1
|
Wu D, Wei J, Luo B, Zhou L, Chen P, Tian J, Pan J, Emeline AV, Zhang JZ, Pang Q. Circularly Polarized Luminescence in Achiral Tin-Based Perovskites via Structural Isomer-Driven Coordination Interaction. J Phys Chem Lett 2025; 16:4181-4188. [PMID: 40251715 DOI: 10.1021/acs.jpclett.5c00713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
A chiral bidentate ligand, (R)-(-)-1-amino-2-propanol (denoted as R1) or (R)-(-)-2-amino-1-propanol (denoted as R2), was used to modify achiral 2D tin-based perovskite HDASnBr4 (HDA: 1,6-hexamethylenediamine) to form R1-HDASnBr4 or R2-HDASnBr4 by an acid precipitation method. R1-HDASnBr4 exhibits a near-unity photoluminescence quantum yield (PLQY) and strong yellow circularly polarized luminescence (CPL) with a luminescence asymmetry g-factor (|glum|) of 8.3 × 10-3, while R2-HDASnBr4 shows a PLQY of 95% and |glum| of 3.2 × 10-3. Both exhibit strong CPL activities, attributed to the significant centro-asymmetric distortion induced by the interaction between the chiral ligand and the inorganic lattice of 2D perovskites. The |glum| of R1-HDASnBr4 is 2.6× that of R2-HDASnBr4, resulting from the direct coordination of the hydroxyl group attached to the chiral carbons in R1 with the [SnBr6]4- inorganic framework, which induces a higher degree of distortion than the amino group in R2. Furthermore, we explored the potential of R1-HDASnBr4 as a chiral inducer and a CPL source to facilitate asymmetric polymerization. This work offers a simple strategy to introduce chirality to achiral perovskites.
Collapse
Affiliation(s)
- Dongmei Wu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Jianwu Wei
- School of Chemistry and Chemical Engineering, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Binbin Luo
- School of Chemistry and Chemical Engineering, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Liya Zhou
- School of Chemistry and Chemical Engineering, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Peican Chen
- School of Chemistry and Chemical Engineering, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Jie Tian
- School of Chemistry and Chemical Engineering, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Jiahong Pan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Alexei V Emeline
- Physics, Saint-Petersburg State University, Ulyanovskaya Str. 1, Petergof, Saint-Petersburg 198504, Russia
| | - Jin Zhong Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Qi Pang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| |
Collapse
|
2
|
Luo H, Zhou S, Lu L, Guo Z, Zhao S, Du J, Yun Y, Chen M, Li C. Mechanistic Insights into the Resistive Switching Mechanism of Quasi-2D Perovskite Memristors. J Phys Chem Lett 2025; 16:4220-4226. [PMID: 40256928 DOI: 10.1021/acs.jpclett.5c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Halide perovskite memristors are rapidly emerging as promising candidates in the fields of neural network construction, logic operation, and biological synaptic simulation. Understanding the resistive switching mechanism, yet, is crucial for ensuring the stability and reproducibility of device performance. Here, we prepare quasi-2D perovskites with enhanced performance through the optimization of molecular, solvents, and dimensions. Subsequently, the switching process of the quasi-2D perovskite memristors is directly observed by a nondestructive in situ photoluminescence (PL) imaging microscope. In addition, the elemental composition of the conductive filaments (CFs) is analyzed, showing that devices with active metal top electrodes allow the presence of both active metal CFs and halogen vacancy CFs during the resistive switching process. This work provides valuable insights into the switching mechanisms of quasi-2D perovskite memristors and enhances the prospects for their applications.
Collapse
Affiliation(s)
- Hongqiang Luo
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Sijia Zhou
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Lihua Lu
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Zhongli Guo
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Shanshan Zhao
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jianfeng Du
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yikai Yun
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Mengyu Chen
- Future Display Institute of Xiamen, Xiamen 361005, P. R. China
| | - Cheng Li
- Future Display Institute of Xiamen, Xiamen 361005, P. R. China
| |
Collapse
|
3
|
Yun Y, Chang Q, Yan J, Tian Y, Jiang S, Wei W, Li S, Guo Y, Yin J, Li J, Chen M, Huang K, Li C, Zhang R. Dimensional engineering of interlayer for efficient large-area perovskite solar cells with high stability under ISOS-L-3 aging test. SCIENCE ADVANCES 2025; 11:eadp3112. [PMID: 39813355 PMCID: PMC11734737 DOI: 10.1126/sciadv.adp3112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 12/11/2024] [Indexed: 01/18/2025]
Abstract
The utilization of low-dimensional perovskites (LDPs) as interlayers on three-dimensional (3D) perovskites has been regarded as an efficient strategy to enhance the performance of perovskite solar cells. Yet, the formation mechanism of LDPs and their impacts on the device performance remain elusive. Herein, we use dimensional engineering to facilitate the controllable growth of 1D and 2D structures on 3D perovskites. The differences of isomeric ligands in electrostatic potential distribution and steric effects for intermolecular forces contribute to different LDPs. The 1D structure facilitates charge transfer with favored channel orientation and energy level alignment. This approach enables perovskite solar modules (PSMs) using 2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene to achieve an efficiency of 20.20% over 10 by 10 square centimeters (cm2) and 22.05% over 6 by 6 cm2. In particular, a PSM (6 by 6 cm2) using poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] maintains an initial efficiency of ~95% after 1000 hours under the rigorous ISOS-L-3 accelerated aging tests, marking a record for the highest stability of n-i-p structure modules.
Collapse
Affiliation(s)
- Yikai Yun
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Qing Chang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Jinjian Yan
- Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Xiamen University, Xiamen 361005, P. R. China
| | - Yuanyuan Tian
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Sijie Jiang
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Wenjie Wei
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Shaoqun Li
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yuzheng Guo
- School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China
| | - Jun Yin
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Jing Li
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Mengyu Chen
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China
- Future Display Institute of Xiamen, Xiamen 361005, P. R. China
| | - Kai Huang
- Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Xiamen University, Xiamen 361005, P. R. China
- Future Display Institute of Xiamen, Xiamen 361005, P. R. China
- Engineering Research Center of Micro-nano Optoelectronic Materials and Devices, Ministry of Education, Xiamen University, Xiamen 361005, P. R. China
| | - Cheng Li
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China
- Future Display Institute of Xiamen, Xiamen 361005, P. R. China
| | - Rong Zhang
- Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Xiamen University, Xiamen 361005, P. R. China
- Future Display Institute of Xiamen, Xiamen 361005, P. R. China
- Engineering Research Center of Micro-nano Optoelectronic Materials and Devices, Ministry of Education, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
4
|
Chang Q, Yun Y, Cao K, Yao W, Huang X, He P, Shen Y, Zhao Z, Chen M, Li C, Wu B, Yin J, Zhao Z, Li J, Zheng N. Highly Efficient and Stable Perovskite Solar Modules Based on FcPF 6 Engineered Spiro-OMeTAD Hole Transporting Layer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406296. [PMID: 39233551 DOI: 10.1002/adma.202406296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/14/2024] [Indexed: 09/06/2024]
Abstract
Li-TFSI doped spiro-OMeTAD is widely recognized as a beneficial hole transport layer (HTL) in perovskite solar cells (PSCs), contributing to high device efficiencies. However, the uncontrolled migration of lithium ions (Li+) during device operation has impeded its broad adoption in scalable and stable photovoltaic modules. Herein, an additive strategy is proposed by employing ferrocenium hexafluorophosphate (FcPF6) as a relay medium to enhance the hole extraction capability of the spiro-OMeTAD via the instant oxidation function. Besides, the novel Fc-Li interaction effectively restricts the movement of Li+. Simultaneously, the dissociative hexafluorophosphate group is cleverly exploited to regulate the unstable iodide species on the perovskite surface, further inhibiting the formation of migration channels and stabilizing the interfaces. This modification leads to power conversion efficiencies (PCEs) reaching 22.13% and 20.27% in 36 cm2 (active area of 18 cm2) and 100 cm2 (active area of 56 cm2) perovskite solar modules (PSMs), respectively, with exceptional operational stability obtained for over 1000 h under the ISOS-L-1 procedure. The novel FcPF6-based engineering approach is pivotal for advancing the industrialization of PSCs, particularly those relying on high-performance spiro-OMeTAD- based HTLs.
Collapse
Affiliation(s)
- Qing Chang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen, 361102, China
| | - Yikai Yun
- School of Electronic Science and Engineering, Xiamen University, Xiamen, 361102, China
| | - Kexin Cao
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen, 361102, China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wenlong Yao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen, 361005, China
| | - Xiaofeng Huang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen, 361102, China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Peng He
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen, 361102, China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yang Shen
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen, 361102, China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhengjing Zhao
- Huaneng Clean Energy Research Institute, Beijing, 102209, China
| | - Mengyu Chen
- School of Electronic Science and Engineering, Xiamen University, Xiamen, 361102, China
- Future Display Institute of Xiamen, Xiamen, 361102, P. R. China
| | - Cheng Li
- School of Electronic Science and Engineering, Xiamen University, Xiamen, 361102, China
- Future Display Institute of Xiamen, Xiamen, 361102, P. R. China
| | - Binghui Wu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen, 361102, China
| | - Jun Yin
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen, 361102, China
| | - Zhiguo Zhao
- Huaneng Clean Energy Research Institute, Beijing, 102209, China
| | - Jing Li
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen, 361102, China
| | - Nanfeng Zheng
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen, 361102, China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
5
|
Wang Z, Cao X, Yang H, Kuang Z, Yang P, Zhang G, Zhang Y, Xu L, Zhang D, Li S, Miao C, Wang N, Huang W, Wang J. Kornblum Oxidation Reaction-Induced Collective Transformation of Lead Polyhalides for Stable Perovskite Photovoltaics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401916. [PMID: 38531655 DOI: 10.1002/adma.202401916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/11/2024] [Indexed: 03/28/2024]
Abstract
The iodide vacancy defects generated during the perovskite crystallization process are a common issue that limits the efficiency and stability of perovskite solar cells (PSCs). Although excessive ionic iodides have been used to compensate for these vacancies, they are not effective in reducing defects through modulating the perovskite crystallization. Moreover, these iodide ions present in the perovskite films can act as interstitial defects, which are detrimental to the stability of the perovskite. Here, an effective approach to suppress the formation of vacancy defects by manipulating the coordination chemistry of lead polyhalides during perovskite crystallization is demonstrated. To achieve this suppression, an α-iodo ketone is introduced to undergo a process of Kornblum oxidation reaction that releases halide ions. This process induces a rapid collective transformation of lead polyhalides during the nucleation process and significantly reduces iodide vacancy defects. As a result, the ion mobility is decreased by one order of magnitude in perovskite film and the PSC achieves significantly improved thermal stability, maintaining 82% of its initial power conversion efficiency at 85 °C for 2800 h. These findings highlight the potential of halide ions released by the Kornblum oxidation reaction, which can be widely used for achieving high-performance perovskite optoelectronics.
Collapse
Affiliation(s)
- Zhen Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Xuejing Cao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Heng Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Zhiyuan Kuang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Pinghui Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Guolin Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Yuyang Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Lei Xu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Daiji Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Sunsun Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Chunyang Miao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Nana Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
- Fujian Normal University, Fuzhou, 350117, China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Jianpu Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
- School of Materials Science and Engineering & School of Microelectronics and Control Engineering, Changzhou University, Changzhou, 213164, China
| |
Collapse
|
6
|
Ma X, Peng W, Jiang S, Li M, Zhang A, Li C, Li X. How to Stabilize the Current of Efficient Inverted Flexible Perovskite Solar Cells at the Maximum Power Point. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310568. [PMID: 38239094 DOI: 10.1002/smll.202310568] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/25/2023] [Indexed: 06/28/2024]
Abstract
Inverted flexible perovskite cells (fPSCs) have attracted much attention for their high efficiency and power per weight. Still, the steady-state output is one of the critical factors for their commercialization. In this paper, it is found that the steady-state current of inverted fPSCs based on nickel oxide nanoparticles (n-NiOx) continuously decreases under light illumination. Conversely, those based on magnetron-sputtered NiOx (sp-NiOx) exhibit the opposite result. Based on visualization of ion migration in the photoluminescence (PL) imaging microscopy tests, the discrepancies in the buried surfaces lead to the differences in ion migration in perovskite films, which triggers the temporary instability of the output current of devices during operation. The DFT theoretical calculation and experimental results reveal that NiOx films with different contents of Ni vacancies can modulate the crystallization of the perovskite films on the NiOx surfaces. Tuning the crystallization of the perovskite films is essential to stabilize the output current of fPSCs at a steady state. To demonstrate that, capsaicin is doped into the perovskite solutions to improve the quality of the perovskite buried interface. Finally, the corresponding fPSCs exhibit outstanding efficiency and stability during operation. These results provide valuable scientific guidance for fabricating fPSCs with stable operation under illumination conditions.
Collapse
Affiliation(s)
- Xingjuan Ma
- School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005, China
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Wenli Peng
- School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005, China
| | - Shusen Jiang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Mingpo Li
- School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005, China
| | - Aihua Zhang
- DaZheng (Jiangsu) Micro Nano Technology Co., Ltd., Zhenjiang, 212000, China
| | - Cheng Li
- School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005, China
- Future Display Institute of Xiamen, Xiamen, 361005, China
| | - Xin Li
- School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
7
|
Luo H, Lu L, Zhang J, Yun Y, Jiang S, Tian Y, Guo Z, Zhao S, Wei W, Li W, Hu B, Wang R, Li S, Chen M, Li C. In Situ Unveiling of the Resistive Switching Mechanism of Halide Perovskite-Based Memristors. J Phys Chem Lett 2024; 15:2453-2461. [PMID: 38407025 DOI: 10.1021/acs.jpclett.3c03558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The organic-inorganic halide perovskite has become one of the most promising candidates for next-generation memory devices, i.e. memristors, with excellent performance and solution-processable preparation. Yet, the mechanism of resistive switching in perovskite-based memristors remains ambiguous due to a lack of in situ visualized characterization methods. Here, we directly observe the switching process of perovskite memristors with in situ photoluminescence (PL) imaging microscopy under an external electric field. Furthermore, the corresponding element composition of conductive filaments (CFs) is studied, indicating that the metallic CFs with respect to the activity of the top electrode are essential for device performance. Finally, electrochemical impedance spectroscopy (EIS) is conducted to reveal that the transition of ion states is associated with the formation of metallic CFs. This study provides in-depth insights into the switching mechanism of perovskite memristors, paving a pathway to develop and optimize high-performance perovskite memristors for large-scale applications.
Collapse
Affiliation(s)
- Hongqiang Luo
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Lihua Lu
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jing Zhang
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yikai Yun
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Sijie Jiang
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yuanyuan Tian
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Zhongli Guo
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Shanshan Zhao
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Wenjie Wei
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Wenfeng Li
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Beier Hu
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Rui Wang
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China
| | | | - Mengyu Chen
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China
- Future Display Institute of Xiamen, Xiamen 361005, P. R. China
| | - Cheng Li
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China
- Future Display Institute of Xiamen, Xiamen 361005, P. R. China
| |
Collapse
|
8
|
Yu X, Fang Z, Lin S, Wu S, Fang M, Xie H, Kong D, Zhou C. Polyvinyl Pyrrolidone Induced "Confinement Effect" on PbI 2 and the Improvement on Crystallization and Thermal Stability of Perovskite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306101. [PMID: 37759427 DOI: 10.1002/smll.202306101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Polyvinyl pyrrolidone is blended in PbI2 with varied concentration, so as to study the coarsening dynamics of perovskite during the two-step growth method. It is observed that polyvinyl pyrrolidone hinders the crystallization of PbI2 and helps to form a more amorphous PbI2 matrix, which then improves perovskite crystallization. As the blending concentration increases from 0 to 2 mM, average crystallite/grain size of perovskite increases from 40.29 nm/0.79 µm to 84.35 nm/1.02 µm while surface fluctuation decreases slightly from 25.64 to 23.96 nm. The observations are caused by the "confinement effect" brought by polyvinyl pyrrolidone on PbI2 . Elevating blending concentration of polyvinyl pyrrolidone results in smaller PbI2 crystallites and more amorphous PbI2 matrix, thus reducing the diffusion/reaction barrier between PbI2 and organic salt and favoring perovskite crystallization. As blending concentration increases from 0 to 2 mM, the device efficiency rises from 19.76 (± 0.60) % to 20.50 (± 0.89) %, with the optimized value up to 22.05%, which is further improved to 24.48% after n-Octylammonium iodide (OAI)-basing surface modification. The study enlarges the scope of "confinement effect" brought by polymer molecules, which is beneficial for efficient and stable perovskite solar cell fabrication.
Collapse
Affiliation(s)
- Xi Yu
- Hunan Key Laboratory of Super-microstructure and Ultrafast Process, Hunan Key Laboratory of Nanophotonics and Devices, Institute of Super-microstructure and Ultrafast Process in Advanced Materials (ISUPAM), School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Zhenxing Fang
- Hunan Key Laboratory of Super-microstructure and Ultrafast Process, Hunan Key Laboratory of Nanophotonics and Devices, Institute of Super-microstructure and Ultrafast Process in Advanced Materials (ISUPAM), School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Siyuan Lin
- Hunan Key Laboratory of Super-microstructure and Ultrafast Process, Hunan Key Laboratory of Nanophotonics and Devices, Institute of Super-microstructure and Ultrafast Process in Advanced Materials (ISUPAM), School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Shuyue Wu
- Hunan Key Laboratory of Super-microstructure and Ultrafast Process, Hunan Key Laboratory of Nanophotonics and Devices, Institute of Super-microstructure and Ultrafast Process in Advanced Materials (ISUPAM), School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Mei Fang
- Hunan Key Laboratory of Super-microstructure and Ultrafast Process, Hunan Key Laboratory of Nanophotonics and Devices, Institute of Super-microstructure and Ultrafast Process in Advanced Materials (ISUPAM), School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Haipeng Xie
- Hunan Key Laboratory of Super-microstructure and Ultrafast Process, Hunan Key Laboratory of Nanophotonics and Devices, Institute of Super-microstructure and Ultrafast Process in Advanced Materials (ISUPAM), School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Deming Kong
- Hunan Key Laboratory of Super-microstructure and Ultrafast Process, Hunan Key Laboratory of Nanophotonics and Devices, Institute of Super-microstructure and Ultrafast Process in Advanced Materials (ISUPAM), School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Conghua Zhou
- Hunan Key Laboratory of Super-microstructure and Ultrafast Process, Hunan Key Laboratory of Nanophotonics and Devices, Institute of Super-microstructure and Ultrafast Process in Advanced Materials (ISUPAM), School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
| |
Collapse
|
9
|
Zhong Y, Yang J, Wang X, Liu Y, Cai Q, Tan L, Chen Y. Inhibition of Ion Migration for Highly Efficient and Stable Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302552. [PMID: 37067957 DOI: 10.1002/adma.202302552] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/13/2023] [Indexed: 06/19/2023]
Abstract
In recent years, organic-inorganic halide perovskites are now emerging as the most attractive alternatives for next-generation photovoltaic devices, due to their excellent optoelectronic characteristics and low manufacturing cost. However, the resultant perovskite solar cells (PVSCs) are intrinsically unstable owing to ion migration, which severely impedes performance enhancement, even with device encapsulation. There is no doubt that the investigation of ion migration and the summarization of recent advances in inhibition strategies are necessary to develop "state-of-the-art" PVSCs with high intrinsic stability for accelerated commercialization. This review systematically elaborates on the generation and fundamental mechanisms of ion migration in PVSCs, the impact of ion migration on hysteresis, phase segregation, and operational stability, and the characterizations for ion migration in PVSCs. Then, many related works on the strategies for inhibiting ion migration toward highly efficient and stable PVSCs are summarized. Finally, the perspectives on the current obstacles and prospective strategies for inhibition of ion migration in PVSCs to boost operational stability and meet all of the requirements for commercialization success are summarized.
Collapse
Affiliation(s)
- Yang Zhong
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Jia Yang
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Xueying Wang
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yikun Liu
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Qianqian Cai
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Licheng Tan
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, China
| | - Yiwang Chen
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, China
| |
Collapse
|
10
|
Bi H, Liu J, Zhang Z, Wang L, Kapil G, Wei Y, Kumar Baranwal A, Razey Sahamir S, Sanehira Y, Wang D, Yang Y, Kitamura T, Beresneviciute R, Grigalevicius S, Shen Q, Hayase S. Ferrocene Derivatives for Improving the Efficiency and Stability of MA-Free Perovskite Solar Cells from the Perspective of Inhibiting Ion Migration and Releasing Film Stress. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304790. [PMID: 37867208 PMCID: PMC10724429 DOI: 10.1002/advs.202304790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/30/2023] [Indexed: 10/24/2023]
Abstract
Further improvement of the performance and stability of inverted perovskite solar cells (PSCs) is necessary for commercialization. Here, ferrocene derivative dibenzoylferrocene (DBzFe) is used as an additive to enhance the performance and stability of MA- and Br- free PSCs. The results show that the introduction of DBzFe not only passivates the defects in the film but also inhibits the ion migration in the film. The final device achieves a power conversion efficiency (PCE) of 23.53%, which is one of the highest efficiencies currently based on self-assembled monolayers (SAMs). Moreover, it maintains more than 96.4% of the original efficiency when running continuously for 400 h at the maximum power point.
Collapse
Affiliation(s)
- Huan Bi
- i‐Powered Energy System Research Center (i‐PERC)The University of Electro‐Communications1‐5‐1 Chofugaoka, ChofuTokyo182‐8585Japan
- Faculty of Informatics and EngineeringThe University of Electro‐Communications1‐5‐1 Chofugaoka, ChofuTokyo182‐8585Japan
| | - Jiaqi Liu
- i‐Powered Energy System Research Center (i‐PERC)The University of Electro‐Communications1‐5‐1 Chofugaoka, ChofuTokyo182‐8585Japan
| | - Zheng Zhang
- i‐Powered Energy System Research Center (i‐PERC)The University of Electro‐Communications1‐5‐1 Chofugaoka, ChofuTokyo182‐8585Japan
| | - Liang Wang
- i‐Powered Energy System Research Center (i‐PERC)The University of Electro‐Communications1‐5‐1 Chofugaoka, ChofuTokyo182‐8585Japan
| | - Gaurav Kapil
- i‐Powered Energy System Research Center (i‐PERC)The University of Electro‐Communications1‐5‐1 Chofugaoka, ChofuTokyo182‐8585Japan
| | - Yuyao Wei
- Faculty of Informatics and EngineeringThe University of Electro‐Communications1‐5‐1 Chofugaoka, ChofuTokyo182‐8585Japan
| | - Ajay Kumar Baranwal
- i‐Powered Energy System Research Center (i‐PERC)The University of Electro‐Communications1‐5‐1 Chofugaoka, ChofuTokyo182‐8585Japan
| | - Shahrir Razey Sahamir
- i‐Powered Energy System Research Center (i‐PERC)The University of Electro‐Communications1‐5‐1 Chofugaoka, ChofuTokyo182‐8585Japan
| | - Yoshitaka Sanehira
- i‐Powered Energy System Research Center (i‐PERC)The University of Electro‐Communications1‐5‐1 Chofugaoka, ChofuTokyo182‐8585Japan
| | - Dandan Wang
- Faculty of Informatics and EngineeringThe University of Electro‐Communications1‐5‐1 Chofugaoka, ChofuTokyo182‐8585Japan
| | - Yongge Yang
- Faculty of Informatics and EngineeringThe University of Electro‐Communications1‐5‐1 Chofugaoka, ChofuTokyo182‐8585Japan
| | - Takeshi Kitamura
- i‐Powered Energy System Research Center (i‐PERC)The University of Electro‐Communications1‐5‐1 Chofugaoka, ChofuTokyo182‐8585Japan
| | - Raminta Beresneviciute
- Department of Polymers Chemistry and TechnologyKaunas University of TechnologyRadvilenu Plentas 19KaunasLT50254Lithuania
| | - Saulius Grigalevicius
- Department of Polymers Chemistry and TechnologyKaunas University of TechnologyRadvilenu Plentas 19KaunasLT50254Lithuania
| | - Qing Shen
- i‐Powered Energy System Research Center (i‐PERC)The University of Electro‐Communications1‐5‐1 Chofugaoka, ChofuTokyo182‐8585Japan
- Faculty of Informatics and EngineeringThe University of Electro‐Communications1‐5‐1 Chofugaoka, ChofuTokyo182‐8585Japan
| | - Shuzi Hayase
- i‐Powered Energy System Research Center (i‐PERC)The University of Electro‐Communications1‐5‐1 Chofugaoka, ChofuTokyo182‐8585Japan
- Faculty of Informatics and EngineeringThe University of Electro‐Communications1‐5‐1 Chofugaoka, ChofuTokyo182‐8585Japan
| |
Collapse
|
11
|
Ma Y, Gong J, Zeng P, Liu M. Recent Progress in Interfacial Dipole Engineering for Perovskite Solar Cells. NANO-MICRO LETTERS 2023; 15:173. [PMID: 37420117 PMCID: PMC10328907 DOI: 10.1007/s40820-023-01131-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/26/2023] [Indexed: 07/09/2023]
Abstract
Design and modification of interfaces have been the main strategies in developing perovskite solar cells (PSCs). Among the interfacial treatments, dipole molecules have emerged as a practical approach to improve the efficiency and stability of PSCs due to their unique and versatile abilities to control the interfacial properties. Despite extensive applications in conventional semiconductors, working principles and design of interfacial dipoles in the performance/stability enhancement of PSCs are lacking an insightful elucidation. In this review, we first discuss the fundamental properties of electric dipoles and the specific roles of interfacial dipoles in PSCs. Then we systematically summarize the recent progress of dipole materials in several key interfaces to achieve efficient and stable PSCs. In addition to such discussions, we also dive into reliable analytical techniques to support the characterization of interfacial dipoles in PSCs. Finally, we highlight future directions and potential avenues for research in the development of dipolar materials through tailored molecular designs. Our review sheds light on the importance of continued efforts in this exciting emerging field, which holds great potential for the development of high-performance and stable PSCs as commercially demanded.
Collapse
Affiliation(s)
- Yinyi Ma
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Jue Gong
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Peng Zeng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Mingzhen Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China.
- State Key Laboratory Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China.
| |
Collapse
|
12
|
Abate SY, Yang Z, Jha S, Emodogo J, Ma G, Ouyang Z, Muhammad S, Pradhan N, Gu X, Patton D, Li D, Cai J, Dai Q. Promoting Large-Area Slot-Die-Coated Perovskite Solar Cell Performance and Reproducibility by Acid-Based Sulfono-γ-AApeptide. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37201183 DOI: 10.1021/acsami.3c02571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Homogeneous and pinhole-free large-area perovskite films are required to realize the commercialization of perovskite modules and panels. Various large-area perovskite coatings were developed; however, at their film coating and drying stages, many defects were formed on the perovskite surface. Consequently, not only the devices lost substantial performance but also their long-term stability deteriorated. Here, we fabricated a compact and uniform large-area MAPbI3-perovskite film by a slot-die coater at room temperature (T) and at high relative humidity (RH) up to 40%. The control slot-die-coated perovskite solar cell (PSC) produced 1.082 V open-circuit voltage (Voc), 24.09 mA cm-2 short current density (Jsc), 71.13% fill factor (FF), and a maximum power conversion efficiency (PCE) of 18.54%. We systematically employed a multi-functional artificial amino acid (F-LYS-S) to modify the perovskite defects. Such amino acids are more inclined to bind and adhere to the perovskite defects. The amino, carbonyl, and carboxy functional groups of F-LYS-S interacted with MAPbI3 through Lewis acid-base interaction and modified iodine vacancies significantly. Fourier transform infrared spectroscopy revealed that the C═O group of F-LYS-S interacted with the uncoordinated Pb2+ ions, and X-ray photoelectron spectroscopy revealed that the lone pair of -NH2 coordinated with the uncoordinated Pb2+ and consequently modified the I- vacancies remarkably. As a result, the F-LYS-S-modified device demonstrated more than three-fold charge recombination resistance, which is one of the primary requirements to fabricate high-performance PSCs. Therefore, the device fabricated employing F-LYS-S demonstrated remarkable PCE of 21.08% with superior photovoltaic parameters of 1.104 V Voc, 24.80 mA cm-2 Jsc, and 77.00%. FF. Concurrently, the long-term stability of the PSCs was improved by the F-LYS-S post-treatment, where the modified device retained ca. 89.6% of its initial efficiency after storing for 720 h in air (T ∼ 27 °C and RH ∼ 50-60%).
Collapse
Affiliation(s)
- Seid Yimer Abate
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| | - Ziqi Yang
- Department of Chemistry, University of South Florida, 4202 E Fowler Avenue, Tampa, Florida 33620, United States
| | - Surabhi Jha
- School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Jada Emodogo
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| | - Guorong Ma
- School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Zhongliang Ouyang
- Department of Electrical and Computer Engineering, Center for Materials for Information Technology, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Shafi Muhammad
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| | - Nihar Pradhan
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| | - Xiaodan Gu
- School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Derek Patton
- School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Dawen Li
- Department of Electrical and Computer Engineering, Center for Materials for Information Technology, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 E Fowler Avenue, Tampa, Florida 33620, United States
| | - Qilin Dai
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| |
Collapse
|
13
|
Wei J, Li J, Duan C, Yuan L, Zou S, Pang Q, Yan K. High Efficiency Near-Infrared Perovskite Light Emitting Diodes With Reduced Rolling-Off by Surface Post-Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207769. [PMID: 36799192 DOI: 10.1002/smll.202207769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Indexed: 05/18/2023]
Abstract
The rolling-off phenomenon of device efficiency at high current density caused by quenching of luminescence in perovskite light-emitting diodes (PeLED) is challenging to be solved. Here, 2-amino-5-iodopyrazine (AIPZ) is dissolved in a mixed solvent of chlorobenzene (CB)/isopropanol (IPA) (7:3 volume ratio) for surface post-treatment of FAPbI3 perovskite film. The interaction of AIPZ and perovskite surface not only balances the charge injection but also passivates defects to enhance radiative recombination in PeLED. Therefore, the PeLED champion yields peak external quantum efficiency reaching 23.2% at the current density of 45 mA cm-2 with a radiance brightness of 290 W sr-1 m-2 . More importantly, the rolling-off of device efficiency is significantly reduced. The lowest rolling-off devices can maintain 80% of peak EQE (22.1%) at a high current density of 460 mA cm-2 , whereas the control device only retains 25% of the peak EQE value. This work provides an effective strategy to improve performance and reduce the EQE rolling-off of PeLED for practical application.
Collapse
Affiliation(s)
- Jianwu Wei
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Jiong Li
- School of Environment and Energy, State Key Lab of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510000, P. R. China
| | - Chenghao Duan
- School of Environment and Energy, State Key Lab of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510000, P. R. China
| | - Ligang Yuan
- School of Environment and Energy, State Key Lab of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510000, P. R. China
| | - Shibing Zou
- School of Environment and Energy, State Key Lab of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510000, P. R. China
| | - Qi Pang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Keyou Yan
- School of Environment and Energy, State Key Lab of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510000, P. R. China
| |
Collapse
|
14
|
Yin Z, Lu B, Chen Y, Guo C. Advances of Commercial and Biological Materials for Electron Transport Layers in Biological Applications. Front Bioeng Biotechnol 2022; 10:900269. [PMID: 35711642 PMCID: PMC9194854 DOI: 10.3389/fbioe.2022.900269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Electron transport layer (ETL), one of the important layers for high-performing perovskite solar cells (PSCs), also has great potential in bioengineering applications. It could be used for biological sensors, biological imaging, and biomedical treatments with high resolution or efficiency. Seldom research focused on the development of biological material for ETL and their application in biological uses. This review will introduce commercial and biological materials used in ETL to help readers understand the working mechanism of ETL. And the ways to prepare ETL at low temperatures will also be introduced to improve the performance of ETL. Then this review summarizes the latest research on material doping, material modification, and bilayer ETL structures to improve the electronic transmission capacity of ETLs. Finally, the application of ETLs in bioengineering will be also shown to demonstrate that ETLs and their used material have a high potential for biological applications.
Collapse
Affiliation(s)
- Zhifu Yin
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, China
- The State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, China
| | - Biao Lu
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, China
| | - Yanbo Chen
- The State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, China
| | - Caixia Guo
- Presidents’ Office of China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|