1
|
Wu Y, Tang CY, Wang S, Guo J, Jing Q, Liu J, Ke K, Wang Y, Yang W. Biomimetic Heteromodulus All-Fluoropolymer Piezoelectric Nanofiber Mats for Highly Sensitive Acoustic Detection. ACS APPLIED MATERIALS & INTERFACES 2025; 17:21808-21818. [PMID: 40134235 DOI: 10.1021/acsami.5c01549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Flexible piezoelectric pressure sensors have aroused a plethora of applications in wearable electronics, acoustic transducers, and energy harvesters thanks to many merits such as prompt response, good signal linearity, and ease of shaping. However, as all-polymer piezoelectric films have a low piezoelectric coefficient and severe stress dissipation, it is currently challenging to achieve a high piezoelectric output for the foregoing applications without introducing nanomaterials or piezoelectric ceramics. Here, we report a local stress engineering strategy to fabricate biomimetic all-fluoropolymer piezoelectric film pressure sensors with high-modulus poly(vinylidene fluoride) (PVDF) nanospheres embedded on low-modulus poly(vinylidene fluoride-trifluoride ethylene) (PVDF-TrFE) nanofibers for highly sensitive acoustic detection. High-modulus PVDF nanospheres create many local stress concentration sites on PVDF-TrFE nanofibers and increase the local deformation, leading to significantly improved force/pressure sensitivity. As such, by comparison with the force sensitivity of 60 mV/N for neat PVDF-TrFE, the heteromodulus fiber mats with 10 wt % PVDF nanospheres can achieve a force sensitivity of 145.1 mV/N over 0-25 N dynamic impact force (i.e., 0 ∼ 250 kPa pressure), together with an acoustic detection limit as low as 60 dB or 0.02 Pa.
Collapse
Affiliation(s)
- Yujie Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Chun-Yan Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shan Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jiaxing Guo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Qi Jing
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Junhong Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Kai Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yu Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Wei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
2
|
Wang X, Sun K, Wang C, Yang M, Qian K, Ye B, Guo X, Shao Y, Chu C, Xue F, Li J, Bai J. Ultrasound-responsive microfibers promoted infected wound healing with neuro-vascularization by segmented sonodynamic therapy and electrical stimulation. Biomaterials 2025; 313:122803. [PMID: 39232334 DOI: 10.1016/j.biomaterials.2024.122803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/31/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
Bacteria-infected wounds pose challenges to healing due to persistent infection and associated damage to nerves and vessels. Although sonodynamic therapy can help kill bacteria, it is limited by the residual oxidative stress, resulting in prolonged inflammation. To tackle these barriers, novel 4 octyl itaconate-coated Li-doped ZnO/PLLA piezoelectric composite microfibers are developed, offering a whole-course "targeted" treatment under ultrasound therapy. The inclusion of Li atoms causes the ZnO lattice distortion and increases the band gap, enhancing the piezoelectric and sonocatalytic properties of the composite microfibers, collaborated by an aligned PLLA conformation design. During the infection and inflammation stages, the piezoelectric microfibers exhibit spatiotemporal-dependent therapeutic effects, swiftly eliminating over 94.2 % of S. aureus within 15 min under sonodynamic therapy. Following this phase, the microfibers capture reactive oxygen species and aid macrophage reprogramming, restoring mitochondrial function, achieving homeostasis, and shortening inflammation cycles. As the wound progresses through the healing stages, bioactive Zn2+ and Li + ions are continuously released, improving cell recruitment, and the piezoelectrical stimulation enhances wound recovery with neuro-vascularization. Compared to commercially available dressings, our microfibers accelerate the closure of rat wounds (Φ = 15 mm) without scarring in 12 days. Overall, this "one stone, four birds" wound management strategy presents a promising avenue for infected wound therapy.
Collapse
Affiliation(s)
- Xianli Wang
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing, 211189, Jiangsu, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing, 211189, Jiangsu, China; Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119276, Singapore; Institute of Medical Devices (Suzhou), Southeast University, Suzhou, 215000, China
| | - Ke Sun
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing, 211189, Jiangsu, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing, 211189, Jiangsu, China; Institute of Medical Devices (Suzhou), Southeast University, Suzhou, 215000, China
| | - Cheng Wang
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing, 211189, Jiangsu, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing, 211189, Jiangsu, China; Institute of Medical Devices (Suzhou), Southeast University, Suzhou, 215000, China
| | - Mengmeng Yang
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing, 211189, Jiangsu, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing, 211189, Jiangsu, China; Institute of Medical Devices (Suzhou), Southeast University, Suzhou, 215000, China
| | - Kun Qian
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing, 211189, Jiangsu, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing, 211189, Jiangsu, China; Institute of Medical Devices (Suzhou), Southeast University, Suzhou, 215000, China
| | - Bing Ye
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xiaodong Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yi Shao
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing, 211189, Jiangsu, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing, 211189, Jiangsu, China; Institute of Medical Devices (Suzhou), Southeast University, Suzhou, 215000, China
| | - Chenglin Chu
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing, 211189, Jiangsu, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing, 211189, Jiangsu, China
| | - Feng Xue
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing, 211189, Jiangsu, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing, 211189, Jiangsu, China
| | - Jun Li
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119276, Singapore.
| | - Jing Bai
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing, 211189, Jiangsu, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing, 211189, Jiangsu, China; Institute of Medical Devices (Suzhou), Southeast University, Suzhou, 215000, China.
| |
Collapse
|
3
|
He L, Liu X, Han C, Wang D, Wang Q, Deng X, Zhang C. 3D Printing Architecting β-PVDF Reservoirs for Preferential ZnO Epitaxial Growth Toward Advanced Piezoelectric Energy Harvesting. SMALL METHODS 2024; 8:e2301707. [PMID: 38343185 DOI: 10.1002/smtd.202301707] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/23/2024] [Indexed: 10/18/2024]
Abstract
For polyvinylidene fluoride (PVDF) based piezoelectric composites, epitaxial growth of ZnO nanorods (ZnO-nr) piezoceramic layer on PVDF is an effective way to improve their piezoelectric performance. However, the crystal nucleus of ZnO featuring polar surfaces that cannot be directly attached to hydrophobic PVDF with low surface energy. Herein, direct ink writing (DIW) 3D printing is employed for the first time to create β-PVDF reservoirs with significantly enhanced surface energy, facilitating the attachment and epitaxial growth of ZnO-nr. The printed β-PVDF reservoirs designed with programmed macro-pores and abundant inner micropores, enable a higher loading of ZnO-nr by more than one magnitude, thereby boosting the electro-mechanical response. The resulting PVDF/ZnO core-shell piezoelectric energy harvester (PEH) delivers an output voltage of 33.2 V, as well as an unprecedentedly high relative output voltage of 2.76 V/wt.%, which is 2.63 times that of the state-of-the-art 3D-printed PVDF/piezoceramics PEHs. Furthermore, it can differentiate subtle human motions whereas hybrid PEHs cannot distinct. This work demonstrates that the DIW 3D printing approach offers a simple and convenient design idea for creating high performance PEHs.
Collapse
Affiliation(s)
- Lirong He
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xingang Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Cheng Han
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Dehui Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610065, China
| | - Qi Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xu Deng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610065, China
| | - Chuhong Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
4
|
Sahoo S, Panday R, Kothavade P, Sharma VB, Sowmiyanarayanan A, Praveenkumar B, Zaręba JK, Kabra D, Shanmuganathan K, Boomishankar R. A Highly Electrostrictive Salt Cocrystal and the Piezoelectric Nanogenerator Application of Its 3D-Printed Polymer Composite. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26406-26416. [PMID: 38725337 PMCID: PMC11129113 DOI: 10.1021/acsami.4c03349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/24/2024]
Abstract
Ionic cocrystals with hydrogen bonding can form exciting materials with enhanced optical and electronic properties. We present a highly moisture-stable ammonium salt cocrystal [CH3C6H4CH(CH3)NH2][CH3C6H4CH(CH3)NH3][PF6] ((p-TEA)(p-TEAH)·PF6) crystallizing in the polar monoclinic C2 space group. The asymmetry in (p-TEA)(p-TEAH)·PF6 was induced by its chiral substituents, while the polar order and structural stability were achieved by using the octahedral PF6- anion and the consequent formation of salt cocrystal. The ferroelectric properties of (p-TEA)(p-TEAH)·PF6 were confirmed through P-E loop measurements. Piezoresponse force microscopy (PFM) enabled the visualization of its domain structure with characteristic "butterfly" and hysteresis loops associated with ferro- and piezoelectric properties. Notably, (p-TEA)(p-TEAH)·PF6 exhibits a large electrostrictive coefficient (Q33) value of 2.02 m4 C-2, higher than those found for ceramic-based materials and comparable to that of polyvinylidene difluoride. Furthermore, the composite films of (p-TEA)(p-TEAH)·PF6 with polycaprolactone (PCL) polymer and its gyroid-shaped 3D-printed composite scaled-up device, 3DP-Gy, were prepared and evaluated for piezoelectric energy-harvesting functionality. A high output voltage of 22.8 V and a power density of 118.5 μW cm-3 have been recorded for the 3DP-Gy device. Remarkably, no loss in voltage outputs was observed for the (p-TEA)(p-TEAH)·PF6 devices even after exposure to 99% relative humidity, showcasing their utility under extremely humid conditions.
Collapse
Affiliation(s)
- Supriya Sahoo
- Department
of Chemistry, Indian Institute of Science
Education and Research Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Rishukumar Panday
- Department
of Chemistry, Indian Institute of Science
Education and Research Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Premkumar Kothavade
- Polymer
Science and Engineering Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vijay Bhan Sharma
- Department
of Physics and Center for Research in Nanotechnology and Sciences, Indian Institute of Technology, Mumbai 400076, India
| | - Anirudh Sowmiyanarayanan
- PZT Centre, Armament Research
and Development Establishment, Dr. Homi Bhabha Road, Pune 411021, India
| | - Balu Praveenkumar
- PZT Centre, Armament Research
and Development Establishment, Dr. Homi Bhabha Road, Pune 411021, India
| | - Jan K. Zaręba
- Institute
of Advanced Materials, Wrocław University
of Science and Technology, Wrocław 50-370, Poland
| | - Dinesh Kabra
- Department
of Physics and Center for Research in Nanotechnology and Sciences, Indian Institute of Technology, Mumbai 400076, India
| | - Kadhiravan Shanmuganathan
- Polymer
Science and Engineering Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ramamoorthy Boomishankar
- Department
of Chemistry, Indian Institute of Science
Education and Research Pune, Dr. Homi Bhabha Road, Pune 411008, India
- Centre
for Energy Science, Indian Institute of
Science Education and Research Pune, Dr. Homi Bhabha Road, Pune411008, India
| |
Collapse
|
5
|
Wei X, Xu K, Wang Y, Zhang Z, Chen Z. 3D Printing of Flexible BaTiO 3/Polydimethylsiloxane Piezocomposite with Aligned Particles for Enhanced Energy Harvesting. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11740-11748. [PMID: 38394674 DOI: 10.1021/acsami.4c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
With the rapid development of human-machine interactions and artificial intelligence, the demand for wearable electronic devices is increasing uncontrollably all over the world; however, an unsustainable power supply for such sensors continues to restrict their applications. In the present work, piezoelectric barium titanate (BaTiO3) ceramic powder with excellent properties was prepared from milled precursors through a solid-state reaction. To fabricate a flexible device, the as-prepared BaTiO3 powder was mixed with polydimethylsiloxane (PDMS) polymer. The BaTiO3/PDMS ink with excellent rheological properties was extruded smoothly by direct ink writing technology (DIW). BaTiO3 particles were aligned due to the shear stress effect during the printing process. Subsequently, the as-printed composite was assembled into a sandwich-type device for effective energy harvesting. It was observed that the maximum output voltage and current of this device reached 68 V and 720 nA, respectively, for a BaTiO3 content of 6 vol %. Therefore, the material extrusion-based three-dimensional (3D) printing technique can be used to prepare flexible piezoelectric composites for efficient energy harvesting.
Collapse
Affiliation(s)
- Xiangxia Wei
- Institute for Future (IFF), School of Automation, Shandong Key Laboratory of Industrial Control Technology, Qingdao University, Qingdao 266071, China
| | - Kailong Xu
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yuming Wang
- Institute for Future (IFF), School of Automation, Shandong Key Laboratory of Industrial Control Technology, Qingdao University, Qingdao 266071, China
| | - Zihan Zhang
- Institute for Future (IFF), School of Automation, Shandong Key Laboratory of Industrial Control Technology, Qingdao University, Qingdao 266071, China
| | - Zhangwei Chen
- Additive Manufacturing Institute, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
6
|
Srivastava M, Kumar S, Yousuf M, Kumar B, Singh P, Wazed Ali S. Reaching High Piezoelectric Performance with Rotating Directional-Field-Aligned PVDF-MoS 2 Piezo-Polymer Applicable for Large-Area Flexible Electronics. Macromol Rapid Commun 2023; 44:e2300315. [PMID: 37856893 DOI: 10.1002/marc.202300315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/03/2023] [Indexed: 10/21/2023]
Abstract
Wearable electronics and smart harvesting textile studies require a material system that resists physical stimulation. Such applications require receptive piezo-polymers, and their activation-free preparation that can translate into a continuous large-area film. In this work, it is discussed whether the β-content of piezo-polymer is extended with no use of any activation (i.e. poling), and if the β-content increases, it can be processed over a wide range of surfaces like large-area piezo-film. Such prerequisites within polyvinylidene fluoride-molybdenum disulfide ((PVDF)-MoS2 ) piezo-polymer are thoroughly experimented here to develop a high-performance piezo-film. A MoS2 -mediated PVDF piezo-polymer (termed as P+ -MoS2 ) is introduced, in which no extra β-enhancement activation step is required after spin coating. Experimental results record β ≧ 80% which allows to harvest the voltage and current in the level of ≈17 V and 1 µA, respectively which satisfies 5 V supply voltage requirement of the current microelectronics, and internet of things (IoT). In addition, the capacitors having different capacities are charged using the developed nanogenerator to check its practical applicability. Therefore, the transition process of P-MoS2 to aligned P+ -MoS2 due to passive interlocking (PiL) through rotating directional field is novel and found to be a principal reason for β-enhancement in fabricated devices.
Collapse
Affiliation(s)
- Mayuri Srivastava
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Sushil Kumar
- Centre for Applied Research in Electronics, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Mujeeb Yousuf
- Centre for Applied Research in Electronics, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Bipin Kumar
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, New Delhi, 110016, India
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Pushpapraj Singh
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, New Delhi, 110016, India
- Centre for Applied Research in Electronics, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Syed Wazed Ali
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, New Delhi, 110016, India
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| |
Collapse
|
7
|
Sun X, Chen S, Qu B, Wang R, Zheng Y, Liu X, Li W, Gao J, Chen Q, Zhuo D. Light-oriented 3D printing of liquid crystal/photocurable resins and in-situ enhancement of mechanical performance. Nat Commun 2023; 14:6586. [PMID: 37852967 PMCID: PMC10584836 DOI: 10.1038/s41467-023-42369-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023] Open
Abstract
Additive manufacturing technology has significantly impacted contemporary industries due to its ability to generate intricate computer-designed geometries. However, 3D-printed polymer parts often possess limited application potential, primarily because of their weak mechanical attributes. To overcome this drawback, this study formulates liquid crystal/photocurable resins suitable for the stereolithography technique by integrating 4'-pentyl-4-cyanobiphenyl with a photosensitive acrylic resin. This study demonstrates that stereolithography facilitates the precise modulation of the existing liquid crystal morphology within the resin. Furthermore, the orientation of the liquid crystal governs the oriented polymerization of monomers or prepolymers bearing acrylate groups. The products of this 3D printing approach manifest anisotropic behavior. Remarkably, when utilizing liquid crystal/photocurable resins, the resulting 3D-printed objects are approximately twice as robust as those created using commercial resins in terms of their tensile, flexural, and impact properties. This pioneering approach holds promise for realizing autonomously designed structures that remain elusive with present additive manufacturing techniques.
Collapse
Affiliation(s)
- Xiaolu Sun
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, P. R. China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
- Fujian University Engineering Research Center of Polymer Functional Coating based Graphene, Quanzhou, Fujian, 362000, P. R. China
- Fujian Key Laboratory of New Materials for Light Textile and Chemical Industry, Quanzhou, Fujian, 362000, P. R. China
| | - Shaoyun Chen
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, P. R. China.
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China.
- Fujian University Engineering Research Center of Polymer Functional Coating based Graphene, Quanzhou, Fujian, 362000, P. R. China.
- Fujian Key Laboratory of New Materials for Light Textile and Chemical Industry, Quanzhou, Fujian, 362000, P. R. China.
| | - Bo Qu
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, P. R. China
- Fujian University Engineering Research Center of Polymer Functional Coating based Graphene, Quanzhou, Fujian, 362000, P. R. China
- Fujian Key Laboratory of New Materials for Light Textile and Chemical Industry, Quanzhou, Fujian, 362000, P. R. China
| | - Rui Wang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, P. R. China
- Fujian University Engineering Research Center of Polymer Functional Coating based Graphene, Quanzhou, Fujian, 362000, P. R. China
- Fujian Key Laboratory of New Materials for Light Textile and Chemical Industry, Quanzhou, Fujian, 362000, P. R. China
| | - Yanyu Zheng
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, P. R. China
- Fujian University Engineering Research Center of Polymer Functional Coating based Graphene, Quanzhou, Fujian, 362000, P. R. China
- Fujian Key Laboratory of New Materials for Light Textile and Chemical Industry, Quanzhou, Fujian, 362000, P. R. China
| | - Xiaoying Liu
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, P. R. China
- Fujian University Engineering Research Center of Polymer Functional Coating based Graphene, Quanzhou, Fujian, 362000, P. R. China
- Fujian Key Laboratory of New Materials for Light Textile and Chemical Industry, Quanzhou, Fujian, 362000, P. R. China
| | - Wenjie Li
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, P. R. China
- Fujian University Engineering Research Center of Polymer Functional Coating based Graphene, Quanzhou, Fujian, 362000, P. R. China
- Fujian Key Laboratory of New Materials for Light Textile and Chemical Industry, Quanzhou, Fujian, 362000, P. R. China
| | - Jianhong Gao
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, P. R. China
- Fujian University Engineering Research Center of Polymer Functional Coating based Graphene, Quanzhou, Fujian, 362000, P. R. China
- Fujian Key Laboratory of New Materials for Light Textile and Chemical Industry, Quanzhou, Fujian, 362000, P. R. China
| | - Qinhui Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China.
| | - Dongxian Zhuo
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, P. R. China.
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China.
- Fujian University Engineering Research Center of Polymer Functional Coating based Graphene, Quanzhou, Fujian, 362000, P. R. China.
- Fujian Key Laboratory of New Materials for Light Textile and Chemical Industry, Quanzhou, Fujian, 362000, P. R. China.
| |
Collapse
|
8
|
Shao Z, Zhang X, Song Z, Liu J, Liu X, Zhang C. Simulation Guided Coaxial Electrospinning of Polyvinylidene Fluoride Hollow Fibers with Tailored Piezoelectric Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303285. [PMID: 37196418 DOI: 10.1002/smll.202303285] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/01/2023] [Indexed: 05/19/2023]
Abstract
Electrospun polyvinylidene fluoride (PVDF) piezoelectric fibers have high potential applicability in mechanical energy harvesting and self-powered sensing owing to their high electromechanical coupling capabilities. Strategies for tailoring fiber morphology have been the primary focus for realizing enhanced piezoelectric output. However, the relationship between piezoelectric performance and fiber structure remains unclear. This study fabricates PVDF hollow fibers through coaxial electrospinning, whose wall thickness can be tuned by changing the internal solution concentration. Simulation analysis demonstrates an increased effective deformation of the hollow fiber as enlarging inner diameter, resulting in enhanced piezoelectric output, which is in excellent agreement with the experimental results. This study is the first to unravel the influence mechanism of morphology regulation of a PVDF hollow fiber on its piezoelectric performance from both simulation and experimental aspects. The optimal PVDF hollow fiber piezoelectric energy harvester (PEH) delivers a piezoelectric output voltage of 32.6 V, ≈3 times that of the solid PVDF fiber PEH. Furthermore, the electrical output of hollow fiber PEH can be stably stored in secondary energy storage systems to power microelectronics. This study highlights an efficient approach for reconciling the simulation and tailoring the fiber PEH morphology for enhanced performances for future self-powered systems.
Collapse
Affiliation(s)
- Zhuzhu Shao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xuan Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Zihan Song
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Jingfeng Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xingang Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Chuhong Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
9
|
Shao Z, Zhang X, Liu J, Liu X, Zhang C. Electrospinning of Highly Bi-Oriented Flexible Piezoelectric Nanofibers for Anisotropic-Responsive Intelligent Sensing. SMALL METHODS 2023; 7:e2300701. [PMID: 37469015 DOI: 10.1002/smtd.202300701] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Indexed: 07/21/2023]
Abstract
Flexible piezoelectric energy harvesters (PEHs) have gained substantial attention owing to their wearability, breathability, and sustainable self-powered supply. However, existing film PEHs cannot identify forces in different bending directions, limiting their applications in wearable electronics and artificial intelligence. This study constructs a fabric PEH for the first time by introducing piezoelectric anisotropic BaTi2 O5 nanorods (BT2-nr) into piezoelectric polyvinylidene fluoride (PVDF) nanofibers with a bi-oriented architecture, in which BT2-nr uniformly aligns in the PVDF nanofiber during electrospinning. The dual-orientation feature endows the flexible PEH with anisotropy, which can sensitively identify the forces at different bending directions (e.g., bent vertically, parallelly, or twisted by 45° along the fiber orientations). Simultaneously, the composite PVDF/BT2 PEH containing 15 wt.% BT2-nr delivers an optimal piezoelectric output of 31.2 V with a high sensitivity of 5.22 V N-1 . The developed anisotropic PEH can be used as a self-powered pressure sensor for multimodal intelligent biomonitoring of human movement. This study provides a feasible strategy for fabricating self-powered flexible PEHs with high electromechanical conversion efficiency and multifunctionality for wearable piezoelectric pressure sensors.
Collapse
Affiliation(s)
- Zhuzhu Shao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xuan Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Jingfeng Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xingang Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Chuhong Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
10
|
Yang B, Yang L, Huang WL, Zhou QZ, He J, Zhao X. Application experience and research progress of different emerging technologies in plastic surgery. World J Clin Cases 2023; 11:4258-4266. [PMID: 37449226 PMCID: PMC10336992 DOI: 10.12998/wjcc.v11.i18.4258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/26/2023] Open
Abstract
In the diagnosis and treatment of plastic surgery, there are structural processing problems, such as positioning, moving, and reconstructing complex three-dimensional structures. Doctors operate according to their own experience, and the inability to accurately locate these structures is an important problem in plastic surgery. Emerging digital technologies such as virtual reality, augmented reality, and three-dimensional printing are widely used in the medical field, particularly in plastic surgery. This article reviews the development of these three technical concepts, introduces the technical elements and specific applications required in plastic surgery, summarizes the application status of the three technologies in plastic surgery, and summarizes prospects for future development.
Collapse
Affiliation(s)
- Bin Yang
- Plastic and Cosmetic Department, The Affiliated Calmette Hospital of Kunming Medical University, The First People’s Hospital of Kunming, Calmette Hospital Kunming, Kunming 650224, Yunnan Province, China
| | - Ling Yang
- Radiology Department, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, Yunnan Province, China
| | - Wen-Li Huang
- Plastic and Cosmetic Department, The Affiliated Calmette Hospital of Kunming Medical University, The First People’s Hospital of Kunming, Calmette Hospital Kunming, Kunming 650224, Yunnan Province, China
| | - Qing-Zhu Zhou
- Plastic and Cosmetic Department, The Affiliated Calmette Hospital of Kunming Medical University, The First People’s Hospital of Kunming, Calmette Hospital Kunming, Kunming 650224, Yunnan Province, China
| | - Jia He
- Plastic and Cosmetic Department, The Affiliated Calmette Hospital of Kunming Medical University, The First People’s Hospital of Kunming, Calmette Hospital Kunming, Kunming 650224, Yunnan Province, China
| | - Xian Zhao
- Plastic and Cosmetic Department, The Affiliated Calmette Hospital of Kunming Medical University, The First People’s Hospital of Kunming, Calmette Hospital Kunming, Kunming 650224, Yunnan Province, China
| |
Collapse
|
11
|
Mokhtari F, Cheng Z, Wang CH, Foroughi J. Advances in Wearable Piezoelectric Sensors for Hazardous Workplace Environments. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300019. [PMID: 37287592 PMCID: PMC10242536 DOI: 10.1002/gch2.202300019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/15/2023] [Indexed: 06/09/2023]
Abstract
Recent advances in wearable energy harvesting technology as solutions to occupational health and safety programs are presented. Workers are often exposed to harmful conditions-especially in the mining and construction industries-where chronic health issues can emerge over time. While wearable sensors technology can aid in early detection and long-term exposure tracking, powering them and the associated risks are often an impediment for their widespread use, such as the need for frequent charging and battery safety. Repetitive vibration exposure is one such hazard, e.g., whole body vibration, yet it can also provide parasitic energy that can be harvested to power wearable sensors and overcome the battery limitations. This review can critically analyze the vibration effect on workers' health, the limitations of currently available devices, explore new options for powering different personal protective equipment devices, and discuss opportunities and directions for future research. The recent progress in self-powered vibration sensors and systems from the perspective of the underlying materials, applications, and fabrication techniques is reviewed. Lastly, the challenges and perspectives are discussed for reference to the researchers who are interested in self-powered vibration sensors.
Collapse
Affiliation(s)
- Fatemeh Mokhtari
- Carbon NexusInstitute for Frontier MaterialsDeakin UniversityGeelongVictoria3216Australia
- Faculty of Engineering and Information SciencesUniversity of WollongongWollongongNSW2500Australia
| | - Zhenxiang Cheng
- Institute for Superconducting and Electronic MaterialsUniversity of WollongongWollongongNSW2500Australia
| | - Chun H Wang
- School of Mechanical and Manufacturing EngineeringUniversity of New South WalesSydneyNSW2052Australia
- ARC Research Hub for Connected Sensors for HealthUniversity of New South WalesSydneyNSW2052Australia
| | - Javad Foroughi
- Faculty of Engineering and Information SciencesUniversity of WollongongWollongongNSW2500Australia
- School of Mechanical and Manufacturing EngineeringUniversity of New South WalesSydneyNSW2052Australia
- ARC Research Hub for Connected Sensors for HealthUniversity of New South WalesSydneyNSW2052Australia
- Department of Thoracic and Cardiovascular SurgeryWest German Heart and Vascular CenterUniversity of Duisburg‐EssenHufelandstraße 5545122EssenGermany
| |
Collapse
|
12
|
Wu T, Huan X, Zhang H, Wu L, Sui G, Yang X. The orientation and inhomogeneous distribution of carbon nanofibers and distinctive internal structure in polymer composites induced by 3D-printing enabling electromagnetic shielding regulation. J Colloid Interface Sci 2023; 638:392-402. [PMID: 36758252 DOI: 10.1016/j.jcis.2023.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
Carbon nanofiber (CNF)/polycaprolactone (PCL) composites were three-dimention (3D) printed into electromagnetic interference (EMI) shielding parts. 3D-printing process led to an inhomogeneous CNFs distribution in printed composites. The special high-resistance "internal surfaces" introduced between printed threads reduced the conductivity of printed parts and resulted in characteristic secondary percolation phenomena. Meanwhile, the accelerated melt flow in nozzle oriented CNFs in composites along the printing direction, increasing the percolation threshold compared to the random arrangement. As two stage of percolation networks formed, the 3D-printed CNF/PCL parts exhibited excellent EMI shielding performance, with EMI shielding effectiveness value up to 58.7 dB. By controlling the packing density of the printed part, a large number of apertures and heterogeneous interfaces were easily introduced into the interior of parts. It promoted multiple reflection and absorption of electromagnetic waves inside the parts, and enabled adjustment of weight and shielding effectiveness. Therefore, the 3D printing enabled the flexible formation of complex porous structures. From basic materials to designed components, the 3D printing technology can facilitate the transformation of shielding materials into high performance components that are finely designed both internally and externally, making it a promising technology in the field of manufacturing lightweight, high performance EMI shielding materials.
Collapse
Affiliation(s)
- Tianyu Wu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, PR China
| | - Xianhua Huan
- School of Electrical and Automation Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Hongmingjian Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, PR China
| | - Lingyun Wu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, PR China
| | - Gang Sui
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, PR China.
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, PR China
| |
Collapse
|
13
|
Li H, Lim S. Self-poled and transparent polyvinylidene fluoride- co-hexafluoropropylene-based piezoelectric devices for printable and flexible electronics. NANOSCALE 2023; 15:4581-4590. [PMID: 36762549 DOI: 10.1039/d2nr05986j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Transparent and flexible energy supply devices are becoming increasingly important for human interfaces as the Internet of Things (IoT) continues to grow. In this study, self-poled and transparent piezoelectric nanogenerators (ST-PENGs) based on 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFOES) and polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) composite films were prepared via extrusion printing, where PFOES induces the transformation of PVDF-HFP chains, exhibiting a higher β-phase content and remarkable piezoelectric properties. The hydrogen bonding interaction between the PVDF-HFP matrix and the PFOES agents causes a clear transition from phase to phase, as evidenced by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) results. Moreover, the PFOES content influences the β-phase content, with 10 wt% of PFOES enabling the induction of the β-phase content up to 82.7%. The proposed ST-PENGs generate an excellent output voltage, power, and sensitivity of ∼6.2 V, ∼6.9 μW cm-2, and ∼131.3 mV N-1, respectively, exhibiting a record-high improvement compared with previously reported PENGs. These ST-PENGs also offer significant promise in tracking human activity and recovering biomechanical energy. This study may provide insight into the development of transparent and flexible piezoelectric devices to achieve high-performance self-powered electronics.
Collapse
Affiliation(s)
- Hai Li
- Department of Flexible and Printable Electronics, LANL-JBNU Engineering Institute, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Sooman Lim
- Department of Flexible and Printable Electronics, LANL-JBNU Engineering Institute, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
14
|
Li Y, Zheng L, Song L, Han Y, Yang Y, Tan C. Toward Balanced Piezoelectric and Mechanical Performance: 3D Printed Polyvinylidene Fluoride/Carbon Nanotube Energy Harvester with Hierarchical Structure. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yijun Li
- Material Corrosion and Protection Key Laboratory of Sichuan Province, School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Lang Zheng
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, China
| | - Li Song
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Ying Han
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Yan Yang
- Material Corrosion and Protection Key Laboratory of Sichuan Province, School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Changbin Tan
- Material Corrosion and Protection Key Laboratory of Sichuan Province, School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| |
Collapse
|