1
|
Chen Y, Xu S, Ren S, Zhang J, Xu J, Song Y, Peng J, Zhang S, Du Q, Chen Y. Design of a targeted dual drug delivery system for boosting the efficacy of photoimmunotherapy against melanoma proliferation and metastasis. J Adv Res 2025; 71:533-550. [PMID: 38768811 DOI: 10.1016/j.jare.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024] Open
Abstract
INTRODUCTION The combination of a photosensitizer and indoleamine-2,3 dioxygenase (IDO) inhibitor provides a promising photoimmunotherapy (PIT) strategy for melanoma treatment. A dual drug delivery system offers a potential approach for optimizing the inhibitory effects of PIT on melanoma proliferation and metastasis. OBJECTIVE To develop a dual drug delivery system based on PIT and to study its efficacy in inhibiting melanoma proliferation and metastasis. METHODS We constructed a multifunctional nano-porphyrin material (P18-APBA-HA) using the photosensitizer-purpurin 18 (P18), hyaluronic acid (HA), and 4-(aminomethyl) phenylboronic acid (APBA). The resulting P18-APBA-HA was inserted into a phospholipid membrane and the IDO inhibitor epacadostat (EPA) was loaded into the internal phase to prepare a dual drug delivery system (Lip\EPA\P18-APBA-HA). Moreover, we also investigated its physicochemical properties, targeting, anti-tumor immunity, and anti-tumor proliferation and metastasis effects. RESULTS The designed system utilized the pH sensitivity of borate ester to realize an enhanced-targeting strategy to facilitate the drug distribution in tumor lesions and efficient receptor-mediated cellular endocytosis. The intracellular release of EPA from Lip\EPA\P18-APBA-HA was triggered by thermal radiation, thereby inhibiting IDO activity in the tumor microenvironment, and promoting activation of the immune response. Intravenous administration of Lip\EPA\P18-APBA-HA effectively induced anti-tumor immunity by promoting dendritic cell maturation, cytotoxic T cell activation, and regulatory T cell suppression, and regulating cytokine secretion, to inhibit the proliferation of melanoma and lung metastasis. CONCLUSION The proposed nano-drug delivery system holds promise as offers a promising strategy to enhance the inhibitory effects of the combination of EPA and P18 on melanoma proliferation and metastasis.
Collapse
Affiliation(s)
- Yi Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Shan Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Shuang Ren
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China; Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China
| | - Jiyuan Zhang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jinzhuan Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Yuxuan Song
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China; Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China
| | - Jianqing Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Shuai Zhang
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China.
| | - Qianming Du
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Yan Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China; Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China.
| |
Collapse
|
2
|
Luo Y, Chen M, Zhang T, Peng Q. 2D nanomaterials-based delivery systems and their potentials in anticancer synergistic photo-immunotherapy. Colloids Surf B Biointerfaces 2024; 242:114074. [PMID: 38972257 DOI: 10.1016/j.colsurfb.2024.114074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/22/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
As the field of cancer therapeutics evolves, integrating two-dimensional (2D) nanomaterials with photo-immunotherapy has emerged as a promising approach with significant potential to augment cancer treatment efficacy. These 2D nanomaterials include graphene-based 2D nanomaterials, 2D MXenes, 2D layered double hydroxides, black phosphorus nanosheets, 2D metal-organic frameworks, and 2D transition metal dichalcogenides. They exhibit high load capacities, multiple functionalization pathways, optimal biocompatibility, and physiological stability. Predominantly, they function as anti-tumor delivery systems, amalgamating diverse therapeutic modalities, most notably phototherapy and immunotherapy, and the former is a recognized non-invasive treatment modality, and the latter represents the most promising anti-cancer strategy presently accessible. Thus, integrating phototherapy and immunotherapy founded on 2D nanomaterials unveils a novel paradigm in the war against cancer. This review delineates the latest developments in 2D nanomaterials as delivery systems for synergistic photo-immunotherapy in cancer treatment. We elaborate on the burgeoning realm of photo-immunotherapy, exploring the interplay between phototherapy and enhanced immune cells, immune response modulation, or immunosuppressive tumor microenvironments. Notably, the strategies to augment photo-immunotherapy have also been discussed. Finally, we discuss the challenges and future perspectives of these 2D nanomaterials in photo-immunotherapy.
Collapse
Affiliation(s)
- Yankun Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ming Chen
- West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ting Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
3
|
Li X, Liu L, Yang K, Wang Z, Yuan T, Sha Q, Chen W, Yi T, Hua J. A Diketopyrrolopyrrole-Based All-in-One Nanoplatform for Self-Reinforcing Mild Photothermal Therapy Cascade Immunotherapy for Tumors. Adv Healthc Mater 2024; 13:e2400766. [PMID: 39007249 DOI: 10.1002/adhm.202400766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/20/2024] [Indexed: 07/16/2024]
Abstract
Mild photothermal therapy (PTT) has attracted attention for effectively avoiding the severe side effects associated with high-temperature tumor ablation. However, its progress is hindered by the limited availability of high-performance photothermal agents (PTAs) and the thermoresistance of cancer cells induced by heat shock reactions. Herein, this work proposes a new strategy to expand the library of high-performance organic small-molecule PTAs and utilize it to construct a multifunctional nano-theranostic platform. By incorporating additional acceptors and appropriate π-bridges, a diketopyrrolopyrrole-based dye BDB is developed, which exhibits strong absorption and bright fluorescence emission in the near-infrared (NIR) region. Subsequently, BDB is co-coated with the heat shock protein (HSP) inhibitor tanespimycin (17-AAG) using the functional amphiphilic polymers DSPE-Hyd-PEG2000-cRGD to form an all-in-one nanoplatform BAG NPs. As a result, BAG NPs can precisely target tumor tissue, guide the treatment process in real-time through NIR-II fluorescence/photoacoustic/photothermal imaging, and release 17-AAG on demand to enhance mild PTT. Additionally, the mild PTT has been demonstrated to induce immunogenic cell death (ICD) and activate a systemic anti-tumor immune response, thereby suppressing both primary and distant tumors. Overall, this study presents a multifunctional nanoplatform designed for precise mild PTT combined with immunotherapy for effective tumor treatment.
Collapse
Affiliation(s)
- Xinsheng Li
- Key Laboratory for Advanced Materials, College of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lingyan Liu
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Kaini Yang
- Department of Biliary-pancreatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Zhiqiang Wang
- Key Laboratory for Advanced Materials, College of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Tao Yuan
- Key Laboratory for Advanced Materials, College of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qingyang Sha
- Key Laboratory for Advanced Materials, College of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei Chen
- Department of Biliary-pancreatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Tao Yi
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Jianli Hua
- Key Laboratory for Advanced Materials, College of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
4
|
Li W, Huang H, Yao S, Zhao Y, Liu M, Liu X, Guo H. Engineering of a double targeting nanoplatform to elevate ROS generation and DSF anticancer activity. J Mater Chem B 2024; 12:7143-7152. [PMID: 38904428 DOI: 10.1039/d4tb00455h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Intracellular oxidative protection mechanisms and adverse systemic toxicity are major obstacles for the success of chemodynamic therapy (CDT)/chemotherapy (CT) synergistic therapy. To tackle the fundamental challenges of current CDT and circumvent the side effects of conventional CT, we developed a copper peroxide (CP) and disulfiram (DSF)-loaded 3-aminotriazole (3-AT) doped ZIF-8 (MAF) with partial sequence-specificity using hyaluronic acid (HA) and triphenylphosphine (TPP) in this study. Upon intravenous administration, CP@MAF-DSF@PEG-TPP@HA (CPMDTH) nanoparticles (NPs) were enriched in tumor tissues through HA-mediated endocytosis, followed by enhanced accumulation in mitochondria by the TPP target. The acidic tumor environment (TME) triggered the decomposition of MAF to release CP, DSF and 3-AT. Cu2+ and H2O2 hydrated from CP NPs produced ˙OH via a Fenton-like reaction. CAT activity inhibition and GSH consumption induced by 3-AT dramatically amplified mitochondrial oxidative stress, thereby promoting the overproduction of ˙OH. In addition, the accumulation of DSF and Cu2+ led to the formation of a cytotoxic bis(N,N-diethyldithiocarbamate) copper(II) complex (Cu(DTC)2) in situ, achieving efficient CT. CPMDTH NPs demonstrated significantly improved antitumor efficiency and excellent biosafety both in vitro and in vivo. This study offers a promising therapeutic strategy for CDT/CT synergistic oncotherapy.
Collapse
Affiliation(s)
- Wenqiu Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China.
| | - Haowu Huang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China.
| | - Shunyu Yao
- Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China.
| | - Yiwang Zhao
- Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China.
| | - Mingxing Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China.
| | - Xiaoqing Liu
- Center for Materials Research and Analysis, Wuhan University of Technology, Wuhan 430070, PR China
| | - Huiling Guo
- Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
5
|
Moock VM, Arce Chávez DE, García-Segundo C, Ruiz-Huerta L. Photothermal effect in X-ray images for computed tomography of metallic parts: Stainless steel spheres. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2024; 32:443-458. [PMID: 38217631 PMCID: PMC11091624 DOI: 10.3233/xst-230260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/29/2023] [Accepted: 12/03/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND The environmental impact on industrial X-ray tomography systems has gained its attention in terms of image precision and metrology over recent years, yet is still complex due to the variety of applications. OBJECTIVE The current study explores the photothermal repercussions of the overall radiation exposure time. It shows the emerging dimensional uncertainty when measuring a stainless steel sphere by means of circular tomography scans. METHODS The authors develop a novel frame difference method for X-ray radiographies to evaluate the spatial changes induced in the projected absorption maps on the X-ray panel. The object of interest has a simple geometry for the purpose of proof of concept. The dominant source of the observed radial uncertainty is the photothermal effect due to high-energy X-ray scattering at the metal workpiece. Thermal variations are monitored by an infrared camera within the industrial tomography system, which confines that heat in the industrial grade X-ray system. RESULTS The authors demonstrate that dense industrial computed tomography programs with major X-ray power notably affect the uncertainty of digital dimensional measurements. The registered temperature variations are consistent with dimensional changes in radiographies and hence form a source of error that might result in visible artifacts within the 3D image reconstruction. CONCLUSIONS This contribution is of fundamental value to reach the balance between the number of projections and radial uncertainty tolerance when performing analysis with X-ray dimensional exploration in precision measurements with industrial tomography.
Collapse
Affiliation(s)
- Verena M. Moock
- Instituto de Ciencias Aplicadas y Tecnología (ICAT), Universidad Nacional Autónoma de México (UNAM), Circuito Exterior S/N, Ciudad Universitaria, Coyoacán, Ciudad de México, México
- Laboratorio Nacional de Manufactura Aditiva y Digital (MADiT), México
| | - Darien E. Arce Chávez
- Instituto de Ciencias Aplicadas y Tecnología (ICAT), Universidad Nacional Autónoma de México (UNAM), Circuito Exterior S/N, Ciudad Universitaria, Coyoacán, Ciudad de México, México
- Facultad de Ciencias: Física Biomédica, UNAM, Investigación Científica, Ciudad Universitaria, Coyoacán, Ciudad de México, México
| | - Crescencio García-Segundo
- Instituto de Ciencias Aplicadas y Tecnología (ICAT), Universidad Nacional Autónoma de México (UNAM), Circuito Exterior S/N, Ciudad Universitaria, Coyoacán, Ciudad de México, México
| | - Leopoldo Ruiz-Huerta
- Instituto de Ciencias Aplicadas y Tecnología (ICAT), Universidad Nacional Autónoma de México (UNAM), Circuito Exterior S/N, Ciudad Universitaria, Coyoacán, Ciudad de México, México
- Laboratorio Nacional de Manufactura Aditiva y Digital (MADiT), México
| |
Collapse
|
6
|
Yilmazer A, Eroglu Z, Gurcan C, Gazzi A, Ekim O, Sundu B, Gokce C, Ceylan A, Giro L, Unal MA, Arı F, Ekicibil A, Ozgenç Çinar O, Ozturk BI, Besbinar O, Ensoy M, Cansaran-Duman D, Delogu LG, Metin O. Synergized photothermal therapy and magnetic field induced hyperthermia via bismuthene for lung cancer combinatorial treatment. Mater Today Bio 2023; 23:100825. [PMID: 37928252 PMCID: PMC10622883 DOI: 10.1016/j.mtbio.2023.100825] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023] Open
Abstract
Thanks to its intrinsic properties, two-dimensional (2D) bismuth (bismuthene) can serve as a multimodal nanotherapeutic agent for lung cancer acting through multiple mechanisms, including photothermal therapy (PTT), magnetic field-induced hyperthermia (MH), immunogenic cell death (ICD), and ferroptosis. To investigate this possibility, we synthesized bismuthene from the exfoliation of 3D layered bismuth, prepared through a facile method that we developed involving surfactant-assisted chemical reduction, with a specific focus on improving its magnetic properties. The bismuthene nanosheets showed high in vitro and in vivo anti-cancer activity after simultaneous light and magnetic field exposure in lung adenocarcinoma cells. Only when light and magnetic field are applied together, we can achieve the highest anti-cancer activity compared to the single treatment groups. We have further shown that ICD-dependent mechanisms were involved during this combinatorial treatment strategy. Beyond ICD, bismuthene-based PTT and MH also resulted in an increase in ferroptosis mechanisms both in vitro and in vivo, in addition to apoptotic pathways. Finally, hemolysis in human whole blood and a wide variety of assays in human peripheral blood mononuclear cells indicated that the bismuthene nanosheets were biocompatible and did not alter immune function. These results showed that bismuthene has the potential to serve as a biocompatible platform that can arm multiple therapeutic approaches against lung cancer.
Collapse
Affiliation(s)
- Açelya Yilmazer
- Department of Biomedical Engineering, Faculty of Engineering, Ankara University, 06830 Ankara, Türkiye
- Stem Cell Institute, Ankara University, 06520, Ankara, Türkiye
| | - Zafer Eroglu
- Department of Chemistry, Faculty of Science, Koç University, 34450, Istanbul, Türkiye
| | - Cansu Gurcan
- Department of Biomedical Engineering, Faculty of Engineering, Ankara University, 06830 Ankara, Türkiye
- Stem Cell Institute, Ankara University, 06520, Ankara, Türkiye
| | - Arianna Gazzi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127, Trieste, Italy
- Department of Biomedical Sciences, University of Padua, 35129, Padua, Italy
| | - Okan Ekim
- Department of Anatomy, Faculty of Veterinary Medicine, Ankara University, 06110, Ankara, Türkiye
| | - Buse Sundu
- Department of Chemistry, Faculty of Science, Koç University, 34450, Istanbul, Türkiye
| | - Cemile Gokce
- Department of Biomedical Engineering, Faculty of Engineering, Ankara University, 06830 Ankara, Türkiye
| | - Ahmet Ceylan
- Department of Histology Embryology, Faculty of Veterinary Medicine, Ankara University, 06110, Ankara, Türkiye
| | - Linda Giro
- Department of Biomedical Sciences, University of Padua, 35129, Padua, Italy
| | | | - Fikret Arı
- Department of Electrical Electronic Engineering, Faculty of Engineering, 06830, Ankara, Türkiye
| | - Ahmet Ekicibil
- Department of Physics, Faculty of Arts and Sciences, Cukurova University, 01330, Adana, Türkiye
| | - Ozge Ozgenç Çinar
- Department of Histology Embryology, Faculty of Veterinary Medicine, Ankara University, 06110, Ankara, Türkiye
| | - Berfin Ilayda Ozturk
- Department of Biomedical Engineering, Faculty of Engineering, Ankara University, 06830 Ankara, Türkiye
| | - Omur Besbinar
- Department of Biomedical Engineering, Faculty of Engineering, Ankara University, 06830 Ankara, Türkiye
- Stem Cell Institute, Ankara University, 06520, Ankara, Türkiye
| | - Mine Ensoy
- Biotechnology Institute, Ankara University, 06135, Ankara, Türkiye
| | | | - Lucia Gemma Delogu
- Department of Biology, College of Arts and Sciences, Khalifa University, Abu Dhabi, UAE
- Department of Biomedical Sciences, University of Padua, 35129, Padua, Italy
| | - Onder Metin
- Department of Chemistry, Faculty of Science, Koç University, 34450, Istanbul, Türkiye
- Koç University Surface Science and Technology Center (KUYTAM), Istanbul, 34450, Türkiye
| |
Collapse
|
7
|
Liu T, Liu L, Li L, Cai J. Exploiting targeted nanomedicine for surveillance, diagnosis, and treatment of hepatocellular carcinoma. Mater Today Bio 2023; 22:100766. [PMID: 37636988 PMCID: PMC10457457 DOI: 10.1016/j.mtbio.2023.100766] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/26/2023] [Accepted: 08/05/2023] [Indexed: 08/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the cancers that has the highest morbidity and mortality rates. In clinical practice, there are still many limitations in surveilling, diagnosing, and treating HCC, such as the poor detection of early HCC, the frequent post-surgery recurrence, the low local tumor control rate, the therapy resistance and side effects. Therefore, improved, or innovative modalities are urgently required for early diagnosis as well as refined and effective management. In recent years, nanotechnology research in the field of HCC has received great attention, with various aspects of diagnosis and treatment including biomarkers, ultrasound, diagnostic imaging, intraoperative imaging, ablation, transarterial chemoembolization, radiotherapy, and systemic therapy. Different from previous reviews that discussed from the perspective of nanoparticles' structure, design and function, this review systematically summarizes the methods and limitations of diagnosing and treating HCC in clinical guidelines and practices, as well as nanomedicine applications. Nanomedicine can overcome the limitations to improve diagnosis accuracy and therapeutic effect via enhancement of targeting, biocompatibility, bioavailability, controlled releasing, and combination of different clinical treatment modalities. Through an in-depth understanding of the logic of nanotechnology to conquer clinical limitations, the main research directions of nanotechnology in HCC are sorted out in this review. It is anticipated that nanomedicine will play a significant role in the future clinical practices of HCC.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Medical Imaging, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510000, China
| | - Li Liu
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Li Li
- Department of Medical Imaging, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510000, China
| | - Jing Cai
- Department of Medical Imaging, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510000, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, PR China
| |
Collapse
|
8
|
Lucherelli MA, Oestreicher V, Alcaraz M, Abellán G. Chemistry of two-dimensional pnictogens: emerging post-graphene materials for advanced applications. Chem Commun (Camb) 2023; 59:6453-6474. [PMID: 37084083 DOI: 10.1039/d2cc06337a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The layered allotropes of group 15 (P, As, Sb and Bi), also called two-dimensional (2D) pnictogens, have emerged as one of the most promising families of post-graphene 2D-materials. This is mainly due to the great variety of properties they exhibit, including layer-dependent bandgap, high charge-carrier mobility and current on/off ratios, strong spin-orbit coupling, wide allotropic diversity and pronounced chemical reactivity. These are key ingredients for exciting applications in (opto)electronics, heterogeneous catalysis, nanomedicine or energy storage and conversion, to name a few. However, there are still many challenges to overcome in order to fully understand their properties and bring them to real applications. As a matter of fact, due to their strong interlayer interactions, the mechanical exfoliation (top-down) of heavy pnictogens (Sb & Bi) is unsatisfactory, requiring the development of new methodologies for the isolation of single layers and the scalable production of high-quality flakes. Moreover, due to their pronounced chemical reactivity, it is necessary to develop passivation strategies, thus preventing environmental degradation, as in the case of bP, or controlling surface oxidation, with the corresponding modification of the interfacial and electronic properties. In this Feature Article we will discuss, among others, the most important contributions carried out in our group, including new liquid phase exfoliation (LPE) processes, bottom-up colloidal approaches, the preparation of intercalation compounds, innovative non-covalent and covalent functionalization protocols or novel concepts for potential applications in catalysis, electronics, photonics, biomedicine or energy storage and conversion. The past years have seen the birth of the chemistry of pnictogens at the nanoscale, and this review intends to highlight the importance of the chemical approach in the successful development of routes to synthesise, passivate, modify, or process these materials, paving the way for their use in applications of great societal impact.
Collapse
Affiliation(s)
- Matteo Andrea Lucherelli
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán, 46980, Paterna, Valencia, Spain.
| | - Víctor Oestreicher
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán, 46980, Paterna, Valencia, Spain.
| | - Marta Alcaraz
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán, 46980, Paterna, Valencia, Spain.
| | - Gonzalo Abellán
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
9
|
Zhou LL, Guan Q, Zhou W, Kan JL, Dong YB. An iodide-containing covalent organic framework for enhanced radiotherapy. Chem Sci 2023; 14:3642-3651. [PMID: 37006674 PMCID: PMC10056114 DOI: 10.1039/d3sc00251a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/05/2023] [Indexed: 03/08/2023] Open
Abstract
Metal-free radiosensitizers, particularly iodine, have shown promise in enhancing radiotherapy due to their suitable X-ray absorption capacities and negligible biotoxicities. However, conventional iodine compounds have very short circulating half-lives and are not retained in tumors very well, which significantly limits their applications. Covalent organic frameworks (COFs) are highly biocompatible crystalline organic porous materials that are flourishing in nanomedicine but have not been developed for radiosensitization applications. Herein, we report the room-temperature synthesis of an iodide-containing cationic COF by the three-component one-pot reaction. The obtained TDI-COF can be a tumor radiosensitizer for enhanced radiotherapy by radiation-induced DNA double-strand breakage and lipid peroxidation and inhibits colorectal tumor growth by inducing ferroptosis. Our results highlight the excellent potential of metal-free COFs as radiotherapy sensitizers.
Collapse
Affiliation(s)
- Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 China
| | - Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 China
| | - Wei Zhou
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan 250021 China
| | - Jing-Lan Kan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 China
| |
Collapse
|