1
|
Tian G, Duan C, Zhao B, Yang K, Guo J, Wen Y, Zhou B, Wang J, Ni Y. Janus structured cellulose-based aerogel with vertical channels and conical roof for efficient solar-driven water evaporation and pollutant degradation. Carbohydr Polym 2025; 360:123622. [PMID: 40399007 DOI: 10.1016/j.carbpol.2025.123622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 05/23/2025]
Abstract
Solar-driven water evaporation technology has become a research hotspot due to its effective utilization of solar energy to purify water resources. However, current water evaporation materials still encounter challenges such as limited evaporation rates, insufficient water/heat management capabilities, and inadequate removal of complex pollutants. This study demonstrates a novel Janus solar evaporator (HZC-CNF) based on the TEMPO-oxidized cellulose nanofibril (TOCNF) aerogel for a synergy of photothermal water evaporation and pollutant degradation. The unique structures of vertically aligned channels and conical roof not only enable the light adsorption and multiple scattering, but also enhance the evaporation area and water transport paths. Meanwhile, the silanization modification of the photothermal layer effectively reduces its heat loss to further enhance the thermal management capability. Moreover, the cellulose-based aerogel with abundant hydrogen-bonding network can lower the water evaporation enthalpy, and the well-dispersed ZIF-67 catalysts among the evaporator matrix deliver the efficient degradation towards various organic pollutants. Results show that HZC-CNF exhibits an excellent photothermal conversion capability (surface temperature 90 °C), a good water evaporation rate of 1.97 kg m-2 h-1, and sound removal efficiencies for various pollutants including ciprofloxacin (>90 %), providing an innovative pathway for sustainable water resource management.
Collapse
Affiliation(s)
- Guodong Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Limerick Pulp and Paper Centre, University of New Brunswick, New Brunswick E3B 5A3, Canada
| | - Chao Duan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Baoke Zhao
- School of Materials and Energy, Lanzhou University, Lanzhou 730000, China
| | - Kang Yang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jinyu Guo
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yijian Wen
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Bingxu Zhou
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jian Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Yonghao Ni
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Limerick Pulp and Paper Centre, University of New Brunswick, New Brunswick E3B 5A3, Canada
| |
Collapse
|
2
|
Zheng S, Yu J, Shan H, Gao J, Wang R, Xu Z. High-performance and scalable contactless solar evaporation with 3D structure. Sci Bull (Beijing) 2025; 70:563-572. [PMID: 39674768 DOI: 10.1016/j.scib.2024.11.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/21/2024] [Accepted: 11/19/2024] [Indexed: 12/16/2024]
Abstract
Solar evaporation is a sustainable pathway for diverse water treatment technologies. The contactless evaporation stands out for its superior anti-contamination property. However, the evaporation performance is significantly limited by the non-contact heat transport, which is more pronounced in scalable applications with suppressed vapor escaping and tilted solar irradiation. Here, we propose a high-performance contactless solar evaporation design with three-dimensional (3D) solar-heating and vapor-escaping structure. Our theoretical analysis reveals that mass transport is the true bottleneck of contactless solar evaporation in scalable application, and can be significantly improved by our 3D design. A laboratory solar evaporation rate of 1.03 kg m-2 h-1 was demonstrated with our 3D design, which was 110% higher than the conventional design. Owing to the enhanced solar harvesting and transport, an average evaporation rate of 1.21 kg m-2 h-1 was demonstrated in outdoor field test with dilute solar flux of 589.98 W m-2. The scalability of 3D design was proved by the minimal difference (3%) in natural seawater evaporation performance between the small and large 3D devices. This work provides a robust, high-performance, and scalable solution for solar evaporation, especially for those scenarios with limited tolerance for contamination.
Collapse
Affiliation(s)
- Siyang Zheng
- Engineering Research Center of Solar Power and Refrigeration (MOE), Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Yu
- Engineering Research Center of Solar Power and Refrigeration (MOE), Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - He Shan
- Engineering Research Center of Solar Power and Refrigeration (MOE), Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jintong Gao
- Engineering Research Center of Solar Power and Refrigeration (MOE), Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruzhu Wang
- Engineering Research Center of Solar Power and Refrigeration (MOE), Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zhenyuan Xu
- Engineering Research Center of Solar Power and Refrigeration (MOE), Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
3
|
Li L, Chen K, Zhang J, Zhang J. Design of MOF-Based Solar Evaporators With Hierarchical Microporous/Nanobridged/Nanogranular Structures for Rapid Interfacial Solar Evaporation and Fresh Water Collection. CHEMSUSCHEM 2024; 17:e202401224. [PMID: 38997230 DOI: 10.1002/cssc.202401224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Interfacial solar evaporation (ISE) holds considerable promise to solve fresh water shortage, but it is challenging to achieve high evaporation rate (Reva) and fresh water yield in close system. Here, we report design and preparation of MOF-based solar evaporators with hierarchical microporous/nanobridged/nanogranular structures for rapid ISE and fresh water collection in close system. The evaporators are fabricated by growing silicone nanofilaments with variable length as nanobridges on a microporous silicone sponge followed by grafting with polydopamine nanoparticles and Cu-MOF nanocrystals. Integration of the unique structure and excellent photothermal composites endows the evaporators with high Reva of 3.5-20 wt % brines (3.60-2.90 kg m-2 h-1 in open system and 2.38-1.44 kg m-2 h-1 in close system) under simulated 1 sun, high Reva under natural sunlight, excellent salt resistance and high fresh water yield, which surpass most state-of-the-art evaporators. Moreover, when combined with a superhydrophilic cover, the evaporators show much higher average Reva of real seawater, remarkable fresh water yield and excellent long-term stability over one month continuous ISE under natural sunlight. The findings here will promote the development of advanced evaporators via microstructure engineering and their real-world ISE applications.
Collapse
Affiliation(s)
- Lingxiao Li
- Research Center of Resource Chemistry and Energy Materials, and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kai Chen
- Research Center of Resource Chemistry and Energy Materials, and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Jiaren Zhang
- Research Center of Resource Chemistry and Energy Materials, and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Junping Zhang
- Research Center of Resource Chemistry and Energy Materials, and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
4
|
Han W, Yan Y, Wang H, Li J, Zhao P, Liu Z, Yu F, Cui J, Zhang G. Bifunctional Photothermal Evaporator Based on an MXene/Fe-MOF Collaborative Effect toward Efficient Solar Steam Generation and Simultaneous VOC Removal. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21767-21779. [PMID: 39370613 DOI: 10.1021/acs.langmuir.4c02924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Solar-driven interfacial water evaporation has become one of the most promising approaches to effectively harvesting freshwater, yet the fabrication of high-performance and multifunctional solar interfacial evaporators (SIEs) still remains a huge challenge to date. In this study, a multifunctional MXene and Fe-MOF@cellulose acetate/polyvinylpyrrolidone (MXM@CP) SIE was prepared via a facile "electrospinning and suction filtration deposition" coupling strategy. Thanks to the incorporation of MXene, MXM@CP displayed excellent photothermal conversion performance. Together with the fast water transport channel provided by the porous cellulose acetate electrospinning substrate, a remarkable solar-driven water evaporation property was achieved for MXM@CP, showing a higher water evaporation rate of 1.1 kg m-2 h-1 under one sun irradiation. Moreover, the resultant composite film also exhibited excellent Fenton catalytic activity to effectively degrade volatile organic compounds (VOCs) due to the synergistic effect of the MXene and Fe-based MOF (Fe-MOF). Particularly, a relatively higher degradation rate of 82.8% was acquired for the resulting evaporator toward the benzene contaminant. These results provide new insights into the construction of high-performance and multifunctional SIEs toward clean freshwater collection from the VOC-contaminated water system.
Collapse
Affiliation(s)
- Wenqing Han
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yehai Yan
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Huifang Wang
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Jinzhong Li
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ping Zhao
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhihao Liu
- Shandong Changyi Petrochemical Co., Ltd., Weifang 261300, China
| | - Fei Yu
- Park Environmental Technology (Shanghai) Co., Ltd., Shanghai 201203, China
| | - Jian Cui
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Guangfa Zhang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
5
|
Liu Y, Tan X, Liu Z, Zeng E, Mei J, Jiang Y, Li P, Sun W, Zhao W, Tian C, Dong Y, Xie Z, Wang CA. Heat-Localized and Salt-Resistant 3D Hierarchical Porous Ceramic Platform for Efficient Solar-Driven Interfacial Evaporation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400796. [PMID: 38607275 DOI: 10.1002/smll.202400796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Solar-driven interfacial evaporation (SDIE) is a highly promising approach to achieve sustainable desalination and tackle the global freshwater crisis. Despite advancements in this field, achieving balanced thermal localization and salt resistance remains a challenge. Herein, the study presents a 3D hierarchical porous ceramic platform for SDIE applications. The utilized alumina foam ceramics (AFCs) exhibit remarkable corrosion resistance and chemical stability, ensuring a prolonged operational lifespan in seawater or brines. The millimeter-scale air-filled pores in AFCs prevent thermal losses through conduction with bulk water, resulting in heat-localized interfaces. The hydrophilic nature of macroporous AFC skeletons facilitates rapid water replenishment on the evaporating surface for effective salt-resistant desalination. Benefiting from its self-radiation adsorption and side-assisted evaporation capabilities, the AFC-based evaporators exhibit high indoor evaporation rates of 2.99 and 3.54 kg m-2 h-1 under one-sided and three-sided illumination under 1.0 sun, respectively. The AFC-based evaporator maintains a high evaporation rate of ≈2.77 kg m-2 h-1 throughout the 21-day long-term test. Furthermore, it achieves a daily water productivity of ≈10.44 kg m-2 in outdoor operations. This work demonstrates the potential of 3D hierarchical porous ceramics in addressing the trade-off between heat localization and salt resistance, and contributes to the development of durable solar steam generators.
Collapse
Affiliation(s)
- Yumin Liu
- School of Materials Science and Engineering, National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Xinming Tan
- School of Materials Science and Engineering, National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Zhiwei Liu
- School of Materials Science and Engineering, National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Erqi Zeng
- School of Materials Science and Engineering, National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Jianxing Mei
- School of Materials Science and Engineering, National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Yun Jiang
- School of Materials Science and Engineering, National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Pengzhang Li
- School of Materials Science and Engineering, National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Weiwei Sun
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China
| | - Wenyan Zhao
- School of Materials Science and Engineering, National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Chuanjin Tian
- School of Materials Science and Engineering, National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Yanhao Dong
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhipeng Xie
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Chang-An Wang
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
6
|
Huang XP, Li LX, Chen K, Zhang JP. Scalable Superhydrophilic Solar Evaporators for Long-Term Stable Desalination, Fresh Water Collection and Salt Collection by Vertical Salt Deposition. CHEMSUSCHEM 2024; 17:e202400111. [PMID: 38424000 DOI: 10.1002/cssc.202400111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/02/2024]
Abstract
Solar-driven interfacial evaporation (SIE) is very promising to solve the issue of fresh water shortage, however, poor salt resistance severely hinders long-term stable SIE and fresh water collection. Here, we report design of superhydrophilic solar evaporators for long-term stable desalination, fresh water collection and salt collection by vertical salt deposition. The evaporators are prepared by sequentially deposition of silicone nanofilaments, polypyrrole and Au nanoparticles on a polyester fabric composed of microfibers. The evaporators feature excellent photothermal effect and ultrafast water transport, due to their unique micro-/nanostructure and superhydrophilicity. As a result, during SIE the salt gradually deposits vertically rather than occupies larger area on the evaporators. Consequently, long-term stable SIE with high evaporation rates of 2.4-2.1 kg m-2 h-1 for 3.5-20 wt % brine in continuous 10 h is achieved under 1 sun illumination. Meanwhile, the loosely deposited salt can be easily collected, realizing zero brine discharge. Moreover, scalable preparation of the evaporator is achieved, which exhibits efficient collection of high quality fresh water (10.08 kg m-2 in 8 h) via SIE desalination under weak natural sunlight (0.46~0.66 sun). This strategy sheds a new light on the design of high-performance solar evaporators and their real-world fresh water collection.
Collapse
Affiliation(s)
- Xiaopeng P Huang
- Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Lingxiao X Li
- Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kai Chen
- Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Junping P Zhang
- Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
7
|
Zhang D, Zhang S, Liang Q, Guan M, Zhang T, Chen S, Wang H. A Tent-Inspired Portable Solar-Driven Water Purification Device for Wilderness Explorers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311731. [PMID: 38321844 DOI: 10.1002/smll.202311731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/19/2024] [Indexed: 02/08/2024]
Abstract
Wilderness adventure favored by many enthusiasts often endanger lives due to lacking freshwater or drinking contaminated water. Therefore, compared to the inefficient methods of filtration, steaming, and direct solar heating, it is of great meaningfulness to develop a solar-driven water purification device with efficiency, lightweight, portability, and multi-water-quality purification by taking full advantage of solar-driven interfacial evaporation. Here, a tent-inspired portable solar-driven water purification device consisting of Janus-structured bacterial cellulose aerogel (JBCA) solar evaporator and tent-type condensation recovery device is reported. For the JBCA solar evaporator, it is prepared from biomass bacterial cellulose (BC) as raw material and hydroxylated carbon nanotubes (HCNT) as photothermal material, and the Janus property is achieved by the assistance of hydrophobic and hydrophilic chemical cross-linking. It exhibits lightweight, unibody, high photothermal conversion, efficient evaporation, and multi-water-quality purification capability for representative seawater, urine, and bacterial river water. For the tent-type condensation recovery device, it is based on the prototype of tent and uses flexible ultra-transparent polyvinyl chloride (PVC) film as raw material. Thanks to the rational prototype and material selection, it displays outstanding portability and lightweight through the folding/unfolding method. Therefore, the designed tent-inspired portable solar-driven water purification device demonstrates great potential application in wilderness exploration.
Collapse
Affiliation(s)
- Dong Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Shengming Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Qianqian Liang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Mengyao Guan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Tao Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Shiyan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Huaping Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
8
|
Wang Y, Xie H, Wan J. Biomimic Design of Solar Steam Generation Devices Enabled by the Tannin-Iron Complex. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28550-28559. [PMID: 38776220 DOI: 10.1021/acsami.4c03986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Solar-powered steam generation equipment has experienced considerable advancement in recent years as it offers a cleaner and greener method for freshwater production. However, the devices always suffer from a complicated process, high cost, and salt accumulation, which hinder their further application. Here, inspired by the water lily, a highly efficient and antisalt accumulation interfacial solar-driven steam generation device was designed by using the tannic acid-Fe3+ complex as photothermal material. The designed evaporator could be quickly unfolded within 24 s after being irradiated with light and then produce fresh water. It folded within 10 s and then sank into water for removing the accumulated salt after removing the irradiation sources. In addition, the tannic acid-Fe3+ complex on the evaporator surface and the angle of the evaporator allowed light to be reflected several times within the evaporator, effectively increasing the solar energy conversion efficient (2.22 kg/(m2·h)), and apparently, the overall evaporation efficiency of 139.18% was achieved under 1 sun illumination. Moreover, it exhibited an extraordinary antisalt accumulation capacity (by working continuously for 7 days in 10 wt % saline water and 80% reduction in salt accumulation) as well as a low price ($ 1.11/m2). This design would provide a strategy to prepare an antisalt accumulation solar steam devices.
Collapse
Affiliation(s)
- Yizhao Wang
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Hao Xie
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Jianyong Wan
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
- Yunnan International Joint R&D Center of Wood and Bamboo Biomass Materials, Southwest Forestry University, Kunming 650224, China
- International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
9
|
Sun Y, Zhao X, Song X, Fan J, Yang J, Miao Y, Xiao S. An all-in-one FeO x-rGO sponge fabricated by solid-phase microwave thermal shock for water evaporation and purification. J Environ Sci (China) 2024; 138:671-683. [PMID: 38135430 DOI: 10.1016/j.jes.2023.04.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/22/2023] [Accepted: 04/22/2023] [Indexed: 12/24/2023]
Abstract
Developing high-efficiency photothermal seawater desalination devices is of significant importance in addressing the shortage of freshwater. Despite much effort made into photothermal materials, there is an urgent need to design a rapidly synthesized photothermal evaporator for the comprehensive purification of complex seawater. Therefore, we report on all-in-one FeOx-rGO photothermal sponges synthesized via solid-phase microwave thermal shock. The narrow band gap of the semiconductor material Fe3O4 greatly reduces the recombination of electron-hole pairs, enhancing non-radiative relaxation light absorption. The abundant π orbitals in rGO promote electron excitation and thermal vibration between the lattices. Control of the surface hydrophilicity and hydrophobicity promotes salt resistance while simultaneously achieving the purification of various complex polluted waters. The optimized GFM-3 sponge exhibitedan enhanced photothermal conversion rate of 97.3% and a water evaporation rate of 2.04 kg/(m2·hr), showing promising synergistic water purification properties. These findings provide a highly efficient photothermal sponge for practical applicationsof seawater desalination and purification,as well as develop a super-rapid processing methodology for evaporation devices.
Collapse
Affiliation(s)
- Youkun Sun
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiuwen Zhao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xueling Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jinchen Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Junhe Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; Prytula Igor Collaborate Innovation Center for Diamond, Shanghai Jian Qiao University, Shanghai 201306, China
| | - Yingchun Miao
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Shuning Xiao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
10
|
Li A, Liu W, Yu A, Hao Y, Chen W, Zheng M, Zhang C, Liu H, Yu J, Wang L, Qin X. Rational Design of a Hydrophilic Core-Hydrophobic Shell Yarn-Based Solar Evaporator with an Underwater Aerophilic Surface for Self-Floating and High-Performance Dynamic Water Purification. NANO LETTERS 2024; 24:1034-1043. [PMID: 38190456 DOI: 10.1021/acs.nanolett.3c04748] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Interfacial solar vapor generation holds great promise for alleviating the global freshwater crisis, but its real-world application is limited by the efficiently choppy water evaporation and industrial production capability. Herein, a self-floating solar evaporator with an underwater aerophilic surface is innovatively fabricated by weaving core-shell yarns via mature weaving techniques. The core-shell yarns possess capillary water channels in the hydrophilic cotton core and can trap air in the hydrophobic electrospinning nanofiber shell when submerged underwater, simultaneously realizing controllable water supplies, stable self-flotation, and great thermal insulation. Consequently, the self-floating solar evaporator achieves an evaporation rate of 2.26 kg m-2 h-1 under 1 sun irradiation, with a reduced heat conduction of 70.18 W m-2. Additionally, for the first time, a solar evaporator can operate continuously in water with varying waveforms and intensities over 24 h, exhibiting an outdoor cumulative evaporation rate of 14.17 kg m-2 day-1.
Collapse
Affiliation(s)
- Ailin Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Wendi Liu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Aixin Yu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yunna Hao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Wenjing Chen
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Maorong Zheng
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Chentian Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Huijie Liu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Liming Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xiaohong Qin
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
11
|
Wang D, Lin X, Wu Y, Li L, Feng W, Huang Y, Yang Y. Hanging Photothermal Fabric Based on Polyaniline/Carbon Nanotubes for Efficient Solar Water Evaporation. ACS OMEGA 2023; 8:44659-44666. [PMID: 38046316 PMCID: PMC10688187 DOI: 10.1021/acsomega.3c05332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/01/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023]
Abstract
Solar-driven water evaporation is essential to provide sustainable and ecofriendly sources of fresh water. However, there are still great challenges in preparing materials with broadband light absorption for high photothermal efficiency as well as in designing devices with large evaporation areas and small heat dissipation areas to boost the water evaporation rate. We designed a hanging-mode solar evaporator based on the polyaniline/carbon nanotube (PANI/CNT) fabric, in which the photothermal fabric acts as the solar evaporator and the micropores on the cotton fabric act as the water transfer channels. The hanging mode provides efficient evaporation at both interfaces by greatly reducing the heat dissipation area. The hanging mode PANI/CNT fabric solar evaporator can achieve an evaporation rate of 2.81 kg·m-2·h-1 and a photothermal efficiency of 91.74% under a solar illumination of 1 kW·m-2. This high-performance evaporator is designed by regulating the photothermal material and evaporation device, which provides a novel strategy for sustainable desalination.
Collapse
Affiliation(s)
- Daiyi Wang
- School of Mechanical Engineering, Chengdu University, Chengdu 610000, PR China
| | - Xiaofeng Lin
- School of Mechanical Engineering, Chengdu University, Chengdu 610000, PR China
| | - Yujian Wu
- School of Mechanical Engineering, Chengdu University, Chengdu 610000, PR China
| | - Luxin Li
- School of Mechanical Engineering, Chengdu University, Chengdu 610000, PR China
| | - Wei Feng
- School of Mechanical Engineering, Chengdu University, Chengdu 610000, PR China
| | - Yanyan Huang
- School of Mechanical Engineering, Chengdu University, Chengdu 610000, PR China
| | - Yuxin Yang
- School of Mechanical Engineering, Chengdu University, Chengdu 610000, PR China
| |
Collapse
|
12
|
Zhang F, Xin J, Wu X, Liu J, Niu L, Wang D, Li X, Shao C, Li X, Liu Y. Floating metal phthalocyanine@polyacrylonitrile nanofibers for peroxymonosulfate activation: Synergistic photothermal effects and highly efficient flowing wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132228. [PMID: 37557048 DOI: 10.1016/j.jhazmat.2023.132228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023]
Abstract
Highly efficient floating photocatalysis has potential applications in organic pollutant treatment but remains limited by low degradation efficiency in practical applications. By introducing the photothermal effect into a peroxymonosulfate (PMS) coupled photocatalysis system, tetracycline hydrochloride (TCH) degradation could be significantly enhanced using floating metal phthalocyanine@polyacrylonitrile (MPc@PAN) nanofiber mats. MPc@PAN nanofibers with different metal centers showed similar photothermal conversion performance but different activation energies for PMS activation, resulting in metal-center-dependent synergistic photothermal effects, i.e., light-enhanced dominated, thermal-enhanced dominated, and conjointly light-thermal dominated mechanisms. The porous structures and floating ability of the FePc@PAN nanofibers provided a fast mass transfer process, with higher solar energy utilization and superior photothermal conversion performance than the FePc nanopowders. Meanwhile, the FePc@PAN nanofibers showed excellent TCH removal stability within 10 cycles (>92%) and extremely low Fe ion leaching (<0.055 mg/L) in a dual-channel flowing wastewater treatment system. This work provides new insight into PMS activation via photothermal effects for environmental remediation.
Collapse
Affiliation(s)
- Fang Zhang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China
| | - Jiayu Xin
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China
| | - Xi Wu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China
| | - Jie Liu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China
| | - Luyao Niu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China
| | - Dan Wang
- College of information technology, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, People's Republic of China
| | - Xinghua Li
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China.
| | - Changlu Shao
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China.
| | - Xiaowei Li
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China
| | - Yichun Liu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China
| |
Collapse
|
13
|
Li D, Cheng Y, Luo Y, Teng Y, Liu Y, Feng L, Wang N, Zhao Y. Electrospun Nanofiber Materials for Photothermal Interfacial Evaporation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5676. [PMID: 37629967 PMCID: PMC10456569 DOI: 10.3390/ma16165676] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/02/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
Photothermal interfacial evaporation with low cost and environmental friendliness has attracted much attention. However, there are still many problems with this technology, such as heat loss and salt accumulation. Due to their different structures and adjustable chemical composition, electrospun nanofiber materials generally exhibit some unique properties that provide new approaches to address the aforementioned issues. In this review, the rational design principles for improving the total efficiency of solar evaporation are described for thermal/water management systems and salt-resistance strategies. And we review the state-of-the-art advancements in photothermal evaporation based on nanofiber materials and discuss their derivative applications in desalination, water purification, and power generation. Finally, we highlight key challenges and opportunities in both fundamental research and practical applications to inform further developments in the field of interfacial evaporation.
Collapse
Affiliation(s)
- Dianming Li
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (D.L.); (Y.L.); (Y.L.)
| | - Yingying Cheng
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (D.L.); (Y.L.); (Y.L.)
| | - Yanxia Luo
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (D.L.); (Y.L.); (Y.L.)
| | - Yuqin Teng
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (D.L.); (Y.L.); (Y.L.)
| | - Yanhua Liu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (D.L.); (Y.L.); (Y.L.)
| | - Libang Feng
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (D.L.); (Y.L.); (Y.L.)
| | - Nü Wang
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Yong Zhao
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| |
Collapse
|
14
|
Chaw Pattnayak B, Mohapatra S. Photothermal-Photocatalytic CSG@ZFG Evaporator for Synergistic Salt Rejection and VOC Removal during Solar-Driven Water Distillation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4651-4661. [PMID: 36971381 DOI: 10.1021/acs.langmuir.2c03438] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Sunlight-driven interfacial photothermal evaporation has been considered as a promising strategy for addressing global water crisis. Herein, we fabricated a self-floating porous triple-layer (CSG@ZFG) evaporator using porous fibrous carbon derived from Saccharum spontaneum (CS) as a photothermal material. The middle layer of the evaporator is composed of hydrophilic sodium alginate crosslinked by carboxymethyl cellulose and zinc ferrite (ZFG), whereas the top hydrophobic layer consists of fibrous (CS) integrated benzaldehyde-modified chitosan gel (CSG). Water is transported to the middle layer through the bottom elastic polyethylene foam using natural jute fiber. Such a strategically designed three-layered evaporator exhibits a broad-band light absorbance (96%), excellent hydrophobicity (120.5°), a high evaporation rate of 1.56 kg m-2 h-1, an energy efficiency of 86%, and outstanding salt mitigation ability under the simulated sunlight of intensity 1 sun. Adding ZnFe2O4 nanoparticle as a photocatalyst has been proved to be capable of restricting the evaporation of volatile organic contaminants (VOCs) like phenol, 4-nitrophenol, and nitrobenzene to ensure the purity of evaporated water. Such an innovatively designed evaporator offers a promising approach for the production of drinking water from wastewater and seawater.
Collapse
Affiliation(s)
- Bibek Chaw Pattnayak
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Sasmita Mohapatra
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| |
Collapse
|
15
|
Ma T, Kong Y, Liu H, Xu X, Yue Q, Gao B, Gao Y. One-step synthesis of Enteromorpha graphene aerogel modified by hydrophilic polyethylene glycol achieving high evaporation efficiency and pollutant tolerance. J Colloid Interface Sci 2023; 633:628-639. [PMID: 36481423 DOI: 10.1016/j.jcis.2022.11.145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Photothermal evaporation using solar energy is a sustainable way to produce fresh water from seawater. Aiming to explore functional materials as a solar-energized evaporator with enhanced evaporation rate and pollutant tolerance, this study was to synthesize a self-floating composite graphene aerogel (GA) doped with Enteromorpha and modified polyethylene glycol (PEG), named as PEGA using solar energy for desalination. Physio-chemical properties and evaporative mechanism of PEGA were experimentally investigated and analyzed with respect to molecular weight, PEG dosage, and ratio of Enteromorpha and graphene oxide. Experimental data revealed that the modification of PEG improved hydrophilic functional ability of PEGA, resulting in increasing the evaporation rate and photothermal conversion efficiency up to 2.55 kg/(m2·h) and 105.71 %, respectively. The ion removal rate of seawater exceeds 99.99 % via the PEGA conducted solar evaporation. Furthermore, PEGA possessed an excellent property of salinity emulsion pollution tolerance. Particularly, the evaporation rate of the PEG-modified biomass-based aerogel was 2.84 kg/(m2·h) in a 15 wt% NaCl solution (1 sun, 6 h) and 2.50 kg/(m2·h) at 1 h. The formation of hydrogen bonds between -OH of PEG and water molecules assist to conduct water along the graphene matrix to improve water evaporation. The cost of the graphene aerogel modified by Enteromorpha was reduced by 38.88 % less than the original graphene aerogel. The results from this study will greatly promote the application of graphene aerogel for desalination via solar evaporation.
Collapse
Affiliation(s)
- Tengfei Ma
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Yan Kong
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Haibao Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Qinyan Yue
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| | - Yue Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
16
|
Cai Y, Dong Y, Wang K, Tian D, Qu J, Hu J, Lee J, Li J, Kim KH. A polydimethylsiloxane-based sponge for water purification and interfacial solar steam generation. J Colloid Interface Sci 2023; 629:895-907. [DOI: 10.1016/j.jcis.2022.09.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
|
17
|
Lin CY, Michinobu T. Conjugated photothermal materials and structure design for solar steam generation. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:454-466. [PMID: 37091288 PMCID: PMC10113523 DOI: 10.3762/bjnano.14.36] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/15/2023] [Indexed: 05/03/2023]
Abstract
With the development of solar steam generation (SSG) for clean water production, conjugated photothermal materials (PTMs) have attracted significant interest because of their advantages over metallic and inorganic PTMs in terms of high light absorption, designable molecular structures, flexible morphology, and solution processability. We review here the recent progress in solar steam generation devices based on conjugated organic materials. Conjugated organic materials are processed into fibers, membranes, and porous structures. Therefore, nanostructure design based on the concept of nanoarchitectonics is crucial to achieve high SSG efficiency. We discuss the considerations for designing SSG absorbers and describe commonly used conjugated organic materials and structural designs.
Collapse
Affiliation(s)
- Chia-Yang Lin
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Tsuyoshi Michinobu
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
18
|
Hu N, Zhao S, Chen T, Lu X, Zhang J. Janus Carbon Nanotube@poly(butylene adipate-co-terephthalate) Fabric for Stable and Efficient Solar-Driven Interfacial Evaporation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46010-46022. [PMID: 36173967 DOI: 10.1021/acsami.2c11325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Solar-driven seawater desalination is considered a promising method for alleviating the water crisis worldwide. In recent years, significant efforts have been undertaken to optimize heat management and minimize salt blockage during solar-driven seawater desalination. However, it remains challenging to achieve an efficient and stable seawater evaporator simply and practically. Here, we designed and prepared a novel three-dimensional (3D) water channel evaporator (3D WCE) equipped with a Janus CNT@PBAT fabric (JCPF). The as-prepared Janus CNT@PBAT fabric has broad-band light absorption (∼97.8%), excellent superhydrophobicity (∼162°), and photothermal properties. After optimizing the structure of the thermal insulator, our designed evaporator could realize the equilibrium between enhanced thermal management and sufficient water supply. As a result, the as-prepared evaporator achieved an excellent evaporation rate of 1.576 kg·m-2·h-1 and an energy efficiency of over 92.7% under 1 sun irradiation in 3.5 wt % saline water. Moreover, this evaporator also revealed good salt rejection performance compared to the traditional two-dimensional (2D) water channel evaporator (2D WCE) in high saline water, which could maintain stable evaporation rates under long-term evaporation of 8 h. Our study may develop a simple method for the design and fabrication of a low-cost, effective, and stable solar-driven evaporator for seawater desalination.
Collapse
Affiliation(s)
- Ningning Hu
- Center for Tribology, School of Mechanical and Electrical Engineering, Jiangsu Normal University, Xuzhou 221000, China
| | - Shulin Zhao
- Center for Tribology, School of Mechanical and Electrical Engineering, Jiangsu Normal University, Xuzhou 221000, China
| | - Tianchi Chen
- Center for Tribology, School of Mechanical and Electrical Engineering, Jiangsu Normal University, Xuzhou 221000, China
| | - Xiangning Lu
- Center for Tribology, School of Mechanical and Electrical Engineering, Jiangsu Normal University, Xuzhou 221000, China
| | - Jialu Zhang
- Center for Tribology, School of Mechanical and Electrical Engineering, Jiangsu Normal University, Xuzhou 221000, China
| |
Collapse
|