1
|
Koupepidou K, Subanbekova A, Zaworotko MJ. Functional flexible adsorbents and their potential utility. Chem Commun (Camb) 2025; 61:3109-3126. [PMID: 39851002 PMCID: PMC11841667 DOI: 10.1039/d4cc05393a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/09/2025] [Indexed: 01/25/2025]
Abstract
Physisorbents are poised to address global challenges such as CO2 capture, mitigation of water scarcity and energy-efficient commodity gas storage and separation. Rigid physisorbents, i.e. those adsorbents that retain their structures upon gas or vapour exposure, are well studied in this context. Conversely, cooperatively flexible physisorbents undergo long-range structural transformations stimulated by guest exposure. Discovered serendipitously, flexible adsorbents have generally been regarded as scientific curiosities, which has contributed to misconceptions about their potential utility. Recently, increased scientific interest and insight into the properties of flexible adsorbents has afforded materials whose performance suggests that flexible adsorbents can compete with rigid adsorbents for both storage and separation applications. With respect to gas storage, adsorbents that undergo guest-induced phase transformations between low and high porosity phases in the right pressure range can offer improved working capacity and heat management, as exemplified by studies on adsorbed natural gas storage. For gas and vapour separations, the very nature of flexible adsorbents means that they can undergo induced fit mechanisms of guest binding, i.e. the adsorbent can adapt to a specific adsorbate. Such flexible adsorbents have set several new benchmarks for certain hydrocarbon separations in terms of selectivity and separation performance. This Feature Article reviews progress made by us and others towards the crystal engineering (design and control) of flexible adsorbents and addresses several of the myths that have emerged since their initial discovery, particularly with respect to those performance parameters of relevance to natural gas storage, water harvesting and hydrocarbon gas/vapour separation.
Collapse
Affiliation(s)
- Kyriaki Koupepidou
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94T9PX, Republic of Ireland.
| | - Aizhamal Subanbekova
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94T9PX, Republic of Ireland.
| | - Michael J Zaworotko
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94T9PX, Republic of Ireland.
| |
Collapse
|
2
|
Wei X, Xia Y, Wei S, Chen Y, Yang S. Microporous Adsorbents for CH 4 Capture and Separation from Coalbed Methane with Low CH 4 Concentration: Review. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:208. [PMID: 39940184 PMCID: PMC11820153 DOI: 10.3390/nano15030208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/14/2025]
Abstract
A rapid increase in natural gas consumption has resulted in a shortage of conventional natural gas resources, while an increasing concentration of CH4 in the atmosphere has intensified the greenhouse effect. The exploration and utilization of coalbed methane (CBM) resources not only has the potential to fill the gap in natural gas supply and promote the development of green energy, but could also reduce CH4 emissions into the atmosphere and alleviate global warming. However, the efficient separation of CH4 and N2 has become a significant challenge in the utilization of CBM, which has attracted significant attention from researchers in recent years. The development of efficient CH4/N2 separation technologies is crucial for enhancing the exploitation and utilization of low-concentration CBM and is of great significance for sustainable development. In this paper, we provide an overview of the current methods for CH4/N2 separation, summarizing their respective advantages and limitations. Subsequently, we focus on reviewing research advancements in adsorbents for CH4/N2 separation, including zeolites, metal-organic frameworks (MOFs), and porous carbon materials. We also analyze the relationship between the pore structure and surface properties of these adsorbents and their adsorption separation performances, and summarize the challenges and difficulties that different types of adsorbents face in their future development. In addition, we also highlight that matching the properties of adsorbents and adsorbates, controlling pore structures, and tuning surface properties on an atomic scale will significantly increase the potential of adsorbents for CH4 capture and separation from CBM.
Collapse
Affiliation(s)
- Xiao Wei
- College of Material Science and Engineering, Liaoning Technical University, Fuxin 123000, China; (X.W.); (Y.X.); (S.W.)
| | - Yingkai Xia
- College of Material Science and Engineering, Liaoning Technical University, Fuxin 123000, China; (X.W.); (Y.X.); (S.W.)
| | - Shuang Wei
- College of Material Science and Engineering, Liaoning Technical University, Fuxin 123000, China; (X.W.); (Y.X.); (S.W.)
| | - Yuehui Chen
- School of Mining, Liaoning Technical University, Fuxin 123000, China;
| | - Shaobin Yang
- College of Material Science and Engineering, Liaoning Technical University, Fuxin 123000, China; (X.W.); (Y.X.); (S.W.)
| |
Collapse
|
3
|
Zhang LP, Xu L, Zhang XT, Li YT, Lan HL, Liu SC, Yang QY. Pore Chemical Modification of Bimetallic Coordination Networks for Coal-Bed Methane Purification under Humid Conditions. Inorg Chem 2025; 64:1596-1603. [PMID: 39806545 DOI: 10.1021/acs.inorgchem.4c05110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The recycling of low-concentration coal-bed methane (CBM) is environmentally beneficial and plays a crucial role in optimizing the energy mix. In this work, we present a strategy involving pore chemical modification to synthesize a series of bimetallic diamond coordination networks, namely CuIn(ina)4, CuIn(3-ain)4, and CuIn(3-Fina)4 (where ina = isonicotinic acid, 3-ain = 3-amino-isonicotinic acid, and 3-Fina = 3-fluoroisonicotinic acid). Among these, the amino-functionalized CuIn(3-ain)4 exhibits excellent CH4 adsorption capacity (1.71 mmol g-1) and CH4/N2 selectivity (7.5) due to its optimal pore size and chemical environment, establishing it as a new benchmark material for CBM separation. Dynamic breakthrough experiments confirm the exceptional CH4/N2 separation performance of CuIn(3-ain)4. Notably, CuIn(3-ain)4 demonstrates excellent stability under wet conditions and maintains outstanding separation performance even in high-humidity environments. Additionally, theoretical simulations provide valuable insights into how selective adsorption performance can be fine-tuned by manipulating the pore size and geometry. Regeneration tests and cycling evaluations further underscore the remarkable potential of CuIn(3-ain)4 as a highly efficient adsorbent for the separation of CBM.
Collapse
Affiliation(s)
- Li-Ping Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Li Xu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xi-Ting Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yi-Tao Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hao-Ling Lan
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Si-Chao Liu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qing-Yuan Yang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
4
|
Ke Q, Xiong F, Fang G, Chen J, Niu X, Pan P, Cui G, Xing H, Lu H. The Reinforced Separation of Intractable Gas Mixtures by Using Porous Adsorbents. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408416. [PMID: 39161083 DOI: 10.1002/adma.202408416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/31/2024] [Indexed: 08/21/2024]
Abstract
This review focuses on the mechanism and driving force in the intractable gas separation using porous adsorbents. A variety of intractable mixtures have been discussed, including air separation, carbon capture, and hydrocarbon purification. Moreover, the separation systems are categorized according to distinctly biased modes depending on the minor differences in the kinetic diameter, dipole/quadruple moment, and polarizability of the adsorbates, or sorted by the varied separation occasions (e.g., CO2 capture from flue gas or air) and driving forces (thermodynamic and kinetic separation, molecular sieving). Each section highlights the functionalization strategies for porous materials, like synthesis condition optimization and organic group modifications for porous carbon materials, cation exchange and heteroatom doping for zeolites, and metal node-organic ligand adjustments for MOFs. These functionalization strategies are subsequently associated with enhanced adsorption performances (capacity, selectivity, structural/thermal stability, moisture resistance, etc.) toward the analog gas mixtures. Finally, this review also discusses future challenges and prospects for using porous materials in intractable gas separation. Therein, the combination of theoretical calculation with the synthesis condition and adsorption parameters optimization of porous adsorbents may have great potential, given its fast targeting of candidate adsorbents and deeper insights into the adsorption forces in the confined pores and cages.
Collapse
Affiliation(s)
- Quanli Ke
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Feng Xiong
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Guonan Fang
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jing Chen
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xiaopo Niu
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Pengyun Pan
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Guokai Cui
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Huabin Xing
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Hanfeng Lu
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
5
|
Chen K, Mousavi SH, Yu Z, Zhang L, Gu Q, Snurr RQ, Webley PA, Sun N, Li GK. Molecular Insight into the Electric Field Regulation of N 2 and CH 4 Adsorption in the Trapdoor ZSM-25 Zeolites. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51129-51138. [PMID: 39258359 DOI: 10.1021/acsami.4c11059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Controlling gas admission by regulating pore accessibility in porous materials has been a topic of extensive research. Recently, the electric field (E-field) has emerged as an external stimulus to alter the adsorption behavior of some microporous adsorbents. However, the mechanism behind this phenomenon is not yet fully understood. Here, we demonstrate the crucial role of the trapdoor cations of zeolite molecular sieves in E-field-regulated gas adsorption. The E-field activation caused framework expansion and cation deviation, significantly reducing the energy barrier for gas molecules passing through the pore aperture gated by the trapdoor cation. This led to an increase in the N2 adsorption capacity of ZSM-25 and a 60% improvement in N2/CH4 selectivity in the quest for nitrogen rejection for natural gas processing. By combining experimental and computational approaches, we elucidated the influence of E-field activation as a concurrent effect of the reduced heat of adsorption caused by framework expansion and the decrease in the energy barrier resulting from promoted cation oscillation. These findings pave the way for the material design of E-field-regulated adsorption and its application in molecular separation.
Collapse
Affiliation(s)
- Kaifei Chen
- Photon Science Research Center for Carbon Dioxide, CAS Key Lab of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Seyed Hesam Mousavi
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zhi Yu
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Lina Zhang
- Photon Science Research Center for Carbon Dioxide, CAS Key Lab of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China
| | - Qinfen Gu
- Australian Synchrotron, ANSTO, 800 Blackburn Rd, Clayton, Victoria 3168 Australia
| | - Randall Q Snurr
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Paul A Webley
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Nannan Sun
- Photon Science Research Center for Carbon Dioxide, CAS Key Lab of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China
| | - Gang Kevin Li
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
6
|
Zhao YL, Zhang X, Li MZ, Li JR. Non-CO 2 greenhouse gas separation using advanced porous materials. Chem Soc Rev 2024; 53:2056-2098. [PMID: 38214051 DOI: 10.1039/d3cs00285c] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Global warming has become a growing concern over decades, prompting numerous research endeavours to reduce the carbon dioxide (CO2) emission, the major greenhouse gas (GHG). However, the contribution of other non-CO2 GHGs including methane (CH4), nitrous oxide (N2O), fluorocarbons, perfluorinated gases, etc. should not be overlooked, due to their high global warming potential and environmental hazards. In order to reduce the emission of non-CO2 GHGs, advanced separation technologies with high efficiency and low energy consumption such as adsorptive separation or membrane separation are highly desirable. Advanced porous materials (APMs) including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs), porous organic polymers (POPs), etc. have been developed to boost the adsorptive and membrane separation, due to their tunable pore structure and surface functionality. This review summarizes the progress of APM adsorbents and membranes for non-CO2 GHG separation. The material design and fabrication strategies, along with the molecular-level separation mechanisms are discussed. Besides, the state-of-the-art separation performance and challenges of various APM materials towards each type of non-CO2 GHG are analyzed, offering insightful guidance for future research. Moreover, practical industrial challenges and opportunities from the aspect of engineering are also discussed, to facilitate the industrial implementation of APMs for non-CO2 GHG separation.
Collapse
Affiliation(s)
- Yan-Long Zhao
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Xin Zhang
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Mu-Zi Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| |
Collapse
|
7
|
Wang X, Liu H, Sun M, Wang H, Feng X, Chen W, Feng X, Fan W, Sun D. Thiadiazole-Functionalized Th/Zr-UiO-66 for Efficient C 2H 2/CO 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7819-7825. [PMID: 38300743 DOI: 10.1021/acsami.3c17622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Adsorptive separation technology provides an effective approach for separating gases with similar physicochemical properties, such as the purification of acetylene (C2H2) from carbon dioxide (CO2). The high designability and tunability of metal-organic framework (MOF) adsorbents make them ideal design platforms for this challenging separation. Herein, we employ an isoreticular functionalization strategy to fine-tune the pore environment of Zr- and Th-based UiO-66 by the immobilization of the benzothiadiazole group via bottom-up synthesis. The functionalized UPC-120 exhibits an enhanced C2H2/CO2 separation performance, which is confirmed by adsorption isotherms, dynamic breakthrough curves, and theoretical simulations. The synergy of ligand functionalization and metal ion fine-tuning guided by isoreticular chemistry provides a new perspective for the design and development of adsorbents for challenging gas separation processes.
Collapse
Affiliation(s)
- Xiaokang Wang
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Hongyan Liu
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Meng Sun
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Haoyang Wang
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Xueying Feng
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Wenmiao Chen
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Xiang Feng
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Weidong Fan
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
| | - Daofeng Sun
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| |
Collapse
|
8
|
Guo P, Ying Y, Liu D. One Scalable and Stable Metal-Organic Framework for Efficient Separation of CH 4/N 2 Mixture. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7338-7344. [PMID: 38301114 DOI: 10.1021/acsami.3c18378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Separating CH4 from coal bed methane is of great importance but challenging. Adsorption-based separation often suffers from low selectivity, poor stability, and difficulty to scale up. Herein, a stable and scalable metal-organic framework [MOF, CoNi(pyz-NH2)] with multiple CH4 binding sites was reported to efficiently separate the CH4/N2 mixture. Due to its suitable pore size and multiple CH4 binding sites, it exhibits excellent CH4/N2 selectivity (16.5) and CH4 uptake (35.9 cm3/g) at 273 K and 1 bar, which is comparable to that of the state-of-the-art MOFs. Theoretical calculations reveal that the high density of open metal sites and polar functional groups in the pores provide strong affinity to CH4 than to N2. Moreover, CoNi(pyz-NH2) displays excellent structural stability and can be scale-up synthesized (22.7 g). This work not only provides an excellent adsorbent but also provides important inspiration for the future design and preparation of porous adsorbents for separations.
Collapse
Affiliation(s)
- Pengtao Guo
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yunpan Ying
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dahuan Liu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- College of Chemical Engineering, Qinghai University, Xining 810016, China
| |
Collapse
|
9
|
Zhang P, Ma S, Zhang Y, He C, Hu T. Enhancing CO 2/N 2 and CH 4/N 2 separation performance by salt-modified aluminum-based metal-organic frameworks. Dalton Trans 2024. [PMID: 38247311 DOI: 10.1039/d3dt03993e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
The energy-saving separation of CO2/N2 and CH4/N2 in the energy industry facilitates the reduction of greenhouse gas emissions and replenishes energy resources, but is a challenging separation process. The trade-off between adsorption capacity and selectivity of the adsorbents is one of the key bottlenecks in adsorption separation technologies' large-scale application in the above separation task. Herein, we introduced a series of fluoroborate or fluorosilicate salts (Cu(BF4)2, Zn(BF4)2 and ZnSiF6) into the open coordination nitrogen sites of aluminum-based metal-organic frameworks (MOF-253) to create multiple binding sites to simultaneously enhance the adsorption capacity and selectivity for the target gas. By the synergistic adsorption effect of metal ions (Cu2+ or Zn2+) and fluorinated anions (BF4- or (SiF6)2-), the single-component adsorption capacity and selectivity of salt-modified MOF-253 (MOF-253@Cu(BF4)2, MOF-253@Zn(BF4)2 and MOF-253@ZnSiF6) for CO2 and CH4 were effectively improved when compared to pristine MOF-253 at 298 K and 1 bar. In addition, the salt-modified MOF-253 has a moderate adsorption heat (<30 kJ mol-1) which could be rapidly regenerated at low energy by evacuation desorption. As confirmed by the ambient breakthrough experiments of MOF-253 and MOF-253@ZnSiF6, the real separation performance for both CO2/N2 (1/4) and CH4/N2 (1/4) was obviously improved. This work provides a feasible post-modification strategy on uncoordinated sites of the framework to improve adsorption separation performance and promote the development of ideal adsorbents with a view to realizing their application in the energy industry.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, Shanxi, P. R. China.
| | - Sai Ma
- Department of Chemistry, College of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, Shanxi, P. R. China.
| | - Yujuan Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, Shanxi, P. R. China.
| | - Chaohui He
- Department of Chemistry, College of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, Shanxi, P. R. China.
| | - Tuoping Hu
- Department of Chemistry, College of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, Shanxi, P. R. China.
| |
Collapse
|
10
|
Wang Y, Li T, Li L, Lin RB, Jia X, Chang Z, Wen HM, Chen XM, Li J. Construction of Fluorinated Propane-Trap in Metal-Organic Frameworks for Record Polymer-Grade Propylene Production under High Humidity Conditions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207955. [PMID: 36659826 DOI: 10.1002/adma.202207955] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Propane/propene (C3 H8 /C3 H6 ) separation is essential in the petrochemical industry but challenging because of their similar physical and chemical properties. Adsorptive separation with C3 H8 -selective porous materials can energy-efficiently produce high-purity C3 H6 , which is highly promising for replacing conventional cryogenic distillation but suffers from unsatisfactory performance. Herein, through the precise incorporation of fluorinated functional groups into the confined pore space, a new fluorinated metal-organic framework (FDMOF-2) featuring the unique and strong C3 H8 -trap is successfully constructed. FDMOF-2 exhibits an unprecedented C3 H8 capture capacity of 140 cm3 cm-3 and excellent C3 H8 /C3 H6 (1:1, v/v) selectivity up to 2.18 (298 K and 1 bar), thus setting new benchmarks for all reported porous materials. Single-crystal X-ray diffraction studies reveal that the tailored pore confinement in FDMOF-2 provides stronger and multiple attractive interactions with C3 H8 , enabling excellent binding affinities. Breakthrough experiments demonstrate that C3 H8 can be directly extracted from various C3 H8 /C3 H6 mixtures with FDMOF-2, affording an outstanding C3 H6 production (501 mmol L-1 ) with over 99.99% purity. Benefiting from the robust framework and hydrophobic ligands, the separation performance of FDMOF-2 can be well maintained even under 70% relative humidity conditions.
Collapse
Affiliation(s)
- Yong Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Tong Li
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Libo Li
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Rui-Biao Lin
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Xiaoxia Jia
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Zeyu Chang
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Hui-Min Wen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xiao-Ming Chen
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Jinping Li
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| |
Collapse
|
11
|
Deng Z, Liu Y, Wan M, Ge S, Zhao Z, Chen J, Chen S, Deng S, Wang J. Breaking trade-off effect of Xe/Kr separation on microporous and heteroatoms-rich carbon adsorbents. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Lin HB, Zhao JG, Lu N, Han Q, Wang JQ, Guan JM, Wang X, Liu F. Prussian Blue/Cellulose Acetate Thin Film Composite Nanofiltration Membrane for Molecular Sieving and Catalytic Fouling Resistance. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2950-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
13
|
Advances in Metal-Organic Frameworks for Efficient Separation and Purification of Natural Gas. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2023. [DOI: 10.1016/j.cjsc.2023.100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
14
|
Zhang YZ, Kong XJ, Zhou WF, Li CH, Hu H, Hou H, Liu Z, Geng L, Huang H, Zhang X, Zhang DS, Li JR. Pore Environment Optimization of Microporous Metal-Organic Frameworks with Huddled Pyrazine Pillars for C 2H 2/CO 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4208-4215. [PMID: 36625524 DOI: 10.1021/acsami.2c19779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs) have been proven promising in addressing many critical issues related to gas separation and purification. However, it remains a great challenge to optimize the pore environment of MOFs for purification of specific gas mixtures. Herein, we report the rational construction of three isostructural microporous MOFs with the 4,4',4"-tricarboxyltriphenylamine (H3TCA) ligand, unusual hexaprismane Ni6O6 cluster, and functionalized pyrazine pillars [PYZ-x, x = -H (DZU-10), -NH2 (DZU-11), and -OH (DZU-12)], where the building blocks of Ni6O6 clusters and huddled pyrazine pillars are reported in porous MOFs for the first time. These building blocks have enabled the resulting materials to exhibit good chemical stability and variable pore chemistry, which thus contribute to distinct performances toward C2H2/CO2 separation. Both single-component isotherms and dynamic column breakthrough experiments demonstrate that DZU-11 with the PYZ-NH2 pillar outperforms its hydrogen and hydroxy analogues. Density functional theory calculations reveal that the higher C2H2 affinity of DZU-11 over CO2 is attributed to multiple electrostatic interactions between C2H2 and the framework, including strong C≡C···H-N (2.80 Å) interactions. This work highlights the potential of pore environment optimization to construct smart MOF adsorbents for some challenging gas separations.
Collapse
Affiliation(s)
- Yong-Zheng Zhang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Xiang-Jing Kong
- Bernal Institute and Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Wen-Feng Zhou
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Chun-Hui Li
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Hui Hu
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Hengnuo Hou
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Zhongmin Liu
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Longlong Geng
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Hongliang Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, P. R. China
| | - Xiuling Zhang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Da-Shuai Zhang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| |
Collapse
|
15
|
Ren J, Wang S, Bi K, Cheng M, Liu C, Zhou L, Xue X, Ji X. Machine Learning-Enabled Framework for High-Throughput Screening of MOFs: Application in Radon/Indoor Air Separation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1305-1316. [PMID: 36575576 DOI: 10.1021/acsami.2c19207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Radon and its progeny may cause severe health hazards, especially for people working in underground spaces. Therefore, in this study, a hybrid artificial intelligence machine learning-enabled framework is proposed for high-throughput screening of metal-organic frameworks (MOFs) as adsorbents for radon separation from indoor air. MOFs from a specific database were initially screened using a pore-limiting diameter filter. Subsequently, random forest classification and grand canonical Monte Carlo simulations were implemented to identify MOFs with a high adsorbent performance score (APS) and high regenerability (R %). Interpretability and trustworthiness were determined by variable importance analysis , and adsorption mechanisms were elucidated by calculating the adsorption sites using Materials Studio. Notably, two MOF candidates were discovered with higher APS values in both the radon/N2 and radon/O2 systems compared with that of ZrSQU which is the best-performing MOF thus far, with R % values exceeding 85%. Furthermore, the proposed framework can be flexibly applied to multiple data sets due to good performance in model transfer. Therefore, the proposed framework has the potential to provide guidelines for the strategic design of MOFs for radon separation.
Collapse
Affiliation(s)
- Junyu Ren
- School of Chemical Engineering, Sichuan University, Sichuan610065, China
| | - Shihui Wang
- School of Chemical Engineering, Sichuan University, Sichuan610065, China
| | - Kexin Bi
- School of Chemical Engineering, Sichuan University, Sichuan610065, China
- Department of Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Berlin10623, Germany
| | - Min Cheng
- School of Chemical Engineering, Sichuan University, Sichuan610065, China
| | - Chong Liu
- School of Chemical Engineering, Sichuan University, Sichuan610065, China
| | - Li Zhou
- School of Chemical Engineering, Sichuan University, Sichuan610065, China
| | - Xiaoyu Xue
- School of Chemical Engineering, Sichuan University, Sichuan610065, China
| | - Xu Ji
- School of Chemical Engineering, Sichuan University, Sichuan610065, China
| |
Collapse
|
16
|
Li Y, Xie Y, Zhang X, Velasco E, Chen Q, Li JR. Enhancing Ethane/Ethylene Separation Performance in Two Dynamic MOFs by Regulating Temperature-Controlled Structural Interpenetration. Inorg Chem 2022; 62:4762-4769. [DOI: 10.1021/acs.inorgchem.2c03368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yi Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yabo Xie
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Xin Zhang
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Ever Velasco
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Qiang Chen
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
17
|
Zhao Z, Wu K, Peng Y, Liu Y, Deng Z, Han X, Chen S, Chen J, Deng S, Wang J. Microporous carbon granules with narrow pore size distribution and rich oxygen functionalities for Xe/Kr separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
18
|
The Advanced Synthesis of MOFs-Based Materials in Photocatalytic HER in Recent Three Years. Catalysts 2022. [DOI: 10.3390/catal12111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Since the advent of metal–organic frameworks (MOFs), researchers have paid extensive attention to MOFs due to their determined structural composition, controllable pore size, and diverse physical and chemical properties. Photocatalysis, as a significant application of MOFs catalysts, has developed rapidly in recent years and become a research hotspot continuously. Various methods and approaches to construct and modify MOFs and their derivatives can not only affect the structure and morphology, but also largely determine their properties. Herein, we summarize the advanced synthesis of MOFs-based materials in the field of the photocatalytic decomposition of water to produce hydrogen in the recent three years. The main contents include the overview of the novel synthesis strategies in four aspects: internal modification and structure optimization of MOFs materials, MOFs/semiconductor composites, MOFs/COFs-based hybrids, and MOFs-derived materials. In addition, the problems and challenges faced in this direction and the future development goals were also discussed. We hope this review will help deepen the reader’s understanding and promote continued high-quality development in this field.
Collapse
|