1
|
Li Y, Zou X, Wang C, Xu J, Du Z, Meng Z, Yu S, Tian H, Zheng W. Promoted surface reconstruction of pentlandite via phosphorus-doping for enhanced oxygen evolution reaction. J Colloid Interface Sci 2024; 676:177-185. [PMID: 39024818 DOI: 10.1016/j.jcis.2024.07.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
The pentlandite Fe5Ni4S8(abbreviated as FNS) is not efficient for water splitting because of its inferior performance for the oxygen evolution reaction (OER). This issue originates from the low activity and instability of FNS during the OER process but can be solved through appropriate doping. Herein, a P-doping strategy based on annealing in the presence of NaH2PO2as a phosphorus source upstream was employed on FNS to enhance its activity and stability toward OER. The results demonstrated fine-tuned electronic structures of Fe and Ni in FNS through P-doping, resulting in suppressed Fe leaching,improved electrical conductivity of FNS, and easier formation of NiOOH on the surface of the catalyst. In turn, these features enhanced the OER activity and stability. The optimal P-doped FNS catalyst FNSP-40 exhibited a 4-fold greater electrochemical surface area compared to that of FNS, accompanied by an overpotential of 235 mV at 10 mA cm-2. The optimized FNSP-40 catalyst was used as an anode, and platinum-decorated FNS was used as a cathode. This combination demonstrated an electrolysis performance with a cell voltage of 1.57 V, reaching a current density of 100 mA cm-2,which indicates efficient operation. The advantages of P-doping engineering were also verified in simulated seawater with enhanced OER performance. Overall, the proposed strategy looks promising for the fabrication of pentlandite-structured catalysts for efficient alkaline water and seawater oxidation.
Collapse
Affiliation(s)
- Yaxin Li
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun 130012, Jilin, China
| | - Xu Zou
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun 130012, Jilin, China
| | - Chong Wang
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun 130012, Jilin, China
| | - Jian Xu
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun 130012, Jilin, China
| | - Zhengyan Du
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun 130012, Jilin, China
| | - Zeshuo Meng
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun 130012, Jilin, China
| | - Shansheng Yu
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun 130012, Jilin, China.
| | - Hongwei Tian
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun 130012, Jilin, China.
| | - Weitao Zheng
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun 130012, Jilin, China
| |
Collapse
|
2
|
Saravanan L, Anand P, Fu YP, Ma YR, Yeh WC. Enhancing the Hydrogen Evolution Performance of Tungsten Diphosphide on Carbon Fiber through Ruthenium Modification. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38419190 DOI: 10.1021/acsami.3c17114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Hydrogen-based energy systems hold promise for sustainable development and carbon neutrality, minimizing environmental impact with electrolysis as the preferred fossil-fuel-free hydrogen generation method. Effective electrocatalysts are required to reduce energy consumption and improve kinetics, given the need for additional voltage (overpotential, η) despite the theoretical water splitting potential of 1.23 V. To date, platinum has been acknowledged as the most effective but expensive hydrogen evolution reaction (HER) catalyst. Hence, we introduce a cost-effective (∼2-fold cheaper) ruthenium-modified tungsten diphosphide (Ru/WP2) catalyst on carbon fiber for HER in ∼0.5 M H2SO4, with η ≈ 34 mV at -10 mA cm-2 which can be comparable (only ∼2-fold higher) to benchmark Pt/C (η ≈ 17 mV). The HER performance of WP2 can be enhanced through the modification of ruthenium, as indicated by the electrochemical characterizations. Considering the Tafel value of ∼40 ± 0.2 mV dec-1, it can be inferred that Ru/WP2 follows the Volmer-Heyrovsky reaction pathway for hydrogen generation. Furthermore, the Faradaic efficiency estimation indicates that Ru/WP2 demonstrates a minimal loss of electrons during the electrochemical reaction with an estimated value of ∼98.7 ± 1.4%. Therefore, this study could emphasize the potential of the Ru/WP2 electrode in advancing sustainable hydrogen production through water splitting.
Collapse
Affiliation(s)
- Lokesh Saravanan
- Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan
| | - Pandiyarajan Anand
- Department of Materials Science and Engineering, National Dong Hwa University, Hualien 97401, Taiwan
| | - Yen-Pei Fu
- Department of Materials Science and Engineering, National Dong Hwa University, Hualien 97401, Taiwan
| | - Yuan-Ron Ma
- Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan
| | - Wang-Chi Yeh
- Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan
| |
Collapse
|
3
|
Cao Y, Yan Y, Wen Y, Cao M, Li Y, Xie H, Gu W. Fe-Based Metal Organic Framework-Derived FeNiP/N-Doped Carbon Heterogeneous Core-Shell Structures for Oxygen Evolution. Inorg Chem 2024; 63:3599-3609. [PMID: 38333957 DOI: 10.1021/acs.inorgchem.3c04512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
It is of great significance to explore high activity, low overpotential, and outstanding durability electrocatalysts without precious metals for oxygen evolution reaction to reduce the energy consumption in the electrolysis of water to product hydrogen. Metal organic frameworks (MOFs) with periodic structure and uniform pore distribution have been widely used as precursors for the synthesis of transition metal electrocatalysts. Herein, we first synthesized nanoscale Fe-soc-MOFs with relatively high specific surface area and in situ converted it into nickel-iron double layer hydroxide/MOF (FeNi LDH/MOF) by Ni2+ etching. Finally, a nickel-iron phosphide/nitrogen-doped carbon cubic nanocage (FeNiP/NC) was obtained by calcination and phosphating. FeNiP/NC with its unique core-shell structure has an overpotential of only 240 mV at a current density of 10 mA/cm2 and can be continuously electrolyzed for 45 h. High catalytic activity of FeNiP/NC is mainly attributed to the action of Fe and Ni bimetals and the synergistic effect between FeNiP and N-doped porous carbon, which was confirmed by the calculation of density functional theory (i.e., Gibbs free energy). After a long period of electrolysis, FeNiP was converted to MOOH (M = Fe and Ni) and became the new active site. This study provides a feasible optimization strategy for the development of high-efficiency three-dimensional electrode materials without precious metals.
Collapse
Affiliation(s)
- Yijia Cao
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yunfang Yan
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yusong Wen
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mengya Cao
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yanrong Li
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Zhejiang, Hangzhou 310003, China
| | - Wen Gu
- College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Senthil Raja D, Cheng CC, Ting YC, Lu SY. NiMo-MOF-Derived Carbon-Armored Ni 4Mo Alloy of an Interwoven Nanosheet Structure as an Outstanding pH-Universal Catalyst for Hydrogen Evolution Reaction at High Current Densities. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20130-20140. [PMID: 36946987 DOI: 10.1021/acsami.3c01061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Development of highly efficient and stable non-precious metal-based pH-universal catalysts for hydrogen evolution reaction (HER) at high current densities remains challenging for water electrolysis-based green hydrogen production. Herein, a simple solvothermal process was developed to synthesize a NiMo metal-organic framework (MOF), from which a carbon-armored Ni4Mo alloy of an interwoven nanosheet structure was derived with a two-stage thermal treatment, to serve as a high-performance pH-universal HER catalyst. It requires low overpotentials of 22, 48, and 98 mV to achieve a current density of -10 mA cm-2 and 192, 267, and 360 mV to deliver an ultrahigh current density of -500 mA cm-2 in alkaline, acidic, and neutral media, respectively, and exhibits remarkable operational stability at an ultrahigh initial current density of -500 mA cm-2 for over 50 h, making it promising for applications in large-scale green hydrogen production. The success can be attributed to the unique catalyst design of a carbon-armored, composition-optimized NiMo alloy of an advantageous nanostructure of interwoven nanosheets for enhanced utilization of active sites and mass transfer of electrolytes and gaseous products, made possible with a MOF-derivation fabrication approach.
Collapse
Affiliation(s)
- Duraisamy Senthil Raja
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chih-Chieh Cheng
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Chieh Ting
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shih-Yuan Lu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
5
|
Hu Y, Huang Z, Zhang Q, Taylor Isimjan T, Chu Y, Mu Y, Wu B, Huang Z, Yang X, Zeng L. Interfacial engineering of Co 5.47N/Mo 5N 6 nanosheets with rich active sites synergistically accelerates water dissociation kinetics for Pt-like hydrogen evolution. J Colloid Interface Sci 2023; 643:455-464. [PMID: 37088049 DOI: 10.1016/j.jcis.2023.04.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/14/2023] [Accepted: 04/07/2023] [Indexed: 04/25/2023]
Abstract
The development of highly efficient hydrogen evolution electrocatalysts with platinum-like activity requires precise control of active sites through interface engineering strategies. In this study, a heterostructured Co5.47N/Mo5N6 catalyst (CoMoNx) on carbon cloth (CC) was synthesized using a combination of dip-etching and vapor nitridation methods. The rough nanosheet surface of the catalyst with uniformly distributed elements exposes a large active surface area and provides abundant interface sites that serve as additional active sites. The CoMoNx was found to exhibit exceptional hydrogen evolution reaction (HER) activity with a low overpotential of 44 mV at 10 mA cm-2 and exceptional stability of 100 h in 1.0 M KOH. The CoMoNx(-)||RuO2(+) system requires only 1.81 V cell voltage to reach a current density of 200 mA cm-2, surpassing the majority of previously reported electrolyzers. Density functional theory (DFT) calculations reveal that the strong synergy between Co5.47N and Mo5N6 at the interface can significantly reduce the water dissociation energy barrier, thereby improving the kinetics of hydrogen evolution. Furthermore, the rough nanosheet architecture of the CoMoNx catalyst with abundant interstitial spaces and multi-channels enhances charge transport and reaction intermediate transportation, synergistically improving the performance of the HER for water splitting.
Collapse
Affiliation(s)
- Yan Hu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhiyang Huang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Qing Zhang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tayirjan Taylor Isimjan
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Youqi Chu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yongbiao Mu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Baoxin Wu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zebing Huang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiulin Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Lin Zeng
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|