1
|
Osawa M. Study of the molecular design and synthesis status of metal complexes as unimolecular luminescent materials for white light emission. Dalton Trans 2025; 54:3106-3112. [PMID: 39652361 DOI: 10.1039/d4dt03047h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
White organic light-emitting diodes (WOLEDs) are promising light-emitting devices. A typical method for generating white light is to superimpose the three primary colours of light - red, green, and blue - or the two colours of light - blue and yellow. These colours are generated from each emitting material doped into the emission layers of the device. To achieve high-quality white light, the emission colours and intensities should be properly adjusted in the device. Apart from the superimposition of colours of light, white light can also be generated by doping with a single molecule that emits visible light in the wavelength range of 380-780 nm. In this review, we have listed some white-light-emitting complexes that are expected to drastically simplify the device fabrication process for OLEDs. We have shed light on these metal complexes and outlined the current status of their synthesis and device applications, looking toward promising future prospects.
Collapse
Affiliation(s)
- Masahisa Osawa
- Department of Applied Chemistry, Nippon Institute of Technology, Gakuendai 4-1, Miyashiro-Machi, Saitama, 345-8501, Japan.
| |
Collapse
|
2
|
Zeng XM, Wu M, Yao LY, Yang GY. Dynamic Phosphorescence Behavior of Carbene-Metal-Amide Complexes from the Perspective of Excited State Modulation. Angew Chem Int Ed Engl 2025; 64:e202419614. [PMID: 39792317 DOI: 10.1002/anie.202419614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/11/2024] [Accepted: 01/10/2025] [Indexed: 01/12/2025]
Abstract
Carbene-metal-amide (CMA) complexes have diverse applications in luminescence, imaging and sensing. In this study, we designed and synthesized a series of CMA complexes, which were subsequently doped into a PMMA host. These materials demonstrate light-induced dynamic phosphorescence, attributed to their long intrinsic triplet state lifetime (τP,int, in the μs-ms scale), high intersystem crossing (ISC) rate constant (kISC, up to 107 s-1), and bright phosphorescence. The extended τP,int, and elevated kISC facilitate efficient sensitization of singlet oxygen (1O2) under light irradiation, which is rapidly consumed by the host material, creating a localized anaerobic environment conducive to bright phosphorescence emission. The Sn-T1 process exhibits a large spin-orbital coupling matrix element (SOCME) value, while the SOCME value between T1 and S0 is comparatively smaller, resulting in a large kISC and long τP,int, Computational results indicate that the hole-electron configuration in the lowest triplet state exhibits low contributions from gold. Based on the dynamic phosphorescence properties, an encryption material capable of achieving a "burn after reading" effect was developed. This work illustrates that those phosphorescent emitters with minimal heavy atom contribution can produce dynamic phosphorescent phenomena, providing a novel strategy for designing stimuli-responsive phosphorescent materials.
Collapse
Affiliation(s)
- Xiang-Ming Zeng
- MOE Key Laboratory of Cluster Sciences, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Minjian Wu
- MOE Key Laboratory of Cluster Sciences, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Liao-Yuan Yao
- MOE Key Laboratory of Cluster Sciences, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Sciences, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| |
Collapse
|
3
|
Farokhi A, Lipinski S, Cavinato LM, Shahroosvand H, Pashaei B, Karimi S, Bellani S, Bonaccorso F, Costa RD. Metal complex-based TADF: design, characterization, and lighting devices. Chem Soc Rev 2025; 54:266-340. [PMID: 39565044 DOI: 10.1039/d3cs01102j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The development of novel, efficient and cost-effective emitters for solid-state lighting devices (SSLDs) is ubiquitous to meet the increasingly demanding needs of advanced lighting technologies. In this context, the emergence of thermally activated delayed fluorescence (TADF) materials has stunned the photonics community. In particular, inorganic TADF material-based compounds can be ad hoc engineered by chemical modification of the coordinated ligands and the type of metal centre, allowing control of their ultimate photo-/electroluminescence properties, while providing a viable emitter platform for enhancing the efficiency of state-of-the-art organic light-emitting diodes (OLEDs) and light-emitting electrochemical cells (LECs). By presenting an overview of the state of the art of all metal complex-based TADF compounds, this review aims to provide a comprehensive, authoritative and critical reference for their design, characterization and device application, highlighting the advantages and drawbacks for the chemical, photonic and optoelectronic communities involved in this interdisciplinary research field.
Collapse
Affiliation(s)
- Afsaneh Farokhi
- Group for Molecular Engineering of Advanced Functional Materials (GMA), Chemistry Department, University of Zanjan, Zanjan, Iran
| | - Sophia Lipinski
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Chair of Biogenic Functional Materials, Schulgasse 22, Straubing 94315, Germany.
| | - Luca M Cavinato
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Chair of Biogenic Functional Materials, Schulgasse 22, Straubing 94315, Germany.
| | - Hashem Shahroosvand
- Group for Molecular Engineering of Advanced Functional Materials (GMA), Chemistry Department, University of Zanjan, Zanjan, Iran
| | - Babak Pashaei
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Soheila Karimi
- Group for Molecular Engineering of Advanced Functional Materials (GMA), Chemistry Department, University of Zanjan, Zanjan, Iran
| | - Sebastiano Bellani
- Graphene Labs, Istituto Italiano di Tecnologia, 16163 Genova, Italy
- BeDimensional Spa., 16163 Genova, Italy
| | - Francesco Bonaccorso
- Graphene Labs, Istituto Italiano di Tecnologia, 16163 Genova, Italy
- BeDimensional Spa., 16163 Genova, Italy
| | - Rubén D Costa
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Chair of Biogenic Functional Materials, Schulgasse 22, Straubing 94315, Germany.
| |
Collapse
|
4
|
Ghosh M, Chatterjee J, Panwaria P, Kudlu A, Tothadi S, Khan S. Silylene-Copper-Amide Emitters: From Thermally Activated Delayed Fluorescence to Dual Emission. Angew Chem Int Ed Engl 2024; 63:e202410792. [PMID: 39148269 DOI: 10.1002/anie.202410792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/03/2024] [Accepted: 08/15/2024] [Indexed: 08/17/2024]
Abstract
Herein, we report the inaugural instance of N-heterocyclic silylene (NHSi)-coordinated copper amide emitters (2-5). These complexes exhibit thermally activated delayed fluorescence (TADF) and singlet-triplet dual emission in anaerobic conditions. The NHSi-Cu-diphenylamide (2) complex demonstrates TADF with a very small ΔEST gap (0.01 eV), an absolute quantum yield of 11 %, a radiative rate of 2.55×105 s-1, and a short τTADF of 0.45 μs in the solid state. The dual emissive complexes (3-5) achieve an absolute quantum yield of up to 20 % in the solid state with a kISC rate of 1.82×108 s-1 and exhibit room temperature phosphorescence (RTP) with lifetimes up to 9 ms. The gradual decrease in the intensity of the triplet state of complex 3 under controlled oxygen exposure demonstrates its potential for future oxygen-sensing applications. Complexes 2 and 3 have been further utilized to fabricate converted LEDs, paving the way for future OLED production using newly synthesized NHSi-Cu-amides.
Collapse
Affiliation(s)
- Moushakhi Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Joy Chatterjee
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Prakash Panwaria
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Ashwath Kudlu
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati, Andhra Pradesh, 517507, India
| | - Srinu Tothadi
- Analytical and Environmental Sciences Division and Centralized Instrumentation Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, 364002, India
| | - Shabana Khan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| |
Collapse
|
5
|
Brannan AC, Cho HH, Reponen APM, Gorgon S, Phuoc NL, Linnolahti M, Greenham NC, Romanov AS. Deep-Blue and Fast Delayed Fluorescence from Carbene-Metal-Amides for Highly Efficient and Stable Organic Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404357. [PMID: 38727713 DOI: 10.1002/adma.202404357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/06/2024] [Indexed: 05/21/2024]
Abstract
Linear gold complexes of the "carbene-metal-amide" (CMA) type are prepared with a rigid benzoguanidine amide donor and various carbene ligands. These complexes emit in the deep-blue range at 424 and 466 nm with 100% quantum yields in all media. The deep-blue thermally activates delayed fluorescence originates from a charge transfer state with an excited state lifetime as low as 213 ns, resulting in fast radiative rates of 4.7 × 106 s-1. The high thermal and photo-stability of these carbene-metal-amide (CMA) materials enabled the authors to fabricate highly energy-efficient organic light-emitting diodes (OLED) in host-guest architectures. Deep-blue OLED devices with electroluminescence at 416 and 457 nm with practical external quantum efficiencies of up to 23% at 100 cd m-2 with excellent color coordinates CIE (x; y) = 0.16; 0.07 and 0.17; 0.18 are reported. The operating stability of these OLEDs is the longest reported to date (LT50 = 1 h) for deep-blue CMA emitters, indicating a high promise for further development of blue OLED devices. These findings inform the molecular design strategy and correlation between delayed luminescence with high radiative rates and CMA OLED device operating stability.
Collapse
Affiliation(s)
- Alexander C Brannan
- Department of Chemistry, The University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
| | - Hwan-Hee Cho
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Antti-Pekka M Reponen
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Sebastian Gorgon
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Nguyen Le Phuoc
- Department of Chemistry, University of Eastern Finland, Joensuu, FI-80101, Finland
| | - Mikko Linnolahti
- Department of Chemistry, University of Eastern Finland, Joensuu, FI-80101, Finland
| | - Neil C Greenham
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Alexander S Romanov
- Department of Chemistry, The University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
| |
Collapse
|
6
|
Li R, Ying A, Tan Y, Ai Y, Gong S. Efficient Blue Photo- and Electroluminescence from CF 3-Decorated Cu(I) Complexes. Chemistry 2024; 30:e202400817. [PMID: 38654445 DOI: 10.1002/chem.202400817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
Luminescent organometallic complexes of earth-abundant copper(I) have long been studied in organic light-emitting diodes (OLED). Particularly, Cu(I)-based carbene-metal-amide (CMA) complexes have recently emerged as promising organometallic emitters. However, blue-emitting Cu(I) CMA complexes have been rarely reported. Here we constructed two blue-emitting Cu(I) CMA emitters, MAC*-Cu-CF3Cz and MAC*-Cu-2CF3Cz, by introducing one or two CF3 substitutes into carbazole ligands. Both complexes exhibited high thermal stability and blue emission colors. Moreover, two complexes exhibited different emission origins rooting from different donor ligands: a distinct thermally activated delayed fluorescence (TADF) from ligand-to-ligand charge transfer excited states for MAC*-Cu-CF3Cz or a dominant phosphorescence nature from local triplet excited state of the carbazole ligand for MAC*-Cu-2CF3Cz. Inspiringly, MAC*-Cu-CF3Cz had high photoluminescence quantum yields of up to 94 % and short emission lifetimes of down to 1.2 μs in doped films, accompanied by relatively high radiative rates in the 105 s-1 order. The resultant vacuum-deposited OLEDs based on MAC*-Cu-CF3Cz delivered pure-blue electroluminescence at 462 nm together with a high external quantum efficiency of 13.0 %.
Collapse
Affiliation(s)
- Ruoyan Li
- College of Chemistry and Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072, China
| | - Ao Ying
- College of Chemistry and Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072, China
| | - Yao Tan
- College of Chemistry and Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072, China
| | - Yuhan Ai
- College of Chemistry and Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072, China
| | - Shaolong Gong
- College of Chemistry and Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
7
|
Li TY, Zheng SJ, Djurovich PI, Thompson ME. Two-Coordinate Thermally Activated Delayed Fluorescence Coinage Metal Complexes: Molecular Design, Photophysical Characters, and Device Application. Chem Rev 2024; 124:4332-4392. [PMID: 38546341 DOI: 10.1021/acs.chemrev.3c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Since the emergence of the first green light emission from a fluorescent thin-film organic light emitting diode (OLED) in the mid-1980s, a global consumer market for OLED displays has flourished over the past few decades. This growth can primarily be attributed to the development of noble metal phosphorescent emitters that facilitated remarkable gains in electrical conversion efficiency, a broadened color gamut, and vibrant image quality for OLED displays. Despite these achievements, the limited abundance of noble metals in the Earth's crust has spurred ongoing efforts to discover cost-effective electroluminescent materials. One particularly promising avenue is the exploration of thermally activated delayed fluorescence (TADF), a mechanism with the potential to fully harness excitons in OLEDs. Recently, investigations have unveiled TADF in a series of two-coordinate coinage metal (Cu, Ag, and Au) complexes. These organometallic TADF materials exhibit distinctive behavior in comparison to their organic counterparts. They offer benefits such as tunable emissive colors, short TADF emission lifetimes, high luminescent quantum yields, and reasonable stability. Impressively, both vacuum-deposited and solution-processed OLEDs incorporating these materials have achieved outstanding performance. This review encompasses various facets on two-coordinate TADF coinage metal complexes, including molecular design, photophysical characterizations, elucidation of structure-property relationships, and OLED applications.
Collapse
Affiliation(s)
- Tian-Yi Li
- Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Shu-Jia Zheng
- Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Peter I Djurovich
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Mark E Thompson
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
8
|
Kumar S, Arora A, Sapra S, Kumar R, Singh BK, Singh SK. Recent advances in the synthesis and utility of thiazoline and its derivatives. RSC Adv 2024; 14:902-953. [PMID: 38174252 PMCID: PMC10759189 DOI: 10.1039/d3ra06444a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
Thiazolines and their derivatives hold significant importance in the field of medicinal chemistry due to their promising potential as pharmaceutical agents. These molecular entities serve as critical scaffolds within numerous natural products, including curacin A, thiangazole, and mirabazole, and play a vital role in a wide array of physiological reactions. Their pharmacological versatility encompasses anti-HIV, neurological, anti-cancer, and antibiotic activities. Over the course of recent decades, researchers have extensively explored and developed analogs of these compounds, uncovering compelling therapeutic properties such as antioxidant, anti-tumor, anti-microbial, and anti-inflammatory effects. Consequently, thiazoline-based compounds have emerged as noteworthy targets for synthetic endeavors. In this review, we provide a comprehensive summary of recent advancements in the synthesis of thiazolines and thiazoline-based derivatives, along with an exploration of their diverse potential applications across various scientific domains.
Collapse
Affiliation(s)
- Sumit Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| | - Aditi Arora
- Bioorganic Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| | - Shivani Sapra
- Bioorganic Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| | - Rajesh Kumar
- Department of Chemistry, R. D. S College, B. R. A. Bihar University Muzaffarpur 842002 India
| | - Brajendra K Singh
- Bioorganic Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| | - Sunil K Singh
- Department of Chemistry, Kirori Mal College, University of Delhi Delhi-110007 India
| |
Collapse
|
9
|
Ying A, Gong S. A Rising Star: Luminescent Carbene-Metal-Amide Complexes. Chemistry 2023; 29:e202301885. [PMID: 37431981 DOI: 10.1002/chem.202301885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/12/2023]
Abstract
Coinage metal (gold, silver, and copper) complexes are attractive candidates to substitute the widely studied noble metal complexes, such as, iridium(III) and platinum(II), as luminescent materials in organic light-emitting diodes (OLEDs). However, the development of coinage metal complexes exhibiting high emission quantum yields and short exciton lifetimes is still a formidable challenge. In the past few years, coinage metal complexes featuring a carbene-metal-amide (CMA) motif have emerged as a new class of luminescent materials in OLEDs. Thanks to the coinage metal-bridged linear geometry, coplanar conformation, and the formation of excited states with dominant ligand-to-ligand charge transfer character and reduced metal d-orbital participation, most CMA complexes have high radiative rates via thermally activated delayed fluorescence. Currently, the family of CMA complexes have rapidly evolved and remarkable progresses in CMA-based OLEDs have been made. Here, a Concept article on CMA complexes is presented, with a focus on molecular design principles, the correlation between molecular structure/conformation and optoelectronic properties, as well as OLED performance. The future prospects of CMA complexes are also discussed.
Collapse
Affiliation(s)
- Ao Ying
- Hubei Key Lab on Organic and, Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Shaolong Gong
- Hubei Key Lab on Organic and, Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
10
|
Powley SL, Riley C, Cho HH, Le Phuoc N, Linnolahti M, Greenham N, Romanov AS. Highly phosphorescent carbene-metal-carboranyl complexes of copper(I) and gold(I). Chem Commun (Camb) 2023; 59:12035-12038. [PMID: 37729393 DOI: 10.1039/d3cc04091g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
New phosphorescent "carbene-metal-carboranyl" (CMC) Cu(I) and Au(I) complexes based on the diamidocarbene (DAC) ligand show up to 68% photoluminescence quantum yield and microsecond range lifetimes. CMC organic light emitting diodes (OLEDs) emit sky-blue and warm white electroluminescence.
Collapse
Affiliation(s)
- Samuel L Powley
- Department of Chemistry, The University of Manchester, Oxford Rd., Manchester, M13 9PL, UK.
| | - Charlotte Riley
- Department of Chemistry, The University of Manchester, Oxford Rd., Manchester, M13 9PL, UK.
| | - Hwan-Hee Cho
- Department of Physics, Cavendish Laboratory, Cambridge University, Cambridge CB3 0HE, UK.
| | - Nguyen Le Phuoc
- Department of Chemistry, University of Eastern Finland, Joensuu Campus, FI-80101 Joensuu, Finland.
| | - Mikko Linnolahti
- Department of Chemistry, University of Eastern Finland, Joensuu Campus, FI-80101 Joensuu, Finland.
| | - Neil Greenham
- Department of Physics, Cavendish Laboratory, Cambridge University, Cambridge CB3 0HE, UK.
| | - Alexander S Romanov
- Department of Chemistry, The University of Manchester, Oxford Rd., Manchester, M13 9PL, UK.
| |
Collapse
|
11
|
Belyakov AV, Altova EP, Rykov AN, Sharanov PY, Shishkov IF, Romanov AS. The Equilibrium Molecular Structure of Cyclic (Alkyl)(Amino) Carbene Copper(I) Chloride via Gas-Phase Electron Diffraction and Quantum Chemical Calculations. Molecules 2023; 28:6897. [PMID: 37836740 PMCID: PMC10574683 DOI: 10.3390/molecules28196897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/24/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Copper-centered carbene-metal-halides (CMHs) with cyclic (alkyl)(amino) carbenes (CAACs) are bright phosphorescent emitters and key precursors in the synthesis of the highly promising class of the materials carbene-metal-amides (CMAs) operating via thermally activated delayed fluorescence (TADF). Aiming to reveal the molecular geometry for CMH phosphors in the absence of the intermolecular contacts, we report here the equilibrium molecular structure of the (CAAC)Cu(I)Cl (1) molecule in the gas-phase. We demonstrate that linear geometry around a copper atom shows no distortions in the ground state. The structure of complex 1 has been determined using the electron diffraction method, supported by quantum chemical calculations with RI-MP2/def2-QZVPP level of theory and compared with the crystal structure determined by X-ray diffraction analysis. Mean vibrational amplitudes, uij,h1, and anharmonic vibrational corrections (rij,e • rij,a) were calculated for experimental temperature T = 20 °C, using quadratic and cubic force constants, respectively. The quantum theory of atoms in molecules (QTAIM) and natural bond order (NBO) analysis of wave function at MN15/def2TZVP level of theory revealed two Cu…H, three H…H, and one three-center H…H…H bond paths with bond critical points. NBO analysis also revealed three-center, four-electron hyperbonds, (3c4e), [π(N-C) nπ(Cu) ↔ nπ(N) π(N-Cu)], or [N-C: Cu ↔ N: C-Cu] and nπ(Cu) → π(C-N)* hyperconjugation, that is the delocalization of the lone electron pair of Cu atom into the antibonding orbital of C-N bond.
Collapse
Affiliation(s)
| | - Ekaterina P. Altova
- Department of Chemistry, Moscow State University, 119992 Moscow, Russia; (E.P.A.); (P.Y.S.)
| | - Anatoliy N. Rykov
- Department of Chemistry, Moscow State University, 119992 Moscow, Russia; (E.P.A.); (P.Y.S.)
| | - Pavel Yu. Sharanov
- Department of Chemistry, Moscow State University, 119992 Moscow, Russia; (E.P.A.); (P.Y.S.)
| | - Igor F. Shishkov
- Department of Chemistry, Moscow State University, 119992 Moscow, Russia; (E.P.A.); (P.Y.S.)
| | - Alexander S. Romanov
- Department of Chemistry, University of Manchester, Oxford Rd., Manchester M13 9PL, UK
| |
Collapse
|
12
|
Muthig AMT, Wieland J, Lenczyk C, Koop S, Tessarolo J, Clever GH, Hupp B, Steffen A. Towards Fast Circularly Polarized Luminescence in 2-Coordinate Chiral Mechanochromic Copper(I) Carbene Complexes. Chemistry 2023; 29:e202300946. [PMID: 37272620 DOI: 10.1002/chem.202300946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/15/2023] [Accepted: 06/02/2023] [Indexed: 06/06/2023]
Abstract
A series of chiral mechanochromic copper(I) cAAC (cAAC=cyclic (alkyl)(amino)carbene) complexes with a variety of amide ligands have been studied with regard to their photophysical and chiroptical properties to elucidate structure-property relationships for the design of efficient triplet exciton emitters exhibiting circularly polarized luminescence. Depending on the environment, which determines the excited state energies, either thermally activated delayed fluorescence (TADF) from 1/3 LLCT states or phosphorescence from 3 LLCT/LC states occurs. However, neither chiral moieties at the carbene nor at the carbazolate ligands provide detectable luminescence dissymmetries glum . An exception is [Cu(phenoxazinyl)(cAAC)], showing orange to deep red TADF with λmax =601-715 nm in solution, powders and in PMMA. In this case, the amide ligand can undergo distortions in the excited state. This design motif leads to the first linear, non-aggregated CPL-active copper(I) complex with glum of -3.4 ⋅ 10-3 combined with a high radiative rate constant of 6.7 ⋅ 105 s-1 .
Collapse
Affiliation(s)
- André M T Muthig
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Justin Wieland
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Carsten Lenczyk
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Stefan Koop
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Jacopo Tessarolo
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Benjamin Hupp
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Andreas Steffen
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| |
Collapse
|
13
|
Muthig AMT, Mrózek O, Ferschke T, Rödel M, Ewald B, Kuhnt J, Lenczyk C, Pflaum J, Steffen A. Mechano-Stimulus and Environment-Dependent Circularly Polarized TADF in Chiral Copper(I) Complexes and Their Application in OLEDs. J Am Chem Soc 2023; 145:4438-4449. [PMID: 36795037 DOI: 10.1021/jacs.2c09458] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Molecular emitters that combine circularly polarized luminescence (CPL) and high radiative rate constants of the triplet exciton decay are highly attractive for electroluminescent devices (OLEDs) or next-generation photonic applications, such as spintronics, quantum computing, cryptography, or sensors. However, the design of such emitters is a major challenge because the criteria for enhancing these two properties are mutually exclusive. In this contribution, we show that enantiomerically pure {Cu(CbzR)[(S/R)-BINAP]} [R = H (1), 3,6-tBu (2)] are efficient thermally activated delayed fluorescence (TADF) emitters with high radiative rate constants of kTADF up to 3.1 × 105 s-1 from 1/3LLCT states according to our temperature-dependent time-resolved luminescence studies. The efficiency of the TADF process and emission wavelengths are highly sensitive to environmental hydrogen bonding of the ligands, which can be disrupted by grinding of the crystalline materials. The origin of this pronounced mechano-stimulus photophysical behavior is a thermal equilibrium between the 1/3LLCT states and a 3LC state of the BINAP ligand, which depends on the relative energetic order of the excited states and is prone to inter-ligand C-H···π interactions. The copper(I) complexes are also efficient CPL emitters displaying exceptional dissymmetry values glum of up to ±0.6 × 10-2 in THF solution and ±2.1 × 10-2 in the solid state. Importantly for application in electroluminescence devices, the C-H···π interactions can also be disrupted by employing sterically bulky matrices. Accordingly, we have investigated various matrix materials for successful implementation of the chiral copper(I) TADF emitters in proof-of-concept CP-OLEDs.
Collapse
Affiliation(s)
- André Martin Thomas Muthig
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Ondřej Mrózek
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Thomas Ferschke
- Experimental Physics VI, Julius-Maximilian University, Am Hubland, 97074 Würzburg, Germany
| | - Maximilian Rödel
- Experimental Physics VI, Julius-Maximilian University, Am Hubland, 97074 Würzburg, Germany
| | - Björn Ewald
- Experimental Physics VI, Julius-Maximilian University, Am Hubland, 97074 Würzburg, Germany
| | - Julia Kuhnt
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Carsten Lenczyk
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Jens Pflaum
- Experimental Physics VI, Julius-Maximilian University, Am Hubland, 97074 Würzburg, Germany
| | - Andreas Steffen
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| |
Collapse
|
14
|
Ruduss A, Belyakov S, Stucere KA, Vembris A, Traskovskis K. Light emission mechanism in dimers of carbene-metal-amide complexes. Phys Chem Chem Phys 2023; 25:3220-3231. [PMID: 36625398 DOI: 10.1039/d2cp05237g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recently an efficient dual electroluminescence from monomers and dimers was observed among the structural examples of the emerging emitter class of carbene-metal-amides (CMAs), allowing the preparation of simple design white organic light emitting diodes (wOLEDs). Here we investigate in detail the light emission mechanism in the dimeric species of CMA emitters on the basis of a copper(I) complex TCP bearing thiazoline carbene and 10H-phenothiazine 5,5-dioxide (Ptz) ligands. The X-ray structure for crystals with dimer-only emission was obtained, revealing that emissive aggregates consist of face-to-face stacked molecular pairs with an intermolecular distance of 3.673 Å. The close packing is aided by reduced sterical bulk at the carbene ligand, as well as by a torsional twist between the carbene and amide fragments. Experimental and computational data show that the emission mechanism in aggregates is related to the formation of a persistent dimer, not the excimer. Radiative relaxation proceeds through an intermolecular charge transfer process between the carbene and amide ligands of the neighbouring molecules. In comparison to the monomer, the thermally activated delayed fluorescence (TADF) process in the dimer is characterized with significantly higher energy gaps (ΔEST) between the lowest singlet (S1) and triplet (T1) excited states. At the same time the aggregated species exhibit a significantly increased phosphorescence rate (τ = 12 μs at 10 K temperature) due to the presence of two metal atoms, resulting in a sixfold increase in the spin-orbit coupling (SOC) matrix element in comparison to the monomer.
Collapse
Affiliation(s)
- Armands Ruduss
- Institute of Applied Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048, Riga, Latvia.
| | - Sergey Belyakov
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga LV-1006, Latvia
| | - Kitija A Stucere
- Institute of Solid State Physics, University of Latvia, Kengaraga Str. 8, LV-1063, Riga, Latvia
| | - Aivars Vembris
- Institute of Solid State Physics, University of Latvia, Kengaraga Str. 8, LV-1063, Riga, Latvia
| | - Kaspars Traskovskis
- Institute of Applied Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048, Riga, Latvia.
| |
Collapse
|
15
|
Yiu TC, Gnanasekaran P, Chen WL, Lin WH, Lin MJ, Wang DY, Lu CW, Chang CH, Chang YJ. Multifaceted Sulfone-Carbazole-Based D-A-D Materials: A Blue Fluorescent Emitter as a Host for Phosphorescent OLEDs and Triplet-Triplet Annihilation Up-Conversion Electroluminescence. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1748-1761. [PMID: 36576167 DOI: 10.1021/acsami.2c21294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Electroluminescence (EL) from the singlet-excited (S1) state is the ideal choice for stable, high-performing deep-blue organic light-emitting diodes (OLEDs) owing to the advantages of an adequately short radiative lifetime, improved device durability, and low cost, which are the most important criteria for their commercialization. Herein, we present the design and synthesis of three donor-acceptor-donor (D-A-D)-configured deep-blue fluorescent materials (denoted as TC-1, TC-2, and TC-3) composed of a thioxanthone or diphenyl sulfonyl acceptor and phenyl carbazolyl donor. These systems exhibit strong deep-blue photoluminescence (422-432 nm) in solutions and redshifted emission (472-486 nm) in thin films. The solid-state photoluminescence quantum yield (PLQY) was estimated to be 78 and 94% for TC-2 and TC-3, respectively. TC-2 and TC-3 possess good molecular packing and large molecular cross-sectional areas, which not only improves the PLQY but enhances the triplet-triplet annihilation up-conversion (TTAUC) efficiency of fluorescent emitters. Furthermore, both compounds were applied as an acceptor for confirming their TTAUC property using bis(2-methyldibenzo[f,h]quinoxaline)(acetylacetonate)iridium(III) (Ir(MDQ)2acac) as the sensitizer. Non-doped OLEDs based on TC-2 and TC-3 exhibit blue EL in the 461-476 nm range. In particular, TC-3 exhibits a maximum external quantum efficiency (EQEmax) of 5.1%, and its EL maximum is 476 nm. In addition, the three emitters were employed as hosts in red OLEDs using bis(1-phenylisoquinoline)(acetylacetonate)iridium(III) (Ir(piq)2acac) as the phosphorescent dopant. The red phosphorescent OLEDs based on TC-1, TC-2, and TC-3 achieve excellent EQEmax values of 21.6, 22.9, and 21.9%, respectively, and peak luminance efficiencies of 12.0, 14.0, and 12.3 cd A-1. These results highlight these fluorophores' versatility and promising prospects in practical OLED applications.
Collapse
Affiliation(s)
- Tsz Chung Yiu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | | | - Wei-Ling Chen
- Department of Electrical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Wei-Han Lin
- Department of Electrical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Ming-Jun Lin
- Department of Electrical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Di-Yan Wang
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Chin-Wei Lu
- Department of Applied Chemistry, Providence University, Taichung 43301, Taiwan
| | - Chih-Hao Chang
- Department of Electrical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Yuan Jay Chang
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| |
Collapse
|
16
|
Zhang Y, Li Y, Quan Y, Ye S, Cheng Y. Remarkable White Circularly Polarized Electroluminescence Based on Chiral Co-assembled Helix Nanofiber Emitters. Angew Chem Int Ed Engl 2023; 62:e202214424. [PMID: 36331071 DOI: 10.1002/anie.202214424] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Indexed: 11/06/2022]
Abstract
White circularly polarized organic light-emitting diodes (CP-WOLEDs) are of great significance in potential lighting sources and full-color 3D displays. However, High-performance white CP-EL sources are almost unexplored. We have constructed full-color CP-EL devices based on chiral co-assemblies by using three achiral conjugated pyrene-based dyes (BP, w-WP and c-WP) doped with chiral binaphthyl-based enantiomers (S-/R-M) as the EMLs through an intermolecular chirality induction mechanism. (S-/R-M)0.2 -(c-WP)0.8 films exhibit regular helix nanofibers under annealing treatment and emit strong white CPL. Significantly, remarkable CP-WOLEDs based on (S-/R-M)0.2 -(c-WP)0.8 were achieved with |gEL | values as high as 6.2×10-2 and an excellent CRI of 98 at the CIE coordinates of (0.33, 0.33). These are the highest gEL and CRI values of reported CP-WOLEDs to date. This is the first achievement of CP-WOLEDs based on chiral co-assembled helix nanofiber emitters, and provides a valuable strategy with which to develop white CP-EL for future practical applications.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Yupeng Li
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials, National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 210023, Nanjing, China
| | - Yiwu Quan
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Shanghui Ye
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials, National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 210023, Nanjing, China
| | - Yixiang Cheng
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| |
Collapse
|
17
|
Beaudelot J, Oger S, Peruško S, Phan TA, Teunens T, Moucheron C, Evano G. Photoactive Copper Complexes: Properties and Applications. Chem Rev 2022; 122:16365-16609. [PMID: 36350324 DOI: 10.1021/acs.chemrev.2c00033] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Photocatalyzed and photosensitized chemical processes have seen growing interest recently and have become among the most active areas of chemical research, notably due to their applications in fields such as medicine, chemical synthesis, material science or environmental chemistry. Among all homogeneous catalytic systems reported to date, photoactive copper(I) complexes have been shown to be especially attractive, not only as alternative to noble metal complexes, and have been extensively studied and utilized recently. They are at the core of this review article which is divided into two main sections. The first one focuses on an exhaustive and comprehensive overview of the structural, photophysical and electrochemical properties of mononuclear copper(I) complexes, typical examples highlighting the most critical structural parameters and their impact on the properties being presented to enlighten future design of photoactive copper(I) complexes. The second section is devoted to their main areas of application (photoredox catalysis of organic reactions and polymerization, hydrogen production, photoreduction of carbon dioxide and dye-sensitized solar cells), illustrating their progression from early systems to the current state-of-the-art and showcasing how some limitations of photoactive copper(I) complexes can be overcome with their high versatility.
Collapse
Affiliation(s)
- Jérôme Beaudelot
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Samuel Oger
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| | - Stefano Peruško
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020Antwerp, Belgium
| | - Tuan-Anh Phan
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Titouan Teunens
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium.,Laboratoire de Chimie des Matériaux Nouveaux, Université de Mons, Place du Parc 20, 7000Mons, Belgium
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| |
Collapse
|