1
|
Ma X, Hu J, Li S, Zheng T, Gao Y, Han Y, Pan H, Bian Y, Jiang J. Porphyrin-based covalent organic frameworks with undulated layers for efficient photocatalytic CO 2 reduction. Sci Bull (Beijing) 2025:S2095-9273(25)00347-0. [PMID: 40210495 DOI: 10.1016/j.scib.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/28/2025] [Accepted: 03/17/2025] [Indexed: 04/12/2025]
Abstract
Two-dimensional (2D) porphyrin (Por)-based covalent organic frameworks (COFs) provide an attractive and effective strategy for photocatalytic CO2 reduction, but the layered structure due to π-π stacking is challenging for the exposure of active sites and transfer of mass and photogenerated carriers. In this study, a series of 2D conjugated porphyrin-based COFs were prepared using porphyrin blocks with linking units having different degrees of twisting. According to the experimental and theoretical calculation results, owing to the large spatial steric hindrance between the two carbazole units connected by the N-N single bond, a greatly undulating layered structure was formed in NN-Por-COF, which enhanced mass transfer and exposed more catalytic sites. The introduction of carbazole also modulated the electronic structure of the porphyrin Co center, which lowered the reaction energy barrier. The optimization of the structural and electronic effects led to the excellent photocatalytic CO2 reduction performance of NN-Por-COF, with CO conversion rates as high as 22.38 and 3.02 mmol g-1 h-1 under pure and diluted (10%) CO2 atmosphere, respectively, which are superior to those of most of the reported porphyrin-based photocatalysts.
Collapse
Affiliation(s)
- Xiaolin Ma
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jingyue Hu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Senzhi Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tianyu Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ying Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuesheng Han
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Houhe Pan
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Yongzhong Bian
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China.
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
2
|
Zhang YQ, Chen JY, Li M, Liao RZ. Theoretical Study on the Mechanism of the Electrocatalytic CO 2 Reduction to Formate by an Iron Schiff Base Complex. Inorg Chem 2025; 64:4657-4672. [PMID: 40007085 DOI: 10.1021/acs.inorgchem.5c00263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
The iron(III) chloride compound 6,6'-di(3,5-ditert-butyl-2-hydroxybenzene)-2,2'-bipyridine (Fe(tbudhbpy)Cl) can effectively catalyze the electrochemical CO2 reduction in N,N-dimethylformamide. Density functional calculations were conducted to investigate the mechanism and unravel the governing factors of product selectivity. The results suggest that the initial catalyst, Fe(tbudhbpy)Cl (formally FeIII-Cl), undergoes two reduction steps, accompanied by the dissociation of Cl-, leading to the formation of the active ferrous radical intermediate 2 (formally FeI). Without phenol, 2 attacks CO2 to generate the FeIII-carboxylate intermediate FeIII-CO2, followed by a one-electron reduction to generate FeII-CO2, which reacts with another CO2 to produce CO. This aligns with the experimental result that CO is the main product when the phenol is absent. In contrast, when phenol is presented, the triple reduced species 3 is protonated at its ligand N site to yield 3pt(N) (formally Fe0-NH), which subsequently performs a nucleophilic attack on CO2 to afford formate. This process occurs via an orthogonal electron/proton transfer mechanism, where two electrons and one proton are transferred from the ligand to the CO2 moiety. The redox noninnocent nature of the ligand is thus crucial for formate formation, as it facilitates electron and proton shuttling, enabling 3pt(N) to attack CO2 through this unusual mechanism effectively.
Collapse
Affiliation(s)
- Ya-Qiong Zhang
- Hubei Key Laboratory of Purification and Application of Plant Anti-Cancer Active Ingredients, College of Chemistry and Life Science, Hubei University of Education, Wuhan 430205, China
| | - Jia-Yi Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Man Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
3
|
Liu J, Ji G, Li X, Xia J, Qian DJ, Xie W, Deng Y. Interfacial Assembly Immobilization of Tripodal Iron Terpyridyl Coordination Oligomers on Carbon Nitride for Efficient Photocatalytic CO 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2025; 17:12930-12940. [PMID: 39957382 DOI: 10.1021/acsami.4c21985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Surface modification of cheap light-absorbing materials by noble-metal-free molecular catalysts to construct high efficiency photocatalytic systems has recently attracted great research interest but remains a great challenge. Here, we constructed carbon nitride-based composite photocatalysts through interfacial covalently assembling tripodal Fe(II)-terpyridyl (Fe-TerPyTa)n coordination oligomers on oxidized graphitic carbon nitride (O-C3N4) via a surface-initiated alternative reaction between TerPyTa and Fe(BF4)2. The obtained O-C3N4@(Fe-TerPyTa)n possesses visible-light-absorbing C3N4 and active Fe-TerPyTa with superior capability in photocatalytic CO2 reduction. Due to the well-defined structure and integrated functionality, the O-C3N4@(Fe-TerPyTa)1 hybrid catalyst displays significantly enhanced catalytic performance in CO2 reduction with outstanding CO selectivity (almost 100%) and a maximum CO evolution rate of 91.1 μmol g-1 h-1, which is nearly 100-fold higher than that of pristine O-C3N4. The fluorescence emission, time-resolved fluorescence, and electrochemical impedance spectrum studies indicate that the improved catalytic efficiency is mainly attributed to the direct covalent and coordinative interactions between the oligomer and the O-C3N4. Such a configuration can enhance the charge transfer from the O-C3N4 to the redox center of Fe-TerPyTa, which further passes the electrons to the CO2 molecules to produce CO. Moreover, due to the kinetical preference for electrons to reduce H2O-to-H2, the reducing products can be regulated from pure CO to its CO/H2 mixture (analogue of syngas) with tunable ratios by changing the water content in the reaction solution.
Collapse
Affiliation(s)
- Jianhong Liu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Guangbin Ji
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Xihan Li
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Jianfeng Xia
- Zhejiang Fulai New Materials, Co. Ltd., Zhejiang Province 314103, P. R. China
| | - Dong-Jin Qian
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Wenhe Xie
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Yonghui Deng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
4
|
Shee NK, Kim HJ. Tin(IV)Porphyrin-Based Porous Coordination Polymers as Efficient Visible Light Photocatalyst for Wastewater Remediation. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:59. [PMID: 39791817 PMCID: PMC11722641 DOI: 10.3390/nano15010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/26/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
Two porphyrin-based polymeric frameworks, SnP-BTC and SnP-BTB, as visible light photocatalysts for wastewater remediation were prepared by the solvothermal reaction of trans-dihydroxo-[5,15,10,20-tetrakis(phenyl)porphyrinato]tin(IV) (SnP) with 1,3,5-benzenetricarboxylic acid (H3BTC) and 1,3,5-tris(4-carboxyphenyl)benzene (H3BTB), respectively. The strong bond between the carboxylic acid group of H3BTC and H3BTB with the axial hydroxyl moiety of SnP leads to the formation of highly stable polymeric architectures. Incorporating the carboxylic acid group onto the surface of SnP changes the conformational frameworks as well as produces rigid structural transformation that includes permanent porosity, good thermodynamic stability, interesting morphology, and excellent photocatalytic degradation activity against AM dye and TC antibiotic under visible light irradiation. The photocatalytic degradation activities of AM dye were found to be 95% by SnP-BTB and 87% by SnP-BTC within 80 min. Within 60 min of visible light exposure, the photocatalytic degradation activities of TC antibiotic were found to be 70% by SnP-BTB and 60% by SnP-BTC. The enhanced catalytic photodegradation performances of SnP-BTB and SnP-BTC were attributed to the synergistic effect between SnP and carboxylic acid groups. The carboxylic acid connectors strongly resist the separation of SnP from the surface of SnP-BTB and SnP-BTC during the photodegradation experiments. Therefore, the high degradation rate and low catalyst loading make SnP-BTB or SnP-BTC more efficient than other reported catalysts. Thus, the present investigations on the porphyrin-based photocatalysts hold great promise in tackling the treatment of dyeing wastewater.
Collapse
Affiliation(s)
| | - Hee-Joon Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea;
| |
Collapse
|
5
|
Hu C, Jiang D, Zhang Y, Gao H, Zeng Y, Khaorapapong N, Liu Z, Yamauchi Y, Pan M. Porphyrins-based multidimensional nanomaterials: Structural design, modification and applications. Coord Chem Rev 2025; 523:216264. [DOI: 10.1016/j.ccr.2024.216264] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
Hu Y, Peng J, Liu R, Gao J, Hua G, Fan X, Wang S. Porphyrin-Based Supramolecular Self-Assemblies: Construction, Charge Separation and Transfer, Stability, and Application in Photocatalysis. Molecules 2024; 29:6063. [PMID: 39770151 PMCID: PMC11676642 DOI: 10.3390/molecules29246063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
As a key means to solve energy and environmental problems, photocatalytic technology has made remarkable progress in recent years. Organic semiconductor materials offer structural diversity and tunable energy levels and thus attracted great attention. Among them, porphyrin and its derivatives show great potential in photocatalytic reactions and light therapy due to their unique large-π conjugation structure, high apparent quantum efficiency, tailorable functionality, and excellent biocompatibility. Compared to unassembled porphyrin molecules, supramolecular porphyrin assemblies facilitate the solar light absorption and improve the charge transfer and thus exhibit enhanced photocatalytic performance. Herein, the research progress of porphyrin-based supramolecular assemblies, including the construction, the regulation of charge separation and transfer, stability, and application in photocatalysis, was systematically reviewed. The construction strategy of porphyrin supramolecules, the mechanism of charge separation, and the intrinsic relationship of assembling structure-charge transfer-photocatalytic performance received special attention. Surfactants, peptide molecules, polymers, and metal ions were introduced to improve the stability of the porphyrin assemblies. Donor-acceptor structure and co-catalysts were incorporated to inhibit the recombination of the photoinduced charges. These increase the understanding of the porphyrin supramolecules and provide ideas for the design of high-performance porphyrin-based photocatalysts.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shengjie Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| |
Collapse
|
7
|
Zhang Y, Li P, Cui P, Hu X, Shu C, Sun R, Peng M, Tan B, Wang X. Precisely Constructing Molecular Junctions in Hydrogen-Bonded Organic Frameworks for Efficient Artificial Photosynthetic CO 2 Reduction. Angew Chem Int Ed Engl 2024; 63:e202413131. [PMID: 39078812 DOI: 10.1002/anie.202413131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Indexed: 11/05/2024]
Abstract
The development of artificial photocatalysts to convert CO2 into renewable fuels and H2O into O2 is a complex and crucial task in the field of photosynthesis research. The current challenge is to enhance photogenerated charge separation, as well as to increase the oxidation capability of materials. Herein, a molecular junction-type porphyrin-based crystalline photocatalyst (Ni-TCPP-TPyP) was successfully self-assembled by incorporating a nickel porphyrin complex as a reduction site and pyridyl porphyrin as an oxidation site via hydrogen bonding and π-π stacking interactions. The resulting material has a highly crystalline structure, and the formation of inherent molecular junctions can accelerate photogenerated charge separation and transport. Thus, Ni-TCPP-TPyP achieved an excellent CO production rate of 309.3 μmol g-1 h-1 (selectivity, ~100 %) without the use of any sacrificial agents, which is more than ten times greater than that of single-component photocatalyst (Ni-TCPP) and greater than that of the most organic photocatalysts. The structure-function relationship was investigated by femtosecond transient absorption spectroscopy and density functional theory calculations. Our work provides new insight for designing efficient artificial photocatalysts, paving the way for the development of clean and renewable fuels through the conversion of CO2 using solar energy.
Collapse
Affiliation(s)
- Yaqin Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, China
| | - Ping Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Peng Cui
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xunliang Hu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, China
| | - Chang Shu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, China
| | - Ruixue Sun
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, China
| | - Mengjie Peng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, China
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, China
| | - Xiaoyan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, China
| |
Collapse
|
8
|
Zhao X, Xu Q, Han J, Zhang W, Rao H, Du DY, She P, Qin JS. Ionic Liquid Modified Fe-Porphyrinic Metal-Organic Frameworks as Efficient and Selective Photocatalysts for CO 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26272-26279. [PMID: 38728610 DOI: 10.1021/acsami.4c04219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Porphyrin-based metal-organic frameworks (MOFs) are ideal platforms for heterogeneous photocatalysts toward CO2 reduction. To further explore photocatalytic MOF systems, it is also necessary to consider their ability to fine-tune the microenvironments of the active sites, which affects their overall catalytic operation. Herein, a kind of ionic liquid (IL, here is 3-butyric acid-1-methyl imidazolium bromide, BAMeImBr) was anchored to iron-porphyrinic Zr-MOFs with different amounts to obtain ILx@MOF-526 (MOF-526 = Zr6O4(OH)4(FeTCBPP)3, FeTCBPP = iron 5,10,15,20-tetra[4-(4'-carboxyphenyl)phenyl]-porphyrin, x = 100, 200, and 400). ILx@MOF-526 series was designed to investigate the effects of the microenvironmental and electronic structural modification on the efficiency and selectivity of the photochemical reduction of CO2 after introducing IL fragments. Compared to parent MOF-526, the production and selectivity of CO were greatly improved in the absence of any photosensitizer under visible light by the ILx@MOF-526 series. Among them, the CO yield of IL200@MOF-526 was up to 14.0 mmol g-1 within 72 h with a remarkable CO selectivity of 97%, which is superior to that of MOF-526 without BAMeIm+ modification and other amounts of BAMeIm+ loaded. Furthermore, density functional theory calculations were performed to study the mechanism of the CO2 reduction.
Collapse
Affiliation(s)
- Xue Zhao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry and International Center of Future Science, Jilin University, Changchun 130012, P.R. China
| | - Qiang Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry and International Center of Future Science, Jilin University, Changchun 130012, P.R. China
| | - Jingwei Han
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry and International Center of Future Science, Jilin University, Changchun 130012, P.R. China
| | - Wenwen Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry and International Center of Future Science, Jilin University, Changchun 130012, P.R. China
| | - Heng Rao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry and International Center of Future Science, Jilin University, Changchun 130012, P.R. China
| | - Dong-Ying Du
- Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Ping She
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry and International Center of Future Science, Jilin University, Changchun 130012, P.R. China
| | - Jun-Sheng Qin
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry and International Center of Future Science, Jilin University, Changchun 130012, P.R. China
| |
Collapse
|
9
|
Zheng T, Ding X, Sun T, Yang X, Wang X, Zhou X, Zhang P, Yu B, Wang Y, Xu Q, Xu L, Wang D, Jiang J. Nanostructurally Engineering Covalent Organic Frameworks for Boosting CO 2 Photoreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307743. [PMID: 38009525 DOI: 10.1002/smll.202307743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/24/2023] [Indexed: 11/29/2023]
Abstract
Herein, a series of imine-linked covalent organic frameworks (COFs) are developed with advanced ordered mesoporous hollow spherical nanomorphology and ultra-large mesopores (4.6 nm in size), named OMHS-COF-M (M = H, Co, and Ni). The ordered mesoporous hollow spherical nanomorphology is revealed to be formed via an Ostwald ripening mechanism based on a one-step self-templated strategy. Encouraged by its unique structural features and outstanding photoelectrical property, the OMHS-COF-Co material is applied as the photocatalyst for CO2-to-CO reduction. Remarkably, it delivers an impressive CO production rate as high as 15 874 µmol g-1 h-1, a large selectivity of 92.4%, and a preeminent cycling stability. From in/ex situ experiments and density functional theory (DFT) calculations, the excellent CO2 photoreduction performance is ascribed to the desirable cooperation of unique ordered mesoporous hollow spherical host and abundant isolated Co active sites, enhancing CO2 activation, and improving electron transfer kinetics as well as reducing the energy barriers for intermediates *COOH generation and CO desorption.
Collapse
Affiliation(s)
- Tianyu Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xu Ding
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tingting Sun
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiya Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xinxin Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xin Zhou
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Pianpian Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuhui Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qingmei Xu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lianbin Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
10
|
Shi S, Liu W, Li Y, Lu S, Zhu H, Du M, Chen X, Duan F. Rational design of bimetallic sites in covalent organic frameworks for efficient photocatalytic oxidative coupling of amines. J Colloid Interface Sci 2024; 655:611-621. [PMID: 37956548 DOI: 10.1016/j.jcis.2023.11.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
The conversion of organic compounds by photocatalysis under mild conditions is an environment-friendly alternative for organic transformations. In this work, the bimetallic covalent organic framework coordinated by Sr2+ and Fe2+ in the porphyrin centers with molar ratio of 2:1 (COF-Sr2Fe1) was synthesized through a two-step reaction. Under the synergistic regulation of Sr2+ and Fe2+, the separation of photogenerated charges and visible light absorption for COF-Sr2Fe1 were significantly promoted, and thus COF-Sr2Fe1 exhibited efficient photocatalytic performance towards benzylamine oxidative coupling reaction with a yield of 97 %, much higher than that of the nonmetallic covalent organic framework COF-366. Moreover, it was found that the Fe site displayed higher dehydrogenation ability and the Sr site displayed higher CN coupling ability through the density functional theory (DFT) calculations, thereby making the dehydrogenation and CN coupling steps more controllable for benzylamine oxidative coupling reaction by COF-Sr2Fe1. This work provides a strategy for designing efficient covalent organic frameworks photocatalysts, and helps to understand the oxidative coupling of amines more deeply.
Collapse
Affiliation(s)
- Songhu Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Wenhao Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Yujie Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Shuanglong Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Han Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Mingliang Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Xin Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Fang Duan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
11
|
Zhang J, Lei H, Li Z, Jiang F, Chen L, Hong M. Halogen-Modulated 2D Coordination Polymers for Efficient Hydrogen Peroxide Photosynthesis under Air and Pure Water Conditions. Angew Chem Int Ed Engl 2024; 63:e202316998. [PMID: 38017354 DOI: 10.1002/anie.202316998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023]
Abstract
H2 O2 is a widely used eco-friendly oxidant and a potential energy carrier. Photocatalytic H2 O2 production from water and O2 is an ideal approach with the potential to address the current energy crisis and environmental issues. Three zig-zag two-dimensional coordination polymers (2D CPs), named CuX-dptz, were synthesized by a rapid and facile method at room temperature, showing preeminent H2 O2 photoproduction performance under pure water and open air without any additives. CuBr-dptz exhibits a H2 O2 production rate high up to 1874 μmol g-1 h-1 , exceeding most reported photocatalysts under this condition, even comparable to those supported by sacrificial agents and O2 . The coordination environment of Cu can be modulated by halogen atoms (X=Cl, Br, I), which in turn affects the electron transfer process and finally determines the reaction activity. This is the first time that 2D CPs have been used for photocatalytic H2 O2 production in such challenging conditions, which provides a new pathway for the development of portable in situ H2 O2 photosynthesis devices.
Collapse
Affiliation(s)
- Jieping Zhang
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Hang Lei
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Zhijia Li
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Feilong Jiang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Lian Chen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
12
|
Han J, Liu Y, Peng D, Liu J, Wu D. Biomedical Application of Porphyrin-Based Amphiphiles and Their Self-Assembled Nanomaterials. Bioconjug Chem 2023; 34:2155-2180. [PMID: 37955349 DOI: 10.1021/acs.bioconjchem.3c00432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Porphyrins have been vastly explored and applied in many cutting-edge fields with plenty of encouraging achievements because of their excellent properties. As important derivatives of porphyrins, porphyrin-based amphiphiles (PBAs) not only maintain the advanced properties of porphyrins (catalysis, imaging, and energy transfer) but also possess self-assembly and encapsulation capability in aqueous solution. Accordingly, PBAs and their self-assembles have had important roles in diagnosing and treating tumors and inflammation lesions in vivo, but not limited to these. In this article, we introduce the research progress of PBAs, including their constitution, structure design strategies, and performances in tumor and inflammation lesion diagnosis and treatments. On that basis, the defects of synthesized PBAs during their application and the possible effective strategies to overcome the limitations are also proposed. Finally, perspectives on PBAs exploration are updated based on our knowledge. We hope this review will bring researchers from various domains insights about PBAs.
Collapse
Affiliation(s)
- Jialei Han
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong 518107, China
| | - Yadong Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong 518107, China
| | - Danfeng Peng
- Shenzhen International Institute for Biomedical Research, Shenzhen, Guangdong 518119, China
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong 518107, China
| | - Dalin Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong 518107, China
| |
Collapse
|
13
|
Garcia-Orrit S, Vega-Mayoral V, Chen Q, Serra G, Paternò GM, Cánovas E, Narita A, Müllen K, Tommasini M, Cabanillas-González J. Nanographene-Based Decoration as a Panchromatic Antenna for Metalloporphyrin Conjugates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301596. [PMID: 37329205 DOI: 10.1002/smll.202301596] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/16/2023] [Indexed: 06/18/2023]
Abstract
Porphyrins, a type of heterocyclic aromatic compounds consisting of tetrapyrroles connected by four substituted methine groups, are appealing building blocks for solar energy applications. However, their photosensitization capability is limited by their large optical energy gap, which results in a mismatch in absorption toward efficient harvesting of the solar spectrum. Porphyrin π-extension by edge-fusing with nanographenes can be employed for narrowing their optical energy gap from 2.35 to 1.08 eV, enabling the development of porphyrin-based panchromatic dyes with an optimized energy onset for solar energy conversion in dye-sensitized solar fuel and solar cell configurations. By combining time-dependent density functional theory with fs transient absorption spectroscopy, it is found that the primary singlets, which are delocalized across the entire aromatic part, are transferred into metal centred triplets in only 1.2 ps; and subsequently, relax toward ligand-delocalized triplets. This observation implies that the decoration of the porphyrin moiety with nanographenes, while having a large impact on the absorption onset of the novel dye, promotes the formation of a ligand-centred lowest triplet state of large spatial extension, potentially interesting for boosting interactions with electron scavengers. These results reveal a design strategy for broadening the applicability of porphyrin-based dyes in optoelectronics.
Collapse
Affiliation(s)
- Saül Garcia-Orrit
- Madrid Institute for Advanced Studies, IMDEA Nanociencia, c/Faraday 9, Campus de Cantoblanco, Madrid, 28049, Spain
| | - Victor Vega-Mayoral
- Madrid Institute for Advanced Studies, IMDEA Nanociencia, c/Faraday 9, Campus de Cantoblanco, Madrid, 28049, Spain
| | - Qiang Chen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Gianluca Serra
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
| | - Giuseppe M Paternò
- Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci 32, Milano, 20133, Italy
| | - Enrique Cánovas
- Madrid Institute for Advanced Studies, IMDEA Nanociencia, c/Faraday 9, Campus de Cantoblanco, Madrid, 28049, Spain
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Institute for Physical Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Matteo Tommasini
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
| | - Juan Cabanillas-González
- Madrid Institute for Advanced Studies, IMDEA Nanociencia, c/Faraday 9, Campus de Cantoblanco, Madrid, 28049, Spain
| |
Collapse
|
14
|
Zhao Y, Shao Z, Cui Y, Geng K, Meng X, Wu J, Hou H. Guest-Induced Multilevel Charge Transport Strategy for Developing Metal-Organic Frameworks to Boost Photocatalytic CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300398. [PMID: 37093463 DOI: 10.1002/smll.202300398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/05/2023] [Indexed: 05/03/2023]
Abstract
Encapsulating photogenerated charge-hopping nodes and space transport bridges within metal-organic frameworks (MOFs) is a promising method of boosting the photocatalytic performance. Herein, this work embeds electron transfer media (9,10-bis(4-pyridyl)anthracene (BPAN)) in MOF cavities to build multi-level electron transfer paths. The MOF cavities are accurately regulated to investigate the significance of the multi-level electron transfer paths in the process of CO2 photoreduction by evaluating the difference in the number of guest media. The prepared MOFs, {[Co(BPAN)(1,4-dicarboxybenzene)(H2 O)2 ]·BPAN·2H2 O} and {[Co(BPAN)2 (4,4'-biphenyldicarboxylic acid)2 (H2 O)2 ]·2BPAN·2H2 O} (denoted as BPAN-Co-1 and BPAN-Co-2), exhibit efficient visible-light-driven CO2 conversion properties. The CO photoreduction efficacy of BPAN-Co-2 (5598 µmol g-1 h-1 ) is superior to that of most reported MOF-based catalysts. In addition, the enhanced CO2 photoreduction ability is supported by density functional theory (DFT). This work illustrates the feasibility of realizing charge separation characteristics in MOF catalysts at the molecular level, and provides new insight for designing high-performance MOFs for artificial photosynthesis.
Collapse
Affiliation(s)
- Yujie Zhao
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Zhichao Shao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Yang Cui
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Kangshuai Geng
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Xiangru Meng
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Jie Wu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Hongwei Hou
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450002, China
| |
Collapse
|
15
|
Liu JH, Tu T, Shen YL, Tu B, Qian DJ. Interfacial Self-Assembly of Organized Ultrathin Films of Tripodal Metal-Terpyridyl Coordination Polymers as Luminophores and Heterogeneous Catalysts for Photocatalytic CO 2 Reduction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4777-4788. [PMID: 36947690 DOI: 10.1021/acs.langmuir.3c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Metal-directed interfacial self-assembly of well-defined coordination polymer (CP) ultrathin films can control the metal complex arrangement and distribution at the molecular level, providing a convenient route for the design and fabrication of novel opto-electrical devices and heterogeneous catalysts. Here, we report the assembly of two series of CP multilayers with the transition-metal ions of Fe2+, Co2+, Zn2+ and Tb3+ as connectors and tripodal terpyridyl ligands of 4,4',4″-(1,3,5-triazine-2,4,6-triyl)tris(1-(4-([2,2':6',2″-terpyridin]-4'-yl)benzyl)pyridin-1-ium) (TerPyTa) and 4,4',4″-(benzene-1,3,5-triyl)tris(1-(4-([2,2':6',2″-terpyridin]-4'-yl)benzyl)pyridin-1-ium) (TerPyBen) as linkers at the air-water interface. The as-prepared Langmuir-Blodgett (LB) films display strong luminescence, with the emission wavelength and relative intensity dependent on both the metal ions and linkers; among them, the Zn-TerPyTa and Zn-TerPyBen CPs give off the strongest luminescent emission centered at about 370 nm with an emission lifetime of approximately 0.2-0.3 ns. The Tb-TerPyTa CPs can give off emission at approximately 490, 546, 586, and 622 nm, attributed to the 5D4 to 7F3-6 electron transitions of typical Tb3+ ions. Finally, these CP LB films can act as efficient heterogeneous photocatalysts for the CO2 reduction to selectively produce CO. The catalytic efficiency can be optimized by adjusting the experimental conditions (light sensitizer, electron donor, and water content) and CP composition (metal ion and ligand) with an excellent yield of up to 248.1 mmol g-1. In particular, it is revealed that, under the same conditions, the catalytic efficiency of the Fe-TerPyTa CP LB film is nearly 2 to 3 orders of magnitude higher than that of the other metalated complexes investigated in the homogeneous system. UV-vis spectroscopy and cyclic voltammetry studies demonstrated that the dual active sites of Fe-terpyridine and TerPyTa units contribute to the enhanced catalytic activity. This work provides an effective method to introduce the earth-abundant metal complexes into CP films to construct efficient noble-metal-free photocatalysts for the CO2 reduction.
Collapse
Affiliation(s)
- Jian-Hong Liu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Tao Tu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Yu-Luo Shen
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Bo Tu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Dong-Jin Qian
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| |
Collapse
|
16
|
Liu S, Chen H, Fan L, Zhang X. Highly Robust {In 2}-Organic Framework for Efficiently Catalyzing CO 2 Cycloaddition and Knoevenagel Condensation. Inorg Chem 2023; 62:3562-3572. [PMID: 36791403 DOI: 10.1021/acs.inorgchem.2c04130] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
To improve the catalytic performance of metal-organic frameworks (MOFs), creating higher defects is now considered as the most effective strategy, which can not only optimize the Lewis acidity of metal ions but also create more pore space to enhance diffusion and mass transfer in the channels. Herein, the exquisite combination of scarcely reported [In2(CO2)5(H2O)2(DMF)2] clusters and 2,6-bis(2,4-dicarboxylphenyl)-4-(4-carboxylphenyl)pyridine (H5BDCP) under solvothermal conditions generated a highly robust nanoporous framework of {[In2(BDCP)(DMF)2(H2O)2](NO3)}n (NUC-65) with nanocaged voids (14.1 Å) and rectangular nanochannels (15.94 Å × 11.77 Å) along the a axis. It is worth mentioning that an In(1) ion displays extremely low tetra-coordination modes after the thermal removal of its associated four solvent molecules of H2O and DMF. Activated {[In2(BDCP)](Br)}n (NUC-65Br), as a defective material because of its extremely unsaturated metal centers, could be generated by bromine ion exchange, solvent exchange, and vacuum drying. Catalytic experiments proved that the conversion of epichlorohydrin with 1 atm CO2 into 4-(chloromethyl)-1,3-dioxolan-2-one catalyzed by 0.11 mol % NUC-65Br could reach 99% at 65 °C within 24 h. Moreover, with the aid of 5 mol % cocatalyst n-Bu4NBr, heterogeneous NUC-65Br owns excellent universal catalytic performance in most epoxides under mild conditions. In addition, NUC-65Br, as a heterogeneous catalyst, exhibits higher activity and better selectivity for Knoevenagel condensation of aldehydes and malononitrile. Hence, this work offers a fresh insight into the design of structure defect cationic metal-organic frameworks, which can be better applied to various fields because of their promoted performance.
Collapse
Affiliation(s)
- Shurong Liu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Hongtai Chen
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Liming Fan
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Xiutang Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
17
|
Liu T, Deng C, Meng D, Zhang Y, Duan R, Ji H, Sheng H, Li J, Chen C, Zhao J, Song W. Aligning Metal Coordination Sites in Metal-Organic Framework-Enabled Metallaphotoredox Catalysis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5139-5147. [PMID: 36688925 DOI: 10.1021/acsami.2c18378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Construction of catalytic metal centers, the key modules in artificial photosynthetic systems, lies at the heart to explore unpaved reactivity patterns powered by light. Here, we disclose that the amino (-NH2) and carboxylic (-COO) functionalities, aligned in various visible-light-harvesting metal-organic frameworks (MOFs) (NH2-UiO-66, (NH2)2-UiO-67, and NH2-MIL-125), provide N/O-ligated Ni featuring different configurations and valence states. Of note, these Ni centers, in situ formed or preimplanted, demonstrated coordination units' spatial arrangement-dependent activity in cross-coupling of aryl halides and various nucleophiles. Our work provides a novel approach to construct and to regulate metal center(s) by MOFs' skeleton defined coordination environments, highlighting exclusive potential in exploring the reactivity pattern of the hosted metals.
Collapse
Affiliation(s)
- Tianjiao Liu
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoyuan Deng
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Meng
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yufan Zhang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ran Duan
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongwei Ji
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Sheng
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jikun Li
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Song
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Fang Y, Liu T, Chen L, Chao D. Morphology Control of Supramolecular Assembly for Superior CO 2 Photoreduction. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Youting Fang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Ting Liu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Longxin Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Duobin Chao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
19
|
Su C, Chen Z, Feng Q, Wei F, Zhang M, Mo A, Huang HH, Hu H, Liu D. Highly Efficient Visible-Light-Driven CO 2-to-CO Conversion by Coordinatively Unsaturated Co-Salen Complexes in a Water-Containing System. Inorg Chem 2022; 61:19748-19755. [PMID: 36417273 DOI: 10.1021/acs.inorgchem.2c02515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The development of cost-effective catalysts for CO2 reduction is highly desired but remains a significant challenge. The unsaturated coordination metal center in a catalyst is favorable for the process of catalytic CO2 reduction. In this paper, two asymmetric salen ligands were used to synthesize two coordinatively unsaturated Co-salen complexes. The two Co-salen complexes exhibit an unsaturated coordination pattern and display high activity and CO selectivity for visible-light-driven CO2 reduction in a water-containing system. The photocatalytic performance of 2 is higher than that of 1 because the reduction potential of the catalytic CoII center and the energy barrier of the catalytic transition states of 2 are lower than those of 1, with turnover numbers (TONCO), turnover frequencies (TOF), and CO selectivity values of 8640, 0.24 s-1, and 97% for 2, respectively. The photocatalytic reduction of CO2 to CO for 2 is well supported by control experiments and density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Chao Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, No. 15 Yucai Road, Guilin 541004, China
| | - Zilu Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, No. 15 Yucai Road, Guilin 541004, China
| | - Qin Feng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, No. 15 Yucai Road, Guilin 541004, China
| | - Fangsha Wei
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, No. 15 Yucai Road, Guilin 541004, China
| | - Mingling Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, No. 15 Yucai Road, Guilin 541004, China
| | - Anna Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, No. 15 Yucai Road, Guilin 541004, China
| | - Hai-Hua Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, No. 15 Yucai Road, Guilin 541004, China
| | - Huancheng Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, No. 15 Yucai Road, Guilin 541004, China
| | - Dongcheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, No. 15 Yucai Road, Guilin 541004, China
| |
Collapse
|
20
|
Metal-free modification of porphyrin-based porous organic polymers for effective photocatalytic degradation of bisphenol A in water. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Liu S, Chen H, Zhang X. Bifunctional {Pb 10K 2}–Organic Framework for High Catalytic Activity in Cycloaddition of CO 2 with Epoxides and Knoevenagel Condensation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02649] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shurong Liu
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| |
Collapse
|
22
|
Zhang T, Qiao C, Xia L, Yuan T, Wei Q, Yang Q, Chen S. Triphenylamine-based cadmium coordination polymer as a heterogeneous photocatalyst for visible-light-driven α-alkylation of aldehydes. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Che G, Yang W, Wang C, Li M, Li X, Pan Q. Efficient Photocatalytic Oxidative Coupling of Benzylamine over Uranyl-Organic Frameworks. Inorg Chem 2022; 61:12301-12307. [PMID: 35881495 DOI: 10.1021/acs.inorgchem.2c01594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Visible-light-driven organic transformation photocatalyzed by metal-organic frameworks (MOFs) under mild conditions is considered a feasible route to conserve energy and simplify synthesis. Herein, a light-sensitized, three-dimensional uranyl-organic framework (HNU-64) with twofold interpenetration and its derivatives HNU-64-CH3 and HNU-64-Cl with functionalized ligands of -CH3 and -Cl groups were obtained. These MOFs have broad optical absorption bands and suitable band energy levels in photooxidation, which makes them exhibit high activity and selectivity for the photooxidation of benzylamine to N-benzylbenzoimide under mild conditions. This work provides an efficient and simple synthetic option for oxidative coupling of amines to directly produce imines.
Collapse
Affiliation(s)
- Guang Che
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Weiting Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Cong Wang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Meiling Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Xinyi Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
24
|
Chen H, Zhang T, Liu S, Lv H, Fan L, Zhang X. Fluorine-Functionalized NbO-Type {Cu 2}-Organic Framework: Enhanced Catalytic Performance on the Cycloaddition Reaction of CO 2 with Epoxides and Deacetalization-Knoevenagel Condensation. Inorg Chem 2022; 61:11949-11958. [PMID: 35839442 DOI: 10.1021/acs.inorgchem.2c01686] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The high catalytic activity of metal-organic frameworks (MOFs) can be realized by increasing their effective active sites, which prompts us to perform the functionalization on selected linkers by introducing a strong Lewis basic group of fluorine. Herein, the exquisite combination of paddle-wheel [Cu2(CO2)4(H2O)] clusters and meticulously designed fluorine-funtionalized tetratopic 2',3'-difluoro-[p-terphenyl]-3,3″,5,5″-tetracarboxylic acid (F-H4ptta) engenders one peculiar nanocaged {Cu2}-organic framework of {[Cu2(F-ptta)(H2O)2]·5DMF·2H2O}n (NUC-54), which features two types of nanocaged voids (9.8 Å × 17.2 Å and 10.1 Å × 12.4 Å) shaped by 12 paddle-wheel [Cu2(COO)4H2O)2] secondary building units, leaving a calculated solvent-accessible void volume of 60.6%. Because of the introduction of plentifully Lewis base sites of fluorine groups, activated NUC-54a exhibits excellent catalytic performance on the cycloaddition reaction of CO2 with various epoxides under mild conditions. Moreover, to expand the catalytic scope, the deacetalization-Knoevenagel condensation reactions of benzaldehyde dimethyl acetal and malononitrile were performed using the heterogenous catalyst of NUC-54a. Also, NUC-54a features high recyclability and catalytic stability with excellent catalytic performance in subsequent catalytic tests. Therefore, this work not only puts forward a new solution for developing high-efficiency heterogeneous catalysts, but also enriches the functionalization strategies for nanoporous MOFs.
Collapse
Affiliation(s)
- Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Tao Zhang
- Department of Materials Engineering, Taiyuan Institute of Technology, Taiyuan 030008, People's Republic of China
| | - Shurong Liu
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Hongxiao Lv
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Liming Fan
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|