1
|
Fan Y, Wang S, Huang S, Tian X. Liquid-like Surface Chemistry Meets Structured Textures: A Synergistic Approach to Advanced Repellent Materials. ACS NANO 2025; 19:18929-18946. [PMID: 40365790 DOI: 10.1021/acsnano.5c01630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Liquid-repellent surfaces have advanced significantly over two decades. While super-liquid-repellent surfaces with micro/nano-textures dominate the field, liquid-like smooth surfaces (LLSS) grafted with highly flexible molecule chains offer a compelling alternative, enabling near-ideal dynamic droplet repellency with ultralow contact angle hysteresis (CAH). Prior LLSS studies have focused on optimizing molecular structures, grafting densities, and mechanical stability, enabling applications in anti-fouling, liquid harvesting, and drag reduction. However, innovation challenges and performance bottlenecks hinder practical scalability. This review highlights a transformative approach developed in recent years: integrating liquid-like surface chemistry with structured surfaces to overcome existing limitations. We outline the key requirements for achieving liquid-like surfaces, their structure-related features and unique interface properties including low CAH, reduced adhesion, enhanced slippage, and nucleation inhibition. By synergizing liquid-like chemistry and surface textures, we categorize pioneering works into application-driven areas such as microscopic residue suppression, enhanced droplet mobility, optimized membrane separation, sustainable fabrics and condensation heat transfer. This composite strategy not only deepens fundamental understanding of liquid-like wetting mechanisms but also broadens real-world applicability. We conclude with perspectives on future challenges and opportunities, positioning this promising material system as a frontier in functional interfacial materials.
Collapse
Affiliation(s)
- Yue Fan
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuai Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510006, China
| | - Shilin Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510006, China
| | - Xuelin Tian
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
2
|
Lai Z, Wang J, Benmeddour A, Song N, Liu G. Hygroscopic Polymer Monolayers with Ultralow Ice Adhesion Strength: Investigating Factors Influencing Ice Shedding Performance. ACS APPLIED MATERIALS & INTERFACES 2025; 17:30044-30053. [PMID: 40350601 DOI: 10.1021/acsami.5c02389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Surface-grafted hygroscopic polymer monolayers, lubricated by unfrozen water at subzero temperatures, have previously reduced ice adhesion strength (τ) on glass by up to 4-fold at -20 °C. In this study, we employ a different initiator system for surface-initiated atom transfer radical polymerization, enabling precise control over initiator and polymer grafting densities. Monolayer thickness is tuned via polymerization time and monomer concentration, and a novel method is introduced for its measurement. Systematic variation of coating type, thickness, and grafting density reveals an optimal formulation that lowers τ by 33 ± 4 times at -20 °C, an unprecedented performance for hygroscopic monolayers. These results highlight the strong potential of such coatings for ice shedding and inform the design of self-replenishing ice-shedding surfaces.
Collapse
Affiliation(s)
- Ziruo Lai
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, Canada K7L 3N6
| | - Jian Wang
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, Canada K7L 3N6
| | - Ali Benmeddour
- Aerospace Research Center, National Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario, Canada K1A 0R6
| | - Naiheng Song
- Aerospace Research Center, National Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario, Canada K1A 0R6
| | - Guojun Liu
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, Canada K7L 3N6
| |
Collapse
|
3
|
Ospina C, Ibáñez-Ibáñez PF, Tagliaro I, Stendardo L, Tosatti S, Antonini C. Low ice adhesion on soft surfaces: Elasticity or lubrication effects? J Colloid Interface Sci 2025; 677:494-503. [PMID: 39154442 DOI: 10.1016/j.jcis.2024.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
HYPOTHESIS Soft materials are promising candidates for designing passive de-icing systems. It is unclear whether low adhesion on soft surfaces is due to elasticity or lubrication, and how these properties affect the ice detachment mechanism. This study presents a systematic analysis of ice adhesion on soft materials with different lubricant content to better understand the underpinning interaction. EXPERIMENTS The wetting and mechanical properties of soft polydimethylsiloxane with different lubricant content were thoroughly characterized by contact angle, AFM indentation, and rheology measurements. The collected information was used to understand the relationship with the ice adhesion results, obtained by using different ice block sizes. FINDINGS Three different de-icing mechanisms were identified: (i) single detachment occurs when small ice blocks are considered, and the ice completely detaches in a single event. In the case of larger ice blocks, the reattachment of the ice block is promoted by either: (ii) stick-slip or, (iii) interfacial slippage, depending on the lubricant content. It was confirmed that the ice adhesion strength not only depends on material properties but also on experimental conditions, such as the ice dimensions. Moreover, differently than on hard surfaces, where wetting primarily determines the icephobic performance, also elasticity and lubrication should be considered on soft surfaces.
Collapse
Affiliation(s)
- Catalina Ospina
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy
| | - Pablo F Ibáñez-Ibáñez
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy; Department of Applied Physics, University of Granada, Av. de Fuente Nueva, s/n, 18071 Granada, Spain
| | - Irene Tagliaro
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy.
| | - Luca Stendardo
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy
| | | | - Carlo Antonini
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy.
| |
Collapse
|
4
|
Ospina C, Ibáñez-Ibáñez PF, Tagliaro I, Stendardo L, Tosatti S, Antonini C. Withdrawn: Low ice adhesion on soft surfaces: Elasticity or lubrication effects? J Colloid Interface Sci 2024; 676:1118. [PMID: 39111122 DOI: 10.1016/j.jcis.2024.07.110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 09/19/2024]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.
Collapse
Affiliation(s)
- Catalina Ospina
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125, Milan, Italy
| | - Pablo F Ibáñez-Ibáñez
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125, Milan, Italy; Department of Applied Physics, University of Granada, Av. de Fuente Nueva, s/n, 18071, Granada, Spain
| | - Irene Tagliaro
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125, Milan, Italy.
| | - Luca Stendardo
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125, Milan, Italy
| | | | - Carlo Antonini
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125, Milan, Italy.
| |
Collapse
|
5
|
Wang Y, Zhang K, Cui X, Zhao Z, Wang Z, Liu G, Zhang Y, Zhu Y, Chen J, Sun S, Liu X, Chen H. A Transparent Photo/Electrothermal Composite Coating with Liquid-like Slippery Property for All-Day Anti-/De-Icing. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39069698 DOI: 10.1021/acsami.4c03683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
A photo/electrothermal surface can convert sunlight and electricity into heat to solve icing problems. The combination of active photo/electrothermal surfaces with passive slippery surfaces provides a highly efficient strategy for all-day anti/deicing. However, the lack of transparency remains a primary impediment to the widespread application of these anti-icing measures in photovoltaics, windshields, and other fields. Herein, we report a bilayer transparent photo/electrothermal coating with a liquid-like slippery property for all-day anti/deicing. The prepared coating exhibits ultraslippery, low ice adhesion, and enhanced stability properties through covalent grafting of polydimethylsiloxane (PDMS) brushes in a cross-linked skeleton of epoxy. Moreover, the coating demonstrates a visible transmittance of up to 77% and effectively absorbs ultraviolet and near-infrared light due to the addition of ultraviolet and infrared absorbers, resulting in a temperature increase under sun illumination. The bottom indium tin oxide layer is fabricated to provide the composite coating with electrothermal capability, so that it can achieve all-weather deicing. The coupling of photo/electrothermal and slippery properties can promote the rapid removal of grown ice in a short time. The slippery properties and their exceptional durability under mechanical, optical, and thermal conditions render the composite coatings highly promising for engineering applications.
Collapse
Affiliation(s)
- Yamei Wang
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Kaiteng Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Xianxian Cui
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Zehui Zhao
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
- Key Laboratory of Icing and Anti/De-icing, China Aerodynamics Research and Development Center, Mianyang, Sichuan 621000, China
| | - Zelinlan Wang
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Guang Liu
- School of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
| | - Yi Zhang
- Group of Biomimetic Smart Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences & Shandong Energy Institute, Songling Road 189, Qingdao 266101, China
| | - Yantong Zhu
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Jichen Chen
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Shize Sun
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Xiaolin Liu
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Huawei Chen
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
6
|
Yan W, Li T, Zhang Y, Lin Y, Lan X, Wu J. Thermomechanically Resilient Polyionic Elastomers with Enhanced Anti-Icing Performances. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32693-32701. [PMID: 38873805 DOI: 10.1021/acsami.4c04501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Anti-icing gels inhibit ice formation and accretion; however, current iterations face prevalent drawbacks such as poor strength, weak substrate adhesion, and limited anti-icing properties. Herein, we propose a novel approach to address these challenges by developing a thermomechanical robust polyionic elastomer (PIE) with enhanced anti-icing properties. The PIE surface exhibits an icing delay time up to 5400 s and remains frost-free after exposure to -10 °C for 3.5 h, attributed to the inhibitory effect on ice formation by ions from ILs and the polyelectrolyte network. Moreover, the PIE exhibits remarkable anti-icing durability, with ice adhesion strengths below 35 kPa after undergoing 30 icing/deicing cycle tests at -20 °C. Following sandpaper abrasion (300 cycles), scratching, and heat treatment (100 °C, 16 h), the adhesion strength remains ca. 20 kPa, highlighting its resilience under various thermal and mechanical conditions. This exceptional durability is attributed to the low volatility of the IL and the robust ionic interactions within the PIE network. Furthermore, the PIE demonstrates favorable self-healing properties and strong substrate adhesion in both low-temperature and ambient environments, facilitated by the abundance of hydrogen bonds and electrostatic forces within PIE. This work presents an innovative approach to developing high-performance, durable, and robust anti-icing materials with potential implications across various fields.
Collapse
Affiliation(s)
- Weiwei Yan
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- Key Laboratory of Marine Advanced Materials and Applied Technology, Ningbo Institute of Materials and Technology, Chinese Academy of Sciences, Ningbo 315201, China
| | - Tong Li
- Key Laboratory of Marine Advanced Materials and Applied Technology, Ningbo Institute of Materials and Technology, Chinese Academy of Sciences, Ningbo 315201, China
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Yi Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- Key Laboratory of Marine Advanced Materials and Applied Technology, Ningbo Institute of Materials and Technology, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yanwen Lin
- Department of Physics, Research Institute and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Xijian Lan
- Key Laboratory of Marine Advanced Materials and Applied Technology, Ningbo Institute of Materials and Technology, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jianyang Wu
- Department of Physics, Research Institute and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| |
Collapse
|
7
|
Zhang A, Yang H, Liu C, Yang J, Yao Y, Zhang W, Pan R, Zhuo Y, Ding J, Hu R, Xue M, Chen P, Gong Y. Icephobic Durability of Molecular Brush-Structured PDMS Soft Coatings. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38619108 DOI: 10.1021/acsami.3c18900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The accumulation of ice can pose numerous inconveniences and potential hazards, profoundly affecting both human productivity and daily life. To combat the challenges posed by icing, extensive research efforts have been dedicated to the development of low-ice adhesion surfaces. In this study, we harness the power of molecular dynamics simulations to delve into the intricate dynamics of polymer chains and their role in determining the modulus of the material. We present a novel strategy to prepare ultralow-modulus poly(dimethylsiloxane) (PDMS) elastomers with a molecular brush configuration as icephobic materials. The process involves grafting monohydride-terminated PDMS (H-PDMS) as side chains onto backbone chain PDMS with pendant vinyl functional groups to yield a molecular brush structure. The segments of this polymer structure effectively restrict interchain entanglement, thereby rendering a lower modulus compared to traditional linear structures at an equivalent cross-linking density. The developed soft coating exhibits a remarkably ultralow ice adhesion strength of 13.1 ± 1.1 kPa. Even after enduring 50 cycles of icing and deicing, the ice adhesion strength of this coating steadfastly stayed below 16 kPa, showing no notable increase. Importantly, the molecular brush coating applied to glass demonstrated an impressive light transmittance of 92.1% within the visible light spectrum, surpassing the transmittance of bare glass, which was measured at 91.3%. This icephobic coating with exceptional light transmittance offers a wide range of applications and holds significant potential as a practical icephobic material.
Collapse
Affiliation(s)
- Awang Zhang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, People's Republic of China
| | - Heng Yang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, People's Republic of China
| | - Chao Liu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, People's Republic of China
| | - Jihua Yang
- Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Yunle Yao
- Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Wei Zhang
- Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Rui Pan
- Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Yizhi Zhuo
- Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Jianjun Ding
- Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Rui Hu
- Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Meng Xue
- Guangdong Banggu Film Coatings Innovation Academy Co., Ltd, Nanxiong 512400, People's Republic of China
| | - Peng Chen
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, People's Republic of China
| | - Yi Gong
- Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| |
Collapse
|
8
|
Weng W, Zheng X, Tenjimbayashi M, Watanabe I, Naito M. De-icing performance evolution with increasing hydrophobicity by regulating surface topography. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2334199. [PMID: 38572412 PMCID: PMC10989202 DOI: 10.1080/14686996.2024.2334199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
It is of great significance to grasp the role of surface topography in de-icing, which however remains unclear yet. Herein, four textured surfaces are developed by regulating surface topography while keeping surface chemistry and material constituents same. Specifically, nano-textures are maintained and micro-textures are gradually enlarged. The resultant ice adhesion strength is proportional to a topography parameter, i.e. areal fraction of the micro-textures, owing to the localized bonding strengthening, which is verified by ice detachment simulation using finite element method. Moreover, the decisive topography parameter is demonstrated to be determined by the interfacial strength distribution between ice and test surface. Such parameters vary from paper to paper due to different interfacial strength distributions corresponding to respective situations. Furthermore, since hydrophobic and de-icing performance may rely on different topography parameters, there is no certain relationship between hydrophobicity and de-icing.
Collapse
Affiliation(s)
- Wei Weng
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Xiaoyang Zheng
- Center for Basic Research on Materials, National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Mizuki Tenjimbayashi
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Ikumu Watanabe
- Center for Basic Research on Materials, National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Masanobu Naito
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), Tsukuba, Japan
| |
Collapse
|
9
|
Zhang Y, Wang L, Zhao X, Yang H, Liu J, Wang J. A simple fabrication of liquid-like polydimethylsiloxane coating for resisting ice adhesion. J Chem Phys 2024; 160:084703. [PMID: 38391021 DOI: 10.1063/5.0188199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
The rapid realization of efficient anti-icing coatings on diverse substrates is of vital value for practical applications. However, current approaches for rapid preparations of anti-icing coatings are still deficient regarding their surface universality and accessibility. Here, we report a simple processing approach to rapidly form icephobic liquid-like polydimethylsiloxane (PDMS) brushes on various substrates, including metals, ceramics, glass, and plastics. A poly(dimethylsiloxane), trimethoxysilane is applied as a reactant under the catalysis of a minimal amount of acid formed by hydrolysis of dichlorodimethylsilane. With such an advantage, this approach is approved to be applicable of coating metal surfaces with less corrosion. The distinctive flexibility of the PDMS chains provides a liquid-like property to the coating showing low contact angle hysteresis and ice adhesion strength. Notably, the ice adhesion strength remains similar across a wide temperature window, from -70 to -10 °C, with a value of 18.4 kPa. The PDMS brushes demonstrate perfect capability for resisting acid and alkali corrosions, ultra-violet degradation, and even tens of icing/deicing cycles. Moreover, the liquid-like coating can also form at supercooling conditions, such as -20 °C, and shows an outstanding anti-icing/deicing performance, which meets the in situ coating reformation requirement under extreme conditions when it is damaged. This instantly forming anti-icing material will benefit from resisting instantaneous ice accretion on surfaces under extremely cold conditions.
Collapse
Affiliation(s)
- Yixuan Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Lei Wang
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xueying Zhao
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Huige Yang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Jie Liu
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jianjun Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
10
|
Guo X, Di Y, Liang Q, Li P, Lv J, Tian Y, Li Q, Jiang L, Xu C, Zhang Z. Inorganic-Organic Silica/PDMS Nanocomposite Antiadhesive Coating with Ultrahigh Hardness and Thermal Stability. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17245-17255. [PMID: 36952589 DOI: 10.1021/acsami.3c00989] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Antiadhesive surfaces have been gaining continuous attention, because of the scientific and industrial significance. Slippery surfaces and antismudge coatings with antiadhesive behavior have been readily designed and prepared. However, improving robustness of the surfaces, especially the simultaneous demonstration of features of high hardness, excellent adhesion to different substrates, and high thermal stability, is constantly challenging. Herein, we present a silica/polydimethylsiloxane (PDMS) nanocomposite coating (SPNC), wherein silica acts as a consecutive phase and nanophased PDMS is covalently embedded. The nanoconfined PDMS phase exhibits enhanced thermal stability and endows SPNC with slippery behavior; meanwhile, enrichment of PDMS on the surface renders a gradient composition of the coating. Accordingly, the inorganic-organic SPNC simultaneously displays a high nanoindentation hardness of 3.07 GPa and a pencil hardness over 9H, outstanding thermal stability of the slippery performance up to 400 °C, and excellent adhesion strength to different substrates. Additionally, SPNC exhibits high optical transparency, flexibility, resistance to bacterial clone, and chemical corrosion. With the scalable fabrication process, it can be envisioned that the antiadhesive coating with unprecedented comprehensive merits in this work has significant potentials for large-area applications, especially under severe service environments.
Collapse
Affiliation(s)
- Xiang Guo
- Key Laboratory of Science and Technology on High-Tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Youyu Di
- AML, CNMM, Department of Engineering Mechanics, State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, People's Republic of China
| | - Qianying Liang
- Key Laboratory of Science and Technology on High-Tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Pengfei Li
- Key Laboratory of Science and Technology on High-Tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jianyong Lv
- CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Ye Tian
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Qunyang Li
- AML, CNMM, Department of Engineering Mechanics, State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, People's Republic of China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Research Institute for Frontier Science, Beihang University, Beijing 100191, People's Republic of China
| | - Caihong Xu
- Key Laboratory of Science and Technology on High-Tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zongbo Zhang
- Key Laboratory of Science and Technology on High-Tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
11
|
Liang H, Zhang Z, Liu Y, Ye M, Hu C, Huang Y. Self-healable and transparent PDMS- g-poly(fluorinated acrylate) coating with ultra-low ice adhesion strength for anti-icing applications. Chem Commun (Camb) 2023; 59:3293-3296. [PMID: 36843530 DOI: 10.1039/d2cc05834k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The high ice adhesion strength (τ) and low adhesion of lubricant-free slippery polymers have restricted their applications. We synthesized polysiloxane-g-fluorinated acrylate polymer with a branched structure, anchored groups and dynamic cross-linked network, features imparting increased chain segment slipperiness and self-healability. The coating showed a low τ (6 kPa), strong adhesion and prolonged life.
Collapse
Affiliation(s)
- Hengfei Liang
- State Key Laboratory of Environmental-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China. .,School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Zihong Zhang
- State Key Laboratory of Environmental-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China. .,School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Ying Liu
- State Key Laboratory of Environmental-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China. .,School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Min Ye
- State Key Laboratory of Environmental-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China. .,School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Chengyao Hu
- School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Yawen Huang
- State Key Laboratory of Environmental-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
12
|
Ha Z, Lei L, Zhou M, Xia Y, Chen X, Mao P, Fan B, Shi S. Bio-Based Waterborne Polyurethane Coatings with High Transparency, Antismudge and Anticorrosive Properties. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7427-7441. [PMID: 36696452 DOI: 10.1021/acsami.2c21525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Green and environment-friendly preparation are of the utmost relevance to the development of transparent antismudge coatings. To prepare a waterborne polyurethane (WPU) coating with antismudge property, it is challenging to balance the stability of dispersion and the antismudge property of coating. Herein, we prepare a transparent bio-based WPU coating grafted with a minor proportion of poly(dimethylsiloxane) (WPU-g-PDMS) using renewable castor oil, monocarbinol-terminated PDMS, hexamethylene diisocyanate trimer, and 2,2-bis(hydroxymethyl)propionic acid as raw materials. Effects of the dosage of monocarbinol-terminated PDMS, the curing temperature, and the curing time on the antismudge performance were studied. Results showed that rigorous stirring (3000 rpm) is necessary to obtain a stable WPU-g-PDMS dispersion with a storage time longer than 6 months. A high curing temperature (>160 °C) and a period of curing time (>1 h) are indispensable to obtain the excellent antismudge property because they would facilitate the grafted low-surface-tension PDMS chains to migrate from the interior to the coating surface. The facts that simulated contaminated liquids such as water, HCl solution, NaOH solution, artificial blood, and tissue fluid could slide off easily and cleanly, and marker ink lined on the coating surface could shrink, indicated that the WPU-g-PDMS coating has good antismudge properties, which could be self-compensated shortly after deterioration. Due to the high cross-linking degree caused by multifunctional polyol and isocyanate, the WPU-g-PDMS coating has high hardness and good anticorrosive performance. The antismudge functionalization and waterborne technology of bio-based polyurethane coatings proposed in this work could be a promising contribution to the green and sustainable development of functional coatings. This kind of WPU-g-PDMS coating is expected to protect and decorate electronic screens, vehicles, and buildings, especially endoscopes.
Collapse
Affiliation(s)
- Zhiming Ha
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lei Lei
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengyu Zhou
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuzheng Xia
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaonong Chen
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peng Mao
- China-Japan Friendship Hospital, Beijing 100029, China
| | - Bifa Fan
- China-Japan Friendship Hospital, Beijing 100029, China
| | - Shuxian Shi
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
13
|
Abstract
Liquid-repellent surfaces, especially smooth solid surfaces with covalently grafted flexible polymer brushes or alkyl monolayers, are the focus of an expanding research area. Surface-tethered flexible species are highly mobile at room temperature, giving solid surfaces a unique liquid-like quality and unprecedented dynamical repellency towards various liquids regardless of their surface tension. Omniphobic liquid-like surfaces (LLSs) are a promising alternative to air-mediated superhydrophobic or superoleophobic surfaces and lubricant-mediated slippery surfaces, avoiding fabrication complexity and air/lubricant loss issues. More importantly, the liquid-like molecular layer controls many important interface properties, such as slip, friction and adhesion, which may enable novel functions and applications that are inaccessible with conventional solid coatings. In this Review, we introduce LLSs and their inherent dynamic omniphobic mechanisms. Particular emphasis is given to the fundamental principles of surface design and the consequences of the liquid-like nature for task-specific applications. We also provide an overview of the key challenges and opportunities for omniphobic LLSs.
Collapse
Affiliation(s)
- Liwei Chen
- School of Materials Science and Engineering, Key Laboratory for Polymer Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, P. R. China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, P. R. China
| | - Shilin Huang
- School of Materials Science and Engineering, Key Laboratory for Polymer Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, P. R. China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, P. R. China
| | - Robin H A Ras
- Department of Applied Physics, Aalto University School of Science, Espoo, Finland.
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo, Finland.
| | - Xuelin Tian
- School of Materials Science and Engineering, Key Laboratory for Polymer Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, P. R. China.
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, P. R. China.
| |
Collapse
|
14
|
Wang X, Huang X, Hu W, Ji Z, Sheng H, Liu H. Fluorine‐free, highly transparent, chemically durable and low ice adhesion icephobic coatings from biobased epoxy and polydimethylsiloxane. J Appl Polym Sci 2022. [DOI: 10.1002/app.53456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Xiangzhao Wang
- School of Aeronautics and Astronautics, Shanghai Jiao Tong University Shanghai China
| | - Xiaobin Huang
- School of Aeronautics and Astronautics, Shanghai Jiao Tong University Shanghai China
| | - Wenbin Hu
- School of Aeronautics and Astronautics, Shanghai Jiao Tong University Shanghai China
| | - Zemin Ji
- School of Aeronautics and Astronautics, Shanghai Jiao Tong University Shanghai China
| | - Haoqiang Sheng
- School of Aeronautics and Astronautics, Shanghai Jiao Tong University Shanghai China
| | - Hong Liu
- School of Aeronautics and Astronautics, Shanghai Jiao Tong University Shanghai China
| |
Collapse
|
15
|
Yu Y, Chen L, Weng D, Hou Y, Pang Z, Zhan Z, Wang J. Effect of Doping SiO 2 Nanoparticles and Phenylmethyl Silicone Oil on the Large-Scale Deicing Property of PDMS Coatings. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48250-48261. [PMID: 36240235 DOI: 10.1021/acsami.2c13650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Recently, low interfacial toughness (LIT) materials have been developed to solve large-scale deicing problems. According to the theory of interfacial fracture, ice detachment is dominated by strength-controlled or toughness-controlled regimes, which are characterized by adhesive strength or constant shear force. Here, a new strategy is introduced to regulate the interfacial toughness of poly(dimethylsiloxane) (PDMS) coatings using silicon dioxide nanoparticles (SiO2 NPs) and phenylmethyl silicone oil (PMSO). By systematically adjusting the doping proportion of SiO2 NPs and PMSO, it is found that a lower interfacial toughness can be achieved with a lower constant shear force. The synergistic effect of the two dopants on the adhesive strength and interfacial toughness is analyzed. Meanwhile, finite element method (FEM) analysis of ice detachment is conducted to show the cracking process intuitively and explicate the mechanism of lowering the interfacial toughness of PDMS by doping SiO2 NPs and PMSO. It can be concluded that the cohesive zone material (CZM) model is effective for simulating the deicing process of PDMS coatings and provides a comprehensive understanding of the modulation of interfacial toughness.
Collapse
Affiliation(s)
- Yadong Yu
- State Key Laboratory of Tribology, School of Mechanical Engineering, Tsinghua University, Beijing100084, China
| | - Lei Chen
- State Key Laboratory of Tribology, School of Mechanical Engineering, Tsinghua University, Beijing100084, China
| | - Ding Weng
- State Key Laboratory of Tribology, School of Mechanical Engineering, Tsinghua University, Beijing100084, China
| | - Yacong Hou
- State Key Laboratory of Tribology, School of Mechanical Engineering, Tsinghua University, Beijing100084, China
| | - Zuobo Pang
- State Key Laboratory of Tribology, School of Mechanical Engineering, Tsinghua University, Beijing100084, China
| | - Zhongwei Zhan
- Aviation Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Materials, AECC Beijing Institute of Aeronautical Materials, Beijing100095, China
| | - Jiadao Wang
- State Key Laboratory of Tribology, School of Mechanical Engineering, Tsinghua University, Beijing100084, China
| |
Collapse
|
16
|
Buddingh JV, Nakamura S, Liu G, Hozumi A. Thermo-responsive Fluorinated Organogels Showing Anti-fouling and Long-Lasting/Repeatable Icephobic Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11362-11371. [PMID: 36066417 DOI: 10.1021/acs.langmuir.2c01647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Accumulations of ice on modern infrastructures often cause severe consequences. As such, there is significant interest in developing functional coatings/surfaces that can prevent this. One such approach has been demonstrated with slippery liquid-infused porous surfaces (SLIPS) and organogels where the ice adhesion strength is reduced to the critical point (less than 10 kPa) where it can be removed by natural forces such as gravity, wind, vibrations, and so forth. However, both designs are limited by lubricant depletion. If lubricant release and reabsorption (syneresis) of organogels can be arbitrarily controlled by the surrounding temperature, the loss due to unfavorable evaporation and drainage of infused lubricants can be minimized and its durability can be extended. This study demonstrates the tunable thermo-responsive syneresis of transparent fluorinated organogels (F-ORGs) prepared from a commercial silicone elastomer and a lubricant mixture of fluorinated silicone oil and either poly(dimethylsiloxane) or poly(methylphenylsiloxane). By carefully tuning the ratio of the two lubricants in the mixture, the corresponding F-ORGs demonstrated arbitrarily tunable critical syneresis temperatures from -15 to 40 °C, below which the lubricant is released on the surface and above which the lubricant is re-absorbed. The resulting surfaces showed not only exceptionally long-lasting/repeatable low ice adhesion strengths (≤10 kPa over 50 icing/de-icing cycles) but also significant improvements in their repellency toward a variety of organic liquids. Compared to non-fluorinated organogels, F-ORGs could offer improved protection against outdoor pollutants to further enhance their practicality.
Collapse
Affiliation(s)
- Jasmine V Buddingh
- National Institute of Advanced Industrial Science and Technology (AIST), 2266-98, Anaghora, Shimoshidami, Moriyama, Nagoya 463-8560, Japan
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Satoshi Nakamura
- National Institute of Advanced Industrial Science and Technology (AIST), 2266-98, Anaghora, Shimoshidami, Moriyama, Nagoya 463-8560, Japan
| | - Guojun Liu
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Atsushi Hozumi
- National Institute of Advanced Industrial Science and Technology (AIST), 2266-98, Anaghora, Shimoshidami, Moriyama, Nagoya 463-8560, Japan
| |
Collapse
|
17
|
Synthesis of Trivinylisooctyl POSS and Its Application in UV-Curing of Polyurethane Acrylate Coatings. COATINGS 2022. [DOI: 10.3390/coatings12071036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
To improve the overall performance of polyurethane acrylic (PUAs) coatings applied to an iron or wood substrate, a modifier, trivinylisooctyl polyhedral oligomeric silsesquioxane (TVi7iso–POSS), was successfully synthesized by a polycondensation reaction in the presence of an organotin catalyst. TVi7iso–POSS is a POSS derivative possessing three olefin and seven isooctyl bonds; its molecular structure was confirmed by FT-IR, 1H-NMR, and mass spectrometry. The synthesized TVi7iso–POSS was then used as a modifier with butyl methacrylate (BMA), dodecafluoroheptyl methacrylate (DFMA), difunctional PUA (PUA–2), and photo-initiator 1173 to produce a novel polyurethane coating (PFMPUAs) via UV-curing. The performance of the obtained PFMPUAs coating was analyzed via X-ray photoelectron spectrometry, SEM, atomic force microscopy, TGA, and differential scanning calorimetry. The newly synthesized modifier, TVi7iso–POSS, enhanced the thermal stability, hardness, flexibility, impact resistance, and adhesion of the PUAs coating and maintained its good light transmittance. Moreover, the PFMPUAs coating exhibited better overall performance compared to the previously studied PUAs coating when the addition of TVi7iso–POSS and DFMA was 15 wt.% of PUA–2. Therefore, the PFMPUAs coating has potential applications in the field of environmentally friendly coatings.
Collapse
|
18
|
Buene AF, Auganæs SB, Klein-Paste A. Effect of Polydimethylsiloxane Oil Lubrication on the Friction of Cross-Country UHMWPE Ski Bases on Snow. Front Sports Act Living 2022; 4:894250. [PMID: 35865486 PMCID: PMC9294275 DOI: 10.3389/fspor.2022.894250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/13/2022] [Indexed: 12/04/2022] Open
Abstract
Silicone oils are known for their excellent lubricating properties, low toxicity and are ice-, snow-, and hydrophobic. With the upcoming ban on fluorine-containing glide products imposed by the International Ski Federation (FIS), novel glide enhancers for skis are desperately needed. Here, the effect of four silicone oil viscosities (10, 20, 50, and 100 cSt) have been evaluated at three temperatures and snow conditions ranging from −10 °C dry snow to +5 °C wet snow. In dry snow conditions, the shear forces introduced by the silicone oil film increased friction significantly compared to a ski without any treatment. On wet snow, the increased hydrophobicity from the silicone oils reduced the friction by 10%. While commercial glide wax outperformed the silicone oils, this study reports the silicone oils do have desirable friction reducing properties for wet conditions.
Collapse
|