen J, Gao L, Liu SF. Application of advanced quantum dots in perovskite solar cells: synthesis, characterization, mechanism, and performance enhancement. MATERIALS HORIZONS 2025; 12:2467-2502. [PMID: 39820201 DOI: 10.1039/d4mh01478b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Quantum dots have garnered significant interest in perovskite solar cells (PSCs) due to their stable chemical properties, high carrier mobility, and unique features such as multiple exciton generation and excellent optoelectronic characteristics resulting from quantum confinement effects. This review explores quantum dot properties and their applications in photoelectronic devices, including their synthesis and deposition processes. This sets the stage for discussing their diverse roles in the carrier transport, absorber, and interfacial layers of PSCs. We thoroughly examine advances in defect passivation, energy band alignment, perovskite crystallinity, device stability, and broader light absorption. In particular, novel approaches to enhance the photoelectric conversion efficiency (PCE) of quantum dot-enhanced perovskite solar cells are highlighted. Lastly, based on a comprehensive overview, we provide a forward-looking outlook on advanced quantum dot fabrication and its impact on enhancing the photovoltaic performance of solar cells. This review offers insights into fundamental mechanisms that endorse quantum dots for improved PSC performance, paving the way for further development of quantum dot-integrated PSCs.
Collapse
Affiliation(s)
- Meidan Que
- School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yuan Xu
- School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qizhao Wu
- School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jin Chen
- School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Lili Gao
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Shengzhong Frank Liu
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
- CNNP Optoelectronics Technology, 2828 Canghai Road, Lingang, Shanghai, 201306, P. R. China
| |
Collapse
|
2
|
Ding J, Liu X, Zhou S, Huang J, Li Y, Gao Y, Dong C, Yue G, Tan F. In-situ free-standing inorganic 2D Cs 2PbI 2Cl 2 nanosheets for efficient self-powered photodetectors with carbon electrode. J Colloid Interface Sci 2024; 654:1356-1364. [PMID: 37918095 DOI: 10.1016/j.jcis.2023.10.126] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
Inorganic two-dimensional (2D) perovskites possess excellent thermal stability and high charge mobility, making them an attractive choice for stable optoelectronic devices such as photodetectors (PDs). The formation of an appropriate inorganic 2D perovskite structure is of great importance to efficient PDs, especially to that of planar self-powered photovoltaic PDs featuring perpendicular charge transport channels. Herein, we implemented morphological engineering on wide bandgap inorganic 2D perovskite, Cs2PbI2Cl2, demonstrating a successful preparation of in-situ free-standing nanosheets structure with proper charge channels for photovoltaic type self-powered PDs. Compared with its counterpart with a nanoblock morphology, the 2D nanosheet Cs2PbI2Cl2 film exhibits enhanced charge mobility and purified Ruddlesden-Popper phase that can withstand high-energy electron beam radiation, accelerated thermal aging and long-term shelf storage. Sandwiching Cs2PbI2Cl2 nanosheet film in between tin oxide (SnO2) and polythiophene (P3HT) as electron and hole acceptors, respectively, the constructed photovoltaic type structure exhibits effective dissociation of excitons at the cascade type-II interface. The nanosheets enable lower dark current and more efficient charge collection than the nanoblock structure. As a result, the self-powered photodetectors with 2D Cs2PbI2Cl2 nanosheets deliver an outstanding responsivity of 698 mW/cm2 and a detectivity of 8.6×1012 Jones. The stable PDs can be applied to monitor ultraviolet irradiation in real outdoor conditions. Our work demonstrates the significant role of morphology tuning of 2D inorganic perovskite in stable, cost-effective and efficient photodetectors.
Collapse
Affiliation(s)
- Jianfeng Ding
- Key Laboratory of Photovoltaic Materials, School of Future Technology, Henan University, Kaifeng 475004, PR China
| | - Xinying Liu
- Key Laboratory of Photovoltaic Materials, School of Future Technology, Henan University, Kaifeng 475004, PR China
| | - Shun Zhou
- Key Laboratory of Photovoltaic Materials, School of Future Technology, Henan University, Kaifeng 475004, PR China
| | - Junyi Huang
- Key Laboratory of Photovoltaic Materials, School of Future Technology, Henan University, Kaifeng 475004, PR China
| | - Yaqing Li
- Key Laboratory of Photovoltaic Materials, School of Future Technology, Henan University, Kaifeng 475004, PR China
| | - Yueyue Gao
- Key Laboratory of Photovoltaic Materials, School of Future Technology, Henan University, Kaifeng 475004, PR China
| | - Chen Dong
- Key Laboratory of Photovoltaic Materials, School of Future Technology, Henan University, Kaifeng 475004, PR China
| | - Gentian Yue
- Key Laboratory of Photovoltaic Materials, School of Future Technology, Henan University, Kaifeng 475004, PR China
| | - Furui Tan
- Key Laboratory of Photovoltaic Materials, School of Future Technology, Henan University, Kaifeng 475004, PR China.
| |
Collapse
|
3
|
Zhang H, Song Y, Sun Y, Huang S, Cao Y. Highly efficient and durable planar carbon-based perovskite solar cells enabled by polystyrene modified hole-transporting layers. J Colloid Interface Sci 2023; 652:463-469. [PMID: 37604057 DOI: 10.1016/j.jcis.2023.08.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
The efficiency and durability of perovskite solar cells (PSCs) are closely related to the property and stability of each functional layer involved in device. Owing to the excellent hole transport properties, the additive-doped Spiro-OMeTAD (2,2',7,7'-tetrakis (N,N-di-p-methoxyphenylamine) 9,9'-spirobifluorene) has become an excellent hole-transporting material for obtaining highly efficient PSCs. However, the hygroscopic nature of additives and the pinholes caused by poor film-forming capability inevitably impair the performance and long-term stability of Spiro-OMeTAD and the resulting PSCs. In this study, the hydrophobic polymer polystyrene (PS) was incorporated to improve the hydrophobicity and film-forming capability of the additive-doped Spiro-OMeTAD films. Based on the PS-modified Spiro-OMeTAD and carbon electrodes, the derived planar carbon-based PSCs exhibited significantly enhanced long-term stability, which can maintain 92% of its initial efficiency after aging for 2500 h under ambient atmosphere without encapsulation. In addition, the PS-modified Spiro-OMeTAD exhibited improved morphology with reduced pinholes, contributing to significantly enhanced interfacial carrier transport. Finally, a champion power conversion efficiency of 21.06% was obtained, which is one of the highest efficiencies reported for the planar carbon-based PSCs to date.
Collapse
Affiliation(s)
- Huiyin Zhang
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science & Technology University, Beijing 100192, PR China.
| | - Yaoyao Song
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science & Technology University, Beijing 100192, PR China
| | - Yunzhao Sun
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science & Technology University, Beijing 100192, PR China
| | - Shixian Huang
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science & Technology University, Beijing 100192, PR China
| | - Yang Cao
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science & Technology University, Beijing 100192, PR China
| |
Collapse
|
4
|
Zhou Y, Yang J, Luo X, Li Y, Qiu Q, Xie T. Selection, Preparation and Application of Quantum Dots in Perovskite Solar Cells. Int J Mol Sci 2022; 23:9482. [PMID: 36012746 PMCID: PMC9409050 DOI: 10.3390/ijms23169482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
As the third generation of new thin-film solar cells, perovskite solar cells (PSCs) have attracted much attention for their excellent photovoltaic performance. Today, PSCs have reported the highest photovoltaic conversion efficiency (PCE) of 25.5%, which is an encouraging value, very close to the highest PCE of the most widely used silicon-based solar cells. However, scholars have found that PSCs have problems of being easily decomposed under ultraviolet (UV) light, poor stability, energy level mismatch and severe hysteresis, which greatly limit their industrialization. As unique materials, quantum dots (QDs) have many excellent properties and have been widely used in PSCs to address the issues mentioned above. In this article, we describe the application of various QDs as additives in different layers of PSCs, as luminescent down-shifting materials, and directly as electron transport layers (ETL), light-absorbing layers and hole transport layers (HTL). The addition of QDs optimizes the energy level arrangement within the device, expands the range of light utilization, passivates defects on the surface of the perovskite film and promotes electron and hole transport, resulting in significant improvements in both PCE and stability. We summarize in detail the role of QDs in PSCs, analyze the perspective and associated issues of QDs in PSCs, and finally offer our insights into the future direction of development.
Collapse
Affiliation(s)
- Yankai Zhou
- Engineering Research Center for Hydrogen Energy Materials and Devices, College of Rare Earths, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou 341000, China
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou 341000, China
| | - Jiayan Yang
- Engineering Research Center for Hydrogen Energy Materials and Devices, College of Rare Earths, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou 341000, China
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou 341000, China
| | - Xingrui Luo
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou 341000, China
| | - Yingying Li
- Engineering Research Center for Hydrogen Energy Materials and Devices, College of Rare Earths, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou 341000, China
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou 341000, China
| | - Qingqing Qiu
- Engineering Research Center for Hydrogen Energy Materials and Devices, College of Rare Earths, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou 341000, China
| | - Tengfeng Xie
- College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
5
|
Zhou Y, Luo X, Yang J, Qiu Q, Xie T, Liang T. Application of Quantum Dot Interface Modification Layer in Perovskite Solar Cells: Progress and Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2102. [PMID: 35745441 PMCID: PMC9228081 DOI: 10.3390/nano12122102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023]
Abstract
Perovskite solar cells (PSCs) are currently attracting a great deal of attention for their excellent photovoltaic properties, with a maximum photoelectric conversion efficiency (PCE) of 25.5%, comparable to that of silicon-based solar cells. However, PSCs suffer from energy level mismatch, a large number of defects in perovskite films, and easy decomposition under ultraviolet (UV) light, which greatly limit the industrial application of PSCs. Currently, quantum dot (QD) materials are widely used in PSCs due to their properties, such as quantum size effect and multi-exciton effect. In this review, we detail the application of QDs as an interfacial layer to PSCs to optimize the energy level alignment between two adjacent layers, facilitate charge and hole transport, and also effectively assist in the crystallization of perovskite films and passivate defects on the film surface.
Collapse
Affiliation(s)
- Yankai Zhou
- Engineering Research Center for Hydrogen Energy Materials and Devices, College of Rare Earths, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou 341000, China; (Y.Z.); (J.Y.); (T.L.)
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou 341000, China;
| | - Xingrui Luo
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou 341000, China;
| | - Jiayan Yang
- Engineering Research Center for Hydrogen Energy Materials and Devices, College of Rare Earths, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou 341000, China; (Y.Z.); (J.Y.); (T.L.)
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou 341000, China;
| | - Qingqing Qiu
- Engineering Research Center for Hydrogen Energy Materials and Devices, College of Rare Earths, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou 341000, China; (Y.Z.); (J.Y.); (T.L.)
| | - Tengfeng Xie
- College of Chemistry, Jilin University, Changchun 130012, China;
| | - Tongxiang Liang
- Engineering Research Center for Hydrogen Energy Materials and Devices, College of Rare Earths, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou 341000, China; (Y.Z.); (J.Y.); (T.L.)
| |
Collapse
|