1
|
Yin M, Hu X, Chen Y, Liang H, Shen Y, Guo W. Oligoadenine Strand Functionalized Polyacrylamide Hydrogel Film Exhibiting pH-Triggered High-Degree Inverse Shape Deformations. Chembiochem 2025; 26:e202400816. [PMID: 39714364 DOI: 10.1002/cbic.202400816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
Smart shape-memory DNA hydrogels, which can respond to various types of external stimuli and undergo macroscopic shape deformations, have shown great potential in various applications. By constructing free-standing films, the deformation and response properties of these hydrogels can be further enhanced, and visualized deformation can be achieved. However, DNA hydrogels that can exhibit rapid and high-degree shape deformations, such as the inverse shape deformations, are still lacking. Herein, free-standing oligoadenine strand-functionalized polyacrylamide hydrogel films were developed that can exhibit reversible and high degree of inverse shape deformation upon cyclic pH changes. The oligoadenine strands exhibit a pH-stimulated reversible conformational transition between a flexible single-stranded state and parallel duplex A-motif structures, resulting in their role change in the film from negatively charged side chains to "head-to-head" crosslinking structures, driving a high degree of inverse shape deformation with a relative bending angle change of 223.7 % of the film, which is more than 5 times that of a film driven by pH-responsive i-motif structures, facilitating the development of bilayer hydrogel film actuators with potential in flexible sensors and robots.
Collapse
Affiliation(s)
- Mengyuan Yin
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xiaohong Hu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yu Chen
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Hanxue Liang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yuxin Shen
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Weiwei Guo
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
2
|
Visan AI, Negut I. Environmental and Wastewater Treatment Applications of Stimulus-Responsive Hydrogels. Gels 2025; 11:72. [PMID: 39852043 PMCID: PMC11765053 DOI: 10.3390/gels11010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Stimulus-responsive hydrogels have emerged as versatile materials for environmental and wastewater treatment applications due to their ability to adapt to changing environmental conditions. This review highlights recent advances in the design, synthesis, and functionalization of such hydrogels, focusing on their environmental applications. Various synthesis techniques, including radical polymerization, grafting, and copolymerization, enable the development of hydrogels with tailored properties such as enhanced adsorption capacity, selectivity, and reusability. The incorporation of nanoparticles and bio-based polymers further improves their structural integrity and pollutant removal efficiency. Key mechanisms such as adsorption, ion exchange, and photodegradation are discussed, emphasizing their roles in removing heavy metals, dyes, and organic pollutants from wastewater. Additionally, this review presents the potential of hydrogels for oil-water separation, pathogen control, and future sustainability through integration into circular economy frameworks. The adaptability, cost-effectiveness, and eco-friendliness of these hydrogels make them promising candidates for large-scale environmental remediation.
Collapse
Affiliation(s)
| | - Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Măgurele, Romania;
| |
Collapse
|
3
|
Dong X, Wang C, Song H, Shao J, Lan G, Zhang J, Li X, Li M. Advancement in Soft Hydrogel Grippers: Comprehensive Insights into Materials, Fabrication Strategies, Grasping Mechanism, and Applications. Biomimetics (Basel) 2024; 9:585. [PMID: 39451793 PMCID: PMC11505285 DOI: 10.3390/biomimetics9100585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Soft hydrogel grippers have attracted considerable attention due to their flexible/elastic bodies, stimuli-responsive grasping and releasing capacity, and novel applications in specific task fields. To create soft hydrogel grippers with robust grasping of various types of objects, high load capability, fast grab response, and long-time service life, researchers delve deeper into hydrogel materials, fabrication strategies, and underlying actuation mechanisms. This article provides a systematic overview of hydrogel materials used in soft grippers, focusing on materials composition, chemical functional groups, and characteristics and the strategies for integrating these responsive hydrogel materials into soft grippers, including one-step polymerization, additive manufacturing, and structural modification are reviewed in detail. Moreover, ongoing research about actuating mechanisms (e.g., thermal/electrical/magnetic/chemical) and grasping applications of soft hydrogel grippers is summarized. Some remaining challenges and future perspectives in soft hydrogel grippers are also provided. This work highlights the recent advances of soft hydrogel grippers, which provides useful insights into the development of the new generation of functional soft hydrogel grippers.
Collapse
Affiliation(s)
- Xiaoxiao Dong
- College of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (C.W.); (H.S.); (J.S.); (G.L.); (J.Z.); (X.L.)
| | - Chen Wang
- College of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (C.W.); (H.S.); (J.S.); (G.L.); (J.Z.); (X.L.)
| | - Haoxin Song
- College of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (C.W.); (H.S.); (J.S.); (G.L.); (J.Z.); (X.L.)
| | - Jinqiang Shao
- College of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (C.W.); (H.S.); (J.S.); (G.L.); (J.Z.); (X.L.)
| | - Guiyao Lan
- College of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (C.W.); (H.S.); (J.S.); (G.L.); (J.Z.); (X.L.)
| | - Jiaming Zhang
- College of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (C.W.); (H.S.); (J.S.); (G.L.); (J.Z.); (X.L.)
| | - Xiangkun Li
- College of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (C.W.); (H.S.); (J.S.); (G.L.); (J.Z.); (X.L.)
| | - Ming Li
- Center for Advanced Structural Ceramics, Department of Materials, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
4
|
Yang S, Song Z, He Z, Ye X, Li J, Wang W, Zhang D, Li Y. A review of chitosan-based shape memory materials: Stimuli-responsiveness, multifunctionalities and applications. Carbohydr Polym 2024; 323:121411. [PMID: 37940246 DOI: 10.1016/j.carbpol.2023.121411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/03/2023] [Accepted: 09/15/2023] [Indexed: 11/10/2023]
Abstract
Shape memory polymers (SMPs), as a type of smart materials, possess the unique shape memory and deformation recovery abilities. Hence, SMPs have been attracted extensive attentions and widely used in fields of electric devices, aerospace structures and biomedical engineering. Chitosan (CS), as a renewable natural biomass material, exhibits the excellent biocompatibility, biodegradability and antibacterial activities. Using biomass CS as SMPs matrix materials could greatly enhance the environmental friendliness and adaptability, promoting the applications in fields of biomedical engineering and smart devices. This paper provides a detailed overview of current research progress about CS-based SMPs, including diverse stimuli responsiveness, multifunctionalities and various applications. Though, the research on CS-based SMPs is still in the early stage, which exhibits extensive prospect and potential, and could be of significance in advancing smart biomedical technologies.
Collapse
Affiliation(s)
- Shuai Yang
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China.
| | - Zijian Song
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China.
| | - Zhichao He
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China.
| | - Xinming Ye
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China.
| | - Jie Li
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China.
| | - Wensheng Wang
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China.
| | - Dawei Zhang
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| | - Yingchun Li
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China.
| |
Collapse
|
5
|
Wang M, Yang C, Deng H, Du Y, Xiao L, Shi X. Electrically induced anisotropic assembly of chitosan with different molecular weights. Carbohydr Polym 2023; 304:120494. [PMID: 36641176 DOI: 10.1016/j.carbpol.2022.120494] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Anisotropic hydrogel is emerging as an important soft matter in the field of bionics and bioactuators, owing to its outstanding mechanical toughness and strength. Understanding the dynamic construction process of anisotropic hydrogel is beneficial for matching subsequent application. In this work, we establish an electrical field in microfluidics for the in-situ real time visualization of anisotropic assembly of chitosan, an amino polysaccharide. Polarized light microscopy is adopted to observe the dynamic growth of chitosan with different molecular weights. The results demonstrate that electrical signal has a profound influence on anisotropic assembly process of chitosan. It is interesting to notice that high oriented structure can be found in chitosan hydrogel with large molecular weight, which exhibits a dense and compact structure. This work provides a new perspective for predicting and controlling the formation of different molecular weights anisotropic chitosan hydrogels, which permit the rational design of chitosan hydrogels with excellent mechanical properties and specific functions.
Collapse
Affiliation(s)
- Manya Wang
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | - Chen Yang
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | - Hongbing Deng
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | - Yumin Du
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | - Ling Xiao
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China.
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
6
|
Srivastava N, Choudhury AR. Stimuli-Responsive Polysaccharide-Based Smart Hydrogels and Their Emerging Applications. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Nandita Srivastava
- Biochemical Engineering Research & Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anirban Roy Choudhury
- Biochemical Engineering Research & Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India
| |
Collapse
|
7
|
Zhao Z, Zhang J, Tong J, Yang C, Deng H, Du Y, Shi X. Ultra-low protein residue of chitosan by one step H2O2 and sodium dodecyl sulfate treatment. Int J Biol Macromol 2022; 222:2977-2986. [DOI: 10.1016/j.ijbiomac.2022.10.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/15/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022]
|
8
|
He Z, Zhou Z, Yuan W. Highly Adhesive, Stretchable, and Antifreezing Hydrogel with Excellent Mechanical Properties for Sensitive Motion Sensors and Temperature-/Humidity-Driven Actuators. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38205-38215. [PMID: 35952384 DOI: 10.1021/acsami.2c10292] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Conductive hydrogels as flexible wearable devices have attracted considerable attention due to their mechanical flexibility and intelligent sensing. How to endow more and better performance, such as high self-adhesion, stretchability, and wide application temperature range for traditional hydrogels and flexible sensors is a challenge. Herein, a stretchable, self-adhesive, and antifreezing conductive hydrogel with multiple networks and excellent mechanical properties was prepared by a two-step method for its application in sensitive motion sensors and temperature-/humidity-driven actuators. First, quaternary chitosan (QCS) was introduced into the network of an acrylamide (AM) and 1-vinyl imidazole (VI) copolymer initiated by UV-photoinitiated radical polymerization. Then, the double-network hydrogel was immersed in a FeCl3 solution to fabricate the P(AAm-co-VI)/QCS-Fe3+ ionic hydrogel with multiple physical networks. The properties of the hydrogel were controllable and adjustable. The toughness of the ionic hydrogel could reach up to 654.4 kJ/m3, the fracture strength could reach 253.1 kPa, and the compressive strength reached 8.4 MPa at an 80% compression strain. The multiple physical networks improved the mechanical properties and the quick resilience of the hydrogel. A large amount of FeCl3 in the network greatly enhanced the ionic conductivity. Meanwhile, hydrogen bonds with water molecules inhibit the formation of ice crystals between zero water molecules and enhance the freezing resistance of P(Aam-co-VI)/QCS hydrogels. The active group on the QCS chain provided adhesiveness to various substrates for hydrogels. The P(AAm-co-VI)/QCS-Fe3+ hydrogel-based sensor showed high sensitivity, which can detect human movement and pulse, with a gauge factor of 2.37. Finally, due to the different dehydration rates of the P(AAm-co-VI)/QCS-Fe3+ and P(AAm-co-VI)/QCS hydrogel, a double-layer temperature/humidity-driven actuator was fabricated, expanding the application of conductive hydrogels.
Collapse
Affiliation(s)
- Zhirui He
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Zixuan Zhou
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Weizhong Yuan
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| |
Collapse
|