1
|
Su C, Zou S, Li J, Wang L, Huang J. Supporting Nano Catalysts for the Selective Hydrogenation of Biomass-derived Compounds. CHEMSUSCHEM 2024; 17:e202400602. [PMID: 38760993 DOI: 10.1002/cssc.202400602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/05/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
The selective hydrogenation of biomass derivatives presents a promising pathway for the production of high-value chemicals and fuels, thereby reducing reliance on traditional petrochemical industries. Recent strides in catalyst nanostructure engineering, achieved through tailored support properties, have significantly enhanced the hydrogenation performance in biomass upgrading. A comprehensive understanding of biomass selective upgrading reactions and the current advancement in supported catalysts is crucial for guiding future processes in renewable biomass. This review aims to summarize the development of supported nanocatalysts for the selective hydrogenation of the US DOE's biomass platform compounds derivatives into valuable upgraded molecules. The discussion includes an exploration of the reaction mechanisms and conditions in catalytic transfer hydrogenation (CTH) and high-pressure hydrogenation. By thoroughly examining the tailoring of supports, such as metal oxide catalysts and porous materials, in nano-supported catalysts, we elucidate the promoting role of nanostructure engineering in biomass hydrogenation. This endeavor seeks to establish a robust theoretical foundation for the fabrication of highly efficient catalysts. Furthermore, the review proposes prospects in the field of biomass utilization and address application bottlenecks and industrial challenges associated with the large-scale utilization of biomass.
Collapse
Affiliation(s)
- Chunjing Su
- School of Chemical and Biomolecular Engineering, The University of Sydney, New South Wales, 2008, Sydney, Australia
| | - Sibei Zou
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, New South Wales, 2006, Sydney, Australia
| | - Jiaquan Li
- School of Chemical and Biomolecular Engineering, The University of Sydney, New South Wales, 2008, Sydney, Australia
| | - Lizhuo Wang
- School of Chemical and Biomolecular Engineering, The University of Sydney, New South Wales, 2008, Sydney, Australia
| | - Jun Huang
- School of Chemical and Biomolecular Engineering, The University of Sydney, New South Wales, 2008, Sydney, Australia
| |
Collapse
|
2
|
Shao F, Ma F, Li Y, Jiang W, Wei Z, Zhong X, Wang H, Wang L, Wang J. Ru Supported on p-phthalic acid-Mn Derived from a Mn Metal-Organic Framework for Thermo- and Electrocatalytic Synthesis of Ethylene-D4 Glycol. CHEMSUSCHEM 2023; 16:e202202395. [PMID: 37012670 DOI: 10.1002/cssc.202202395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Deuterium-labeled polyols are one of the most extensive applied chemicals in biochemistry and biophysics. However, the deuteriation still is insufficient, exhibiting a low deuterated ratio and indistinct reaction mechanism. Herein, Ru supported on MnBCD (MnBDC, derived from Mn p-phthalic acid metal-organic framework) as nanocatalyst with an agglomerated sheet-type structure; this allows the possibility of achieving both thermo- and electrocatalytic hydrogen isotope exchange (HIE) reaction. Furthermore, XPS characterization confirmed that the specific structural changes in the electron density of Ru outer layers were modulated through the impregnation and reduction processes. According to the change of outer electronic structure, hydrogen spillover and electron-rich flow promote the reaction of the catalyst in thermo- and electrocatalytic systems, respectively. In addition, the results indicate that a high deuterated ratio of 97 % can be obtained, hence the catalytic technology has enormous potential for the synthesis of a broad variety of deuterium-labeled compounds.
Collapse
Affiliation(s)
- Fangjun Shao
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Fandong Ma
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yuanan Li
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Wenjie Jiang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zhongzhe Wei
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xing Zhong
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hong Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Ligeng Wang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jianguo Wang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
3
|
Song X, Shao F, Zhao Z, Li X, Wei Z, Wang J. Mg-modified Al2O3 regulates the supported Pd with Pd0/Pd2+ ratio for 2-butyn-l-ol semi-hydrogenation performance. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
4
|
Xu Y, Liang Y, Guo H, Qi X. Catalytic hydrogenation of levulinic acid to γ-valerolactone over lignin-metal coordinated carbon nanospheres in water. Int J Biol Macromol 2023; 240:124451. [PMID: 37062379 DOI: 10.1016/j.ijbiomac.2023.124451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 04/18/2023]
Abstract
The hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL) has attracted much attention, as GVL can be used as biofuel, green solvent, and platform chemical. Inspired by Stöber method, various lignin-metal coordinated colloidal nanospheres (LCS) from lignin and cetyltrimethylammonium bromide (CTAB) were synthesized in which the metal ions (Co2+) replace formaldehyde as the crosslinker. The characterization of the catalyst revealed that alkali lignin was first self-assembled with CTAB through electrostatic attraction to form a lignin polymer, the subsequent addition of metal ions (Co2+) promoted the aggregation of lignin polymers and generated the LCS. Increasing calcination temperature for LCS resulted in the Co2+ being reduced to metallic Co. The lignin-metal coordinated colloidal nanospheres calcined at 500 °C possess both CoO and metallic Co active sites, which effectively accelerated the hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL) than simplex metallic Co active sites. A 99.8 % yield of GVL with 100 % LA conversion was obtained after 60 min reaction time at 200 °C and 2 MPa H2.
Collapse
Affiliation(s)
- Yingying Xu
- College of Environmental Science and Engineering, Nankai University, No. 38, Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Yining Liang
- College of Environmental Science and Engineering, Nankai University, No. 38, Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Haixin Guo
- Agro-Environmental Protection Institute, Chinese Academy of Agricultural Sciences, No. 31, Fukang Road, Nankai District, Tianjin 300191, China.
| | - Xinhua Qi
- College of Environmental Science and Engineering, Nankai University, No. 38, Tongyan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
5
|
Ye R, Huang YY, Chen CC, Yao YG, Fan M, Zhou Z. Emerging catalysts for the ambient synthesis of ethylene glycol from CO 2 and its derivatives. Chem Commun (Camb) 2023; 59:2711-2725. [PMID: 36752126 DOI: 10.1039/d2cc06313a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ethylene glycol (EG), a useful chemical raw material, has been widely applied in many aspects of modern society. The conventional preparation of ethylene glycol mainly uses the petroleum route at high temperatures and pressure. More and more approaches have been developed to synthesize EG from CO2 and its derivatives under mild conditions. In this review, the ambient synthesis of EG from thermocatalysis, photocatalysis, and electrocatalysis is highlighted. The coal-to-ethylene glycol technology, one of the typical thermal catalysis routes for EG preparation, is relatively mature. However, it still faces some problems to be solved in industrialization. The recent progress in the development of coal-to-ethylene glycol technology is introduced. The main focus is on how to realize the preparation of EG under mild conditions. The strategies include doping promoters, modification of supports, design of catalysts with special structures, etc. Furthermore, the emerging technological progress of photocatalytic and electrocatalytic ethylene glycol synthesis under ambient conditions is introduced. Compared with the thermal catalytic reaction, the reaction conditions are milder. However, there are still many problems in large-scale production. Finally, we propose future development issues and related prospects for the ambient synthesis of EG using different catalytic routes.
Collapse
Affiliation(s)
- Runping Ye
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China.
| | - Yuan-Yuan Huang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
| | - Chong-Chong Chen
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China. .,College of Food and Drug, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Yuan-Gen Yao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
| | - Maohong Fan
- College of Engineering and Physical Sciences, School of Energy Resources, University of Wyoming, Laramie, Wyoming, 82071, USA. .,College of Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Zhangfeng Zhou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
| |
Collapse
|
6
|
Functional carbon-supported nanocatalysts for biomass conversion. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
7
|
Liu Y, Gu C, Chen L, Zhou W, Liao Y, Wang C, Ma L. Ru-MnO x Interaction for Efficient Hydrodeoxygenation of Levulinic Acid and Its Derivatives. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4184-4193. [PMID: 36626197 DOI: 10.1021/acsami.2c22045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metal-oxide interaction was widely observed in supported metal catalysts, playing a significant role in tuning the catalytic performance. Here, we reported that the interaction of Ru and MnOx was able to facilitate the hydrodeoxygenation of levulinic acid (LA) to 2-butanol with a high turnover frequency (1.99 × 106 h-1), turnover number (4411), and yield (98.8%). Moreover, this catalyst was capable of removing the hydroxymethyl group of lactones and diol with high yields of products. The high activity of the Ru-MnOx catalyst was due to the strong Ru-MnOx interaction, which facilitated reduction of Ru oxide to Ru0 and Mn oxide to Mn2+. The increased fractions of Ru0 and Mn2+ provided metal and Lewis acid sites, respectively, and therefore facilitated LA hydrodeoxygenation. A linear correlation between the hydrodeoxygenation activity of the Ru-MnOx catalyst and [Mn2+]ln([Ru0]) was observed.
Collapse
Affiliation(s)
- Yong Liu
- School of Resources & Environment and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang330031PR China
| | - Canshuo Gu
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou510640, PR China
| | - Lungang Chen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing210096, PR China
| | - Wenguang Zhou
- School of Resources & Environment and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang330031PR China
| | - Yuhe Liao
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou510640, PR China
| | - Chenguang Wang
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou510640, PR China
| | - Longlong Ma
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing210096, PR China
| |
Collapse
|
8
|
Zhang Q, Han GN, Lian X, Yang SQ, Hu TL. Customizing Pore System in a Microporous Metal–Organic Framework for Efficient C2H2 Separation from CO2 and C2H4. Molecules 2022; 27:molecules27185929. [PMID: 36144665 PMCID: PMC9502222 DOI: 10.3390/molecules27185929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Selective-adsorption separation is an energy-efficient technology for the capture of acetylene (C2H2) from carbon dioxide (CO2) and ethylene (C2H4). However, it remains a critical challenge to effectively recognize C2H2 among CO2 and C2H4, owing to their analogous molecule sizes and physical properties. Herein, we report a new microporous metal–organic framework (NUM-14) possessing a carefully tailored pore system containing moderate pore size and nitro-functionalized channel surface for efficient separation of C2H2 from CO2 and C2H4. The activated NUM-14 (namely NUM-14a) exhibits sufficient pore space to acquire excellent C2H2 loading capacity (4.44 mmol g−1) under ambient conditions. In addition, it possesses dense nitro groups, acting as hydrogen bond acceptors, to selectively identify C2H2 molecules rather than CO2 and C2H4. The breakthrough experiments demonstrate the good actual separation ability of NUM-14a for C2H2/CO2 and C2H2/C2H4 mixtures. Furthermore, Grand Canonical Monte Carlo simulations indicate that the pore surface of the NUM-14a has a stronger affinity to preferentially bind C2H2 over CO2 and C2H4 via stronger C-H···O hydrogen bond interactions. This article provides some insights into customizing pore systems with desirable pore sizes and modifying groups in terms of MOF materials toward the capture of C2H2 from CO2 and C2H4 to promote the development of more MOF materials with excellent properties for gas adsorption and separation.
Collapse
|
9
|
Lu J, Wei Y, Lu K, Wu C, Nong X, Li J, Liu CL, Dong WS. Co-C N embedded in N-doped carbon as robust catalysts for the synthesis of γ-valerolactone from the hydrogenation of levulinic acid under low hydrogen pressure. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|