1
|
Zhuang S, Duan N, Xu F. Synergistic strategy of solute environment and phase control of Pb-based anodes to solve the activity-stability trade-off. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134119. [PMID: 38579581 DOI: 10.1016/j.jhazmat.2024.134119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/07/2024]
Abstract
The contradiction between the activity and stability of metal anodes exists extensively, especially in acid electrooxidation under industrial-level current density. Although the anode modification enhanced the initial activity of anodes, its long-term activity is limited by anode slime accumulation. Herein, a synergistic strategy, coupling the solute environment with the phase control of anodes, is proposed to achieve the trade-off between activity and stability of Pb-based anodes in concentrated sulfuric acid electrolysis. Non-exogenous Mn2+ motivated a series of positive behaviours of reactive-oxygen-species capture, anode reconstruction and corrosion-dependent activity alleviation. The synergistic effects, which are crystal phase-dependent, mainly benefit from the continuous self-healing ability of the specific crystal phase of MnO2 on the anodes by the coexisted Mn2+. Compared with Mn2+/α-MnO2, Mn2+/γ-MnO2 exhibited outperformed activity and stability in boosting oxygen evolution reaction (OER) and reducing hazardous pollutants, which resulted from the energy difference in the rate-determining step of OER and in the selectivity priority of Mn2+/MnO2 oxidation pathway. Interestingly, the pre-coated γ-MnO2 on the anode also presents excellent inheritance, guaranteeing the unchanged crystal phase of MnO2 and the high performance in ultra-low hazardous slime generation in subsequent Mn2+ oxidation. The sustainability of Mn2+/γ-MnO2 was proved in the operating hydrometallurgy conditions on Pb-based anodes. This strategy offers a promising approach for this common issue in electrooxidation-related areas.
Collapse
Affiliation(s)
- Siwei Zhuang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ning Duan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Fuyuan Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
2
|
Liu C, Yan Z, Yang J, Wei P, Zhang D, Wang Q, Zhang X, Hao Y, Yang D. Corrosion and Biological Behaviors of Biomedical Ti-24Nb-4Zr-8Sn Alloy under an Oxidative Stress Microenvironment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18503-18521. [PMID: 38570902 DOI: 10.1021/acsami.4c00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Biomaterials can induce an inflammatory response in surrounding tissues after implantation, generating and releasing reactive oxygen species (ROS), such as hydrogen peroxide (H2O2). The excessive accumulation of ROS may create a microenvironment with high levels of oxidative stress (OS), which subsequently accelerates the degradation of the passive film on the surface of titanium (Ti) alloys and affects their biological activity. The immunomodulatory role of macrophages in biomaterial osteogenesis under OS is unknown. This study aimed to explore the corrosion behavior and bone formation of Ti implants under an OS microenvironment. In this study, the corrosion resistance and osteoinduction capabilities in normal and OS conditions of the Ti-24Nb-4Zr-8Sn (wt %, Ti2448) were assessed. Electrochemical impedance spectroscopy analysis indicated that the Ti2448 alloy exhibited superior corrosion resistance on exposure to excessive ROS compared to the Ti-6Al-4V (TC4) alloy. This can be attributed to the formation of the TiO2 and Nb2O5 passive films, which mitigated the adverse effects of OS. In vitro MC3T3-E1 cell experiments revealed that the Ti2448 alloy exhibited good biocompatibility in the OS microenvironment, whereas the osteogenic differentiation level was comparable to that of the TC4 alloy. The Ti2448 alloy significantly alleviates intercellular ROS levels, inducing a higher proportion of M2 phenotypes (52.7%) under OS. Ti2448 alloy significantly promoted the expression of the anti-inflammatory cytokine, interleukin 10 (IL-10), and osteoblast-related cytokines, bone morphogenetic protein 2 (BMP-2), which relatively increased by 26.9 and 31.4%, respectively, compared to TC4 alloy. The Ti2448 alloy provides a favorable osteoimmune environment and significantly promotes the proliferation and differentiation of osteoblasts in vitro compared to the TC4 alloy. Ultimately, the Ti2448 alloy demonstrated excellent corrosion resistance and immunomodulatory properties in an OS microenvironment, providing valuable insights into potential clinical applications as implants to repair bone tissue defects.
Collapse
Affiliation(s)
- Chang Liu
- School of Stomatology, Jiamusi University, Jiamusi, Heilongjiang 154004, People's Republic of China
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Zenglong Yan
- Liaoning People's Hospital, 33 Wenyi Road, Shenyang, Liaoning 110013, People's Republic of China
| | - Jun Yang
- School of Stomatology, Jiamusi University, Jiamusi, Heilongjiang 154004, People's Republic of China
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Penggong Wei
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Dan Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Xing Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, People's Republic of China
| | - Yulin Hao
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, People's Republic of China
| | - Donghong Yang
- School of Stomatology, Jiamusi University, Jiamusi, Heilongjiang 154004, People's Republic of China
| |
Collapse
|