1
|
Yang Q, Shi Q, Dong X, Yu L, Sun Y. Co 2+-boosted catalytic performance of polyhistidine-tagged organophosphate hydrolase locked in cobalt-organic framework. Int J Biol Macromol 2025; 288:138636. [PMID: 39674479 DOI: 10.1016/j.ijbiomac.2024.138636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Hydrolysis of organophosphates (OPs) with organophosphate hydrolase (OPH) provides a green approach to degrading OPs, but the success of enzymatic OPs degradation relies on the availability of high-efficiency OPH. Herein, we report a simple but effective way to constructing high-performance OPH preparations based on the in situ encapsulation of hexahistidine-tagged OPH (H6-OPH) into cobaltous zeolitic imidazolate framework (ZIF-67) via biomineralization. ZIF-8 made of the same organic ligand but a different metal ion (Zn2+) was used for comparison. It was found that the H6-tag domain did not affect the catalytic properties of OPH in the absence of Co2+, but boosted the Co2+-activation effect on the H6-OPH catalytic activity by two-fold. Furthermore, H6-OPH@ZIF-67 retained the highly boosted activity, while H6-OPH@ZIF-8 and OPH@ZIF-67/ZIF-8 lost most of the activities. Extensive analysis revealed that the H6-tag promoted the Co2+-induced OPH conformation transition and locked the activated conformation in ZIF-67. Notably, H6-OPH@ZIF-67 not only achieved an activity recovery as high as 348 % and a 321 % increased catalytic efficiency (kcat/Km) over free OPH, but also exhibited greatly improved stability and reusability. The findings underscore the high efficiency of fabricating high-performance OPH preparations via polyhistidine-tag fusion, Co2+ activation and locking by the cobalt-organic framework.
Collapse
Affiliation(s)
- Qingru Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Qinghong Shi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Linling Yu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
2
|
Jung H, Jiang V, Su Z, Inaba Y, Khoury FF, Banta S. Overexpression of a Designed Mutant Oxyanion Binding Protein ModA/WtpA in Acidithiobacillus ferrooxidans for the Low pH Recovery of Molybdenum and Rhenium. JACS AU 2024; 4:2957-2965. [PMID: 39211588 PMCID: PMC11350598 DOI: 10.1021/jacsau.4c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 09/04/2024]
Abstract
Molybdenum and rhenium are critically important metals for a number of emerging technologies. We identified and characterized a molybdenum/tungsten transport protein (ModA/WtpA) of Acidithiobacillus ferrooxidans and demonstrated the binding of tungstate, molybdate, and chromate. We used computational design to expand the binding capabilities of the protein to include perrhenate. A disulfide bond was engineered into the binding pocket of ModA/WtpA to introduce a more favorable geometric coordination and surface charge distribution for oxyanion binding. The mutant protein experimentally demonstrated a 2-fold higher binding affinity for molybdate and 6-fold higher affinity for perrhenate. The overexpression of the wild-type and mutant ModA/WtpA proteins in A. ferrooxidans cells enhanced the innate tungstate, molybdate, and chromate binding capacities of the cells to up to 2-fold higher. In addition, the engineered cells expressing the mutant protein exhibited enhanced perrhenate binding, showing 5-fold and 2-fold higher binding capacities compared to the wild-type and ModA/WtpA-overexpressing cells, respectively. Furthermore, the engineered cell lines enhanced biocorrosion of stainless steel as well as the recovered valuable metals from an acidic wastewater generated from molybdenite processing. The improved binding efficiency for the oxyanion metals, along with the high selectivity over nontargeted metals under mixed metal environments, highlights the potential value of the engineered strains for practical microbial metal reclamation under low pH conditions.
Collapse
Affiliation(s)
- Heejung Jung
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New
York, New York 10027, United States
| | - Virginia Jiang
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New
York, New York 10027, United States
| | - Zihang Su
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New
York, New York 10027, United States
| | - Yuta Inaba
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New
York, New York 10027, United States
| | - Farid F. Khoury
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New
York, New York 10027, United States
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New
York, New York 10027, United States
| |
Collapse
|
3
|
Kumaravel A, Sengupta T, Sathiyamoorthy P, Jeong J, Kang SG, Hong SH. Cobalt Oxide Nanoparticle Synthesis by Cell-Surface-Engineered Recombinant Escherichia coli and Potential Application for Anticancer Treatment. ACS OMEGA 2024; 9:31373-31383. [PMID: 39072137 PMCID: PMC11270722 DOI: 10.1021/acsomega.3c10246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Cell surface display engineering facilitated the development of a cobalt-binding hybrid Escherichia coli. OmpC served as the molecular anchor for showcasing the cobalt-binding peptides (CBPs), creating the structural model of the hybrid OmpC-CBPs (OmpC-CP, OmpC-CF). Subsequently, the recombinant peptide's cobalt adsorption and retrieval effectiveness were evaluated at various concentrations. When subjected to a pH of 7 and a concentration of 2 mM, OmpC-CF exhibited a significantly higher cobalt recovery rate (2183.87 mol/g DCW) than OmpC-CP. The strain with bioadsorbed cobalt underwent thermal treatment at varying temperatures (400 °C, 500 °C, 600 °C, and 700 °C) and morphological characterization of the thermally decomposed cobalt nanoparticle oxides using diverse spectroscopy techniques. The analysis showed that nanoparticles confined themselves to metal ions, and EDS mapping detected the presence of cobalt on the cell surface. Finally, the nanoparticles' anticancer potential was assessed by subjecting them to heating at 500 °C in a furnace; they demonstrated noteworthy cytotoxicity, as evidenced by IC50 values of 59 μg/mL. These findings suggest that these nanoparticles hold promise as potential anticancer agents. Overall, this study successfully engineered a recombinant E. coli capable of efficiently binding to cobalt, producing nanoparticles with anticancer properties. The results of this investigation could have significant implications for advancing novel cancer therapies.
Collapse
Affiliation(s)
- Ashokkumar Kumaravel
- Department
of Chemical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea
| | - Turbasu Sengupta
- Department
of Chemical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea
| | - Padmanaban Sathiyamoorthy
- Department
of Medical Nanotechnology, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu 613401, India
| | - Jaehoon Jeong
- Department
of Chemical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea
| | - Sung Gu Kang
- Department
of Chemical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea
| | - Soon Ho Hong
- Department
of Chemical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea
| |
Collapse
|
4
|
Sieber A, Jelic LR, Kremser K, Guebitz GM. Spent brewer's yeast as a selective biosorbent for metal recovery from polymetallic waste streams. Front Bioeng Biotechnol 2024; 12:1345112. [PMID: 38532874 PMCID: PMC10963448 DOI: 10.3389/fbioe.2024.1345112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/25/2024] [Indexed: 03/28/2024] Open
Abstract
While the amount of electronic waste is increasing worldwide, the heterogeneity of electronic scrap makes the recycling very complicated. Hydrometallurgical methods are currently applied in e-waste recycling which tend to generate complex polymetallic solutions due to dissolution of all metal components. Although biosorption has previously been described as a viable option for metal recovery and removal from low-concentration or single-metal solutions, information about the application of selective metal biosorption from polymetallic solutions is missing. In this study, an environmentally friendly and selective biosorption approach, based on the pH-dependency of metal sorption processes is presented using spent brewer's yeast to efficiently recover metals like aluminum, copper, zinc and nickel out of polymetallic solutions. Therefore, a design of experiment (DoE) approach was used to identify the effects of pH, metal, and biomass concentration, and optimize the biosorption efficiency for each individual metal. After process optimization with single-metal solutions, biosorption experiments with lyophilized waste yeast biomass were performed with synthetic polymetallic solutions where over 50% of aluminum at pH 3.5, over 40% of copper at pH 5.0 and over 70% of zinc at pH 7.5 could be removed. Moreover, more than 50% of copper at pH 3.5 and over 90% of zinc at pH 7.5 were recovered from a real polymetallic waste stream after leaching of printed-circuit boards. The reusability of yeast biomass was confirmed in five consecutive biosorption steps with little loss in metal recovery abilities. This proves that spent brewer's yeast can be sustainably used to selectively recover metals from polymetallic waste streams different to previously reported studies.
Collapse
Affiliation(s)
| | - Leon Robert Jelic
- Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences Vienna BOKU, Tulln an der Donau, Austria
| | - Klemens Kremser
- Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences Vienna BOKU, Tulln an der Donau, Austria
- Austrian Centre of Industrial Biotechnology, Tulln an der Donau, Austria
| | - Georg M Guebitz
- Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences Vienna BOKU, Tulln an der Donau, Austria
- Austrian Centre of Industrial Biotechnology, Tulln an der Donau, Austria
| |
Collapse
|
5
|
Jung H, Inaba Y, West AC, Banta S. Overexpression of quorum sensing genes in Acidithiobacillus ferrooxidans enhances cell attachment and covellite bioleaching. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 38:e00789. [PMID: 36923508 PMCID: PMC10009093 DOI: 10.1016/j.btre.2023.e00789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 02/27/2023]
Abstract
Cell adhesion is generally a prerequisite to the microbial bioleaching of sulfide minerals, and surface biofilm formation is modulated via quorum sensing (QS) communication. We explored the impact of the overexpression of endogenous QS machinery on the covellite bioleaching capabilities of Acidithiobacillus ferrooxidans, a representative acidophilic chemolithoautotrophic bacterium. Cells were engineered to overexpress the endogenous qs-I operon or just the afeI gene under control of the tac promoter. Both strains exhibited increased transcriptional gene expression of afeI and improved cell adhesion to covellite, including increased production of extracellular polymeric substances and increased biofilm formation. Under low iron conditions, the improved bioleaching of covellite was more evident when afeI was overexpressed alone as compared to the native operon. These observations demonstrate the potential for the genetic modulation of QS as a mechanism for increasing the bioleaching efficiency of covellite, and potentially other copper sulfide minerals.
Collapse
Affiliation(s)
- Heejung Jung
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
| | - Yuta Inaba
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
| | - Alan C West
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
| |
Collapse
|
6
|
Zhang X, Shi H, Tan N, Zhu M, Tan W, Daramola D, Gu T. Advances in bioleaching of waste lithium batteries under metal ion stress. BIORESOUR BIOPROCESS 2023; 10:19. [PMID: 38647921 PMCID: PMC10992134 DOI: 10.1186/s40643-023-00636-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/09/2023] [Indexed: 03/29/2023] Open
Abstract
In modern societies, the accumulation of vast amounts of waste Li-ion batteries (WLIBs) is a grave concern. Bioleaching has great potential for the economic recovery of valuable metals from various electronic wastes. It has been successfully applied in mining on commercial scales. Bioleaching of WLIBs can not only recover valuable metals but also prevent environmental pollution. Many acidophilic microorganisms (APM) have been used in bioleaching of natural ores and urban mines. However, the activities of the growth and metabolism of APM are seriously inhibited by the high concentrations of heavy metal ions released by the bio-solubilization process, which slows down bioleaching over time. Only when the response mechanism of APM to harsh conditions is well understood, effective strategies to address this critical operational hurdle can be obtained. In this review, a multi-scale approach is used to summarize studies on the characteristics of bioleaching processes under metal ion stress. The response mechanisms of bacteria, including the mRNA expression levels of intracellular genes related to heavy metal ion resistance, are also reviewed. Alleviation of metal ion stress via addition of chemicals, such as spermine and glutathione is discussed. Monitoring using electrochemical characteristics of APM biofilms under metal ion stress is explored. In conclusion, effective engineering strategies can be proposed based on a deep understanding of the response mechanisms of APM to metal ion stress, which have been used to improve bioleaching efficiency effectively in lab tests. It is very important to engineer new bioleaching strains with high resistance to metal ions using gene editing and synthetic biotechnology in the near future.
Collapse
Affiliation(s)
- Xu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Hongjie Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ningjie Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Minglong Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wensong Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Damilola Daramola
- Department of Chemical and Biomolecular Engineering, Institute for Sustainable Energy and the Environment, Ohio University, Athens, Ohio, 45701, USA
| | - Tingyue Gu
- Department of Chemical and Biomolecular Engineering, Institute for Sustainable Energy and the Environment, Ohio University, Athens, Ohio, 45701, USA.
| |
Collapse
|