1
|
Sharma R, Manna D, Milton MD. Multi-Stimuli Responsive Tripodal Phenothiazine Derivatives and Their Applications in Monitoring Fish Spoilage, Anti-counterfeiting Writing, and Visualization of Latent Fingerprints. Chem Asian J 2025:e00047. [PMID: 40421740 DOI: 10.1002/asia.202500047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 05/03/2025] [Accepted: 05/05/2025] [Indexed: 05/28/2025]
Abstract
In this work, we designed and synthesized D-A type tripodal phenothiazine derivatives to examine the influence of different functional groups on the photophysical properties and response to external stimuli. The compounds show emission in both solution and solid-state. Intramolecular charge transfer (ICT) characteristics are evidenced by the fluorescence studies revealing positive solvatochromism in compounds. The compounds are highly thermally stable with low optical band gaps (2.1-2.55 eV). Compounds 3a-3c displayed excellent aggregation-induced emission enhancement (AIEE) phenomena in CH3CN/DMSO and water mixtures. Compound 3e could detect moisture in three solvents, namely THF, CH3CN, and DMSO, with the lowest detection limit of 0.018% in DMSO. The compounds show reversible acidochromism in solution and solid-state, where compound 3e containing pyridyl shows the lowest detection limit for TFA of 0.59 ppm among others. The 'ON-OFF-ON' response to TFA/TEA stimulation has been utilized for the construction of the truth table and the outcome corresponds to the IMPLICATION logic gate. The sensitive response of compound 3e to amine vapors has been utilized for monitoring food spoilage. The compounds also show mechanofluorochromism, and the phase transformation was analyzed by powder X-ray diffraction studies. These compounds are potential candidates for multi-level anti-counterfeiting applications and latent fingerprint sensing. Acidochromism; Aggregation-induced emission enhancement (AIEE); Anti-counterfeiting; IMPLICATION logic gate; Mechanofluorochromism.
Collapse
Affiliation(s)
- Ritika Sharma
- Functional Organic Molecules Synthesis Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Debashree Manna
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, v.v.i., Flemingovo nám. 2, Prague 6, Praha, 16610, Czech Republic
| | - Marilyn Daisy Milton
- Functional Organic Molecules Synthesis Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| |
Collapse
|
2
|
Chauhan S, Bhar R, Ray K, Chowdhury S, Ghangrekar MM, Dubey BK. Enhanced visible light photocatalytic degradation of oxytetracycline through sugarcane bagasse biochar supported layered WS 2 type-II staggered heterojunction: Towards performance, degradation pathway, toxicity, and life cycle assessment. ENVIRONMENTAL RESEARCH 2025; 271:121100. [PMID: 39947382 DOI: 10.1016/j.envres.2025.121100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/25/2025]
Abstract
This research presents the synthesis of sugarcane bagasse biochar (SCB) integrated with WS2 nanosheets via one step facile solid-phase reaction. The as-prepared SCBW composites were then evaluated for their photocatalytic efficacy in degrading the antibiotic oxytetracycline (OTC) from water. Among the tested conditions using a Taguchi L9 orthogonal array, SCBW-10 achieved a maximum OTC degradation efficiency of 92.7% under optimal conditions (pH = 7, dose = 0.5 g L⁻1, initial concentration = 5 mg L⁻1, reaction time = 180 min). The study also examined the impact of other environmental factors, identified the predominant reactive oxygen species (•O2⁻ and •OH) responsible for OTC degradation, and conducted toxicity assessment and prediction of degradation products using Vigna radiata seed germination and T.E.S.T. software, respectively. Further, the SCBW-10 nanocomposite demonstrated reusability over four cycles with minimal loss in efficiency. Lastly, a life cycle assessment was performed to evaluate the environmental impact of the proposed remediation system from gate to gate viewpoint.
Collapse
Affiliation(s)
- Sahil Chauhan
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Rajarshi Bhar
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Koustuv Ray
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Shamik Chowdhury
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | | | - Brajesh Kumar Dubey
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India; School of Water Resources, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
3
|
Castillo-Blas C, García MJ, Chester AM, Mazaj M, Guan S, Robertson GP, Kono A, Steele JMA, León-Alcaide L, Poletto-Rodrigues B, Chater PA, Cabrera S, Krajnc A, Wondraczek L, Keen DA, Alemán J, Bennett TD. Structural and Interfacial Characterization of a Photocatalytic Titanium MOF-Phosphate Glass Composite. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15793-15803. [PMID: 40033699 PMCID: PMC11912187 DOI: 10.1021/acsami.4c18444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Metal-organic framework (MOF) composites are proposed as solutions to the mechanical instability of pure MOF materials. Here, we present a new compositional series of recently discovered MOF-crystalline inorganic glass composites. In this case, formed by the combination of a photocatalytic titanium MOF (MIL-125-NH2) and a phosphate-based glass (20%Na2O-10%Na2SO4-70%P2O5). This new family of composites has been synthesized and characterized using powder X-ray diffraction, thermal gravimetric analysis, differential scanning calorimetry, scanning electron microscopy, and X-ray total scattering. Through analysis of the pair distribution function extracted from X-ray total scattering data, the atom-atom interactions at the MOF-glass interface are described. Nitrogen and carbon dioxide isotherms demonstrate good surface area values despite the pelletization and mixing of the MOF with a dense inorganic glass. The catalytic activity of these materials was investigated in the photooxidation of amines to imines, showing the retention of the photocatalytic effectiveness of the parent pristine MOF.
Collapse
Affiliation(s)
- Celia Castillo-Blas
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, United Kingdom
| | - Montaña J García
- Organic Chemistry Department, Science Faculty, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
| | - Ashleigh M Chester
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, United Kingdom
| | - Matjaž Mazaj
- Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Shaoliang Guan
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, United Kingdom
- Maxwell Centre, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Georgina P Robertson
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, United Kingdom
- Diamond Light Source Ltd., Diamond House, Harwell Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Ayano Kono
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, United Kingdom
| | - James M A Steele
- Maxwell Centre, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- Department of Chemistry Yusuf Hamied, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Luis León-Alcaide
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/Catedrático José Beltrán 2, Paterna 46980, Spain
| | - Bruno Poletto-Rodrigues
- Otto-Schott Institute of Materials Research, University of Jena, Fraunhoferstrasse 6, 07743 Jena, Germany
| | - Philip A Chater
- Diamond Light Source Ltd., Diamond House, Harwell Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Silvia Cabrera
- Inorganic Chemistry Department, Science Faculty, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
| | - Andraž Krajnc
- Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Lothar Wondraczek
- Department of Chemistry Yusuf Hamied, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - David A Keen
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Jose Alemán
- Organic Chemistry Department, Science Faculty, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, United Kingdom
| |
Collapse
|
4
|
Zhang K, Zhang F, Huang F, Xiong K, Zeng B, Lang X. Orientation-Dependent Photocatalysis of Imine-Linked Covalent Organic Frameworks Based on Thienothiophenes for Oxidation of Amines to Imines. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52455-52465. [PMID: 39288029 DOI: 10.1021/acsami.4c11616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Toward visible light photocatalysis, covalent organic frameworks (COFs) have recently garnered growing attention. The effect of different orientations of imine of imine-linked COFs on photocatalysis should be elucidated. Here, two COFs are developed with 2,5-diphenylthieno[3,2-b]thiophene (DPTT) and 1,3,6,8-tetraphenylpyrene (Py) linked by imine, affording DPTT-Py-COF and Py-DPTT-COF, respectively. Distinctly, DPTT-Py-COF and Py-DPTT-COF have high crystallinity and porosity, paving the way to highly efficient photocatalysis. Theoretical calculations demonstrate that both DPTT-Py-COF and Py-DPTT-COF are of similar bandgaps but of varied energy positions due to the different orientations of imine. Besides, characterizations disclose that DPTT-Py-COF delivers more enhanced charge separation and transfer than Py-DPTT-COF. Probed by the oxidation of amine to imine, DPTT-Py-COF exhibits a blue light photocatalytic performance superior to that of Py-DPTT-COF. DPTT-Py-COF, a highly recyclable photocatalyst, enables the oxidation of various amines to imines with oxygen. This work highlights that tuning the microenvironment of COFs unravels tenable performances in photocatalysis.
Collapse
Affiliation(s)
- Keke Zhang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Fulin Zhang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Fengwei Huang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Kanghui Xiong
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Bing Zeng
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xianjun Lang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
5
|
Mohamadpour F, Amani AM. Photocatalytic systems: reactions, mechanism, and applications. RSC Adv 2024; 14:20609-20645. [PMID: 38952944 PMCID: PMC11215501 DOI: 10.1039/d4ra03259d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
The photocatalytic field revolves around the utilization of photon energy to initiate various chemical reactions using non-adsorbing substrates, through processes such as single electron transfer, energy transfer, or atom transfer. The efficiency of this field depends on the capacity of a light-absorbing metal complex, organic molecule, or substance (commonly referred to as photocatalysts or PCs) to execute these processes. Photoredox techniques utilize photocatalysts, which possess the essential characteristic of functioning as both an oxidizing and a reducing agent upon activation. In addition, it is commonly observed that photocatalysts exhibit optimal performance when irradiated with low-energy light sources, while still retaining their catalytic activity under ambient temperatures. The implementation of photoredox catalysis has resuscitated an array of synthesis realms, including but not limited to radical chemistry and photochemistry, ultimately affording prospects for the development of the reactions. Also, photoredox catalysis is utilized to resolve numerous challenges encountered in medicinal chemistry, as well as natural product synthesis. Moreover, its applications extend across diverse domains encompassing organic chemistry and catalysis. The significance of photoredox catalysts is rooted in their utilization across various fields, including biomedicine, environmental pollution management, and water purification. Of course, recently, research has evaluated photocatalysts in terms of cost, recyclability, and pollution of some photocatalysts and dyes from an environmental point of view. According to these new studies, there is a need for critical studies and reviews on photocatalysts and photocatalytic processes to provide a solution to reduce these limitations. As a future perspective for research on photocatalysts, it is necessary to put the goals of researchers on studies to overcome the limitations of the application and efficiency of photocatalysts to promote their use on a large scale for the development of industrial activities. Given the significant implications of the subject matter, this review seeks to delve into the fundamental tenets of the photocatalyst domain and its associated practical use cases. This review endeavors to demonstrate the prospective of a powerful tool known as photochemical catalysis and elucidate its underlying tenets. Additionally, another goal of this review is to expound upon the various applications of photocatalysts.
Collapse
Affiliation(s)
- Farzaneh Mohamadpour
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz Iran
| |
Collapse
|
6
|
Debruyne M, Van Der Voort P, Van Speybroeck V, Stevens CV. The Application of Porous Organic Polymers as Metal Free Photocatalysts in Organic Synthesis. Chemistry 2024; 30:e202400311. [PMID: 38499471 DOI: 10.1002/chem.202400311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
Concerns about increasing greenhouse gas emissions and their effect on our environment highlight the urgent need for new sustainable technologies. Visible light photocatalysis allows the clean and selective generation of reactive intermediates under mild conditions. The more widespread adoption of the current generation of photocatalysts, particularly those using precious metals, is hampered by drawbacks such as their cost, toxicity, difficult separation, and limited recyclability. This is driving the search for alternatives, such as porous organic polymers (POPs). This new class of materials is made entirely from organic building blocks, can possess high surface area and stability, and has a controllable composition and functionality. This review focuses on the application of POPs as photocatalysts in organic synthesis. For each reaction type, a representative material is discussed, with special attention to the mechanism of the reaction. Additionally, an overview is given, comparing POPs with other classes of photocatalysts, and critical conclusions and future perspectives are provided on this important field.
Collapse
Affiliation(s)
- Maarten Debruyne
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Pascal Van Der Voort
- Department of Chemistry, Ghent University, Krijgslaan 281 (S3), 9000, Ghent, Belgium
| | - Veronique Van Speybroeck
- Department of Applied Physics, Ghent University, Technologiepark Gent, 46, 9052, Zwijnaarde, Belgium
| | - Christian V Stevens
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
7
|
Ando H, Takamura H, Kadota I, Tanaka K. Strongly reducing helical phenothiazines as recyclable organophotoredox catalysts. Chem Commun (Camb) 2024; 60:4765-4768. [PMID: 38529587 DOI: 10.1039/d4cc00904e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Recyclable phenothiazine organophotoredox catalysts (PTHS 1-3, E1/2ox* = -2.34 to -2.40 V vs. SCE) have been developed. When the recycling performance was evaluated, PTHS-1 could be recovered at least four times without loss of its catalytic activity. These recyclable organophotoredox catalysts represent a promising tool for sustainable organic synthesis.
Collapse
Affiliation(s)
- Haru Ando
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kitaku, Okayama 700-8530, Japan.
| | - Hiroyoshi Takamura
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kitaku, Okayama 700-8530, Japan.
| | - Isao Kadota
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kitaku, Okayama 700-8530, Japan.
| | - Kenta Tanaka
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-Naka, Kitaku, Okayama 700-8530, Japan.
| |
Collapse
|
8
|
Cindro N, Car Ž, Petrović Peroković V, Borovina M, Panić B, Kodrin I, Biljan I. Synthesis of aromatic polynitroso compounds: Towards functional azodioxy-linked porous polymers. Heliyon 2023; 9:e21781. [PMID: 38034606 PMCID: PMC10685250 DOI: 10.1016/j.heliyon.2023.e21781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/22/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
The polymerization property of aromatic polynitroso compounds could be used to create azodioxy porous networks with possible application for the adsorption of CO2, the main greenhouse gas. Herein, we report the synthesis and characterization of new aromatic polynitroso compounds, with para-nitroso groups attached to the triphenylbenzene, triphenylpyridine, triphenyltriazine and triphenylamine moiety. The synthesis of the pyridine-based trinitroso compound was performed by reduction of the corresponding trinitro derivative to N-arylhydroxylamine followed by oxidation to the trinitroso product. For the synthesis of the benzene- and triazine-based trinitroso compounds, a novel synthetic strategy was implemented, which included cyclotrimerization of the 4-nitrosoacetophenone and 4-nitrosobenzonitrile, respectively. Reduction of the trinitro compound with triphenylamine unit produced the dinitroso product. In a solid state, all synthesized compounds form E-azodioxy oligomers or polymers. While azodioxy polymer with triphenylbenzene moiety is an amorphous solid, other azodioxy oligomers and polymers displayed sharp diffraction peaks pointing to their crystalline nature. A computational study indicated that eclipsed AA configurations are preferred over staggered AB and inclined AA' configurations. The serrated layers may be the most likely outcome when/if 2D layers form an organized polymer network of azodioxy linked triphenyltriazine-based building blocks.
Collapse
Affiliation(s)
| | | | | | - Mladen Borovina
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Barbara Panić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Ivan Kodrin
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Ivana Biljan
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| |
Collapse
|
9
|
Nallaselvam T, Rajamohan S, Kalaiarasu B, Hoang AT. High efficient COVID-19 waste co-pyrolysis char/TiO 2 nanocomposite for photocatalytic reduction of Cr(VI) under visible light. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:97178-97194. [PMID: 37587400 DOI: 10.1007/s11356-023-29281-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
Titanium dioxide (Titania) nanoparticle-coated biochar derived through co-pyrolysis of COVID-19 waste face mask (WFM) and Moringa oleifera seed cake (MO) provides an effective way to alleviate toxic metal in wastewater. This study investigates the effects of Biochar/titania photocatalyst preparation, characterization, and its photoreduction of Cr(VI). The morphological and functional modifications in the catalyst were identified using X-Ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, ultraviolet spectrophotometer, surface area analysis, and Raman spectrophotometer, respectively. The influencing parameters, namely, pH, photocatalyst dosage, initial pollutant concentration, and visible light irradiation time, have been investigated. The findings reveal that the Cr(VI) reduction by the photocatalyst was highly facilitated by photocatalytic process. The prepared photocatalyst shows higher and faster reduction rate of Cr(VI) and also improves the catalyst stability. The photoreduction of Cr(VI) ensembles well with pseudo-first order kinetics. At 180 min of reaction time, maximum Cr(VI) reduction of 98.65% was achieved at pH 2, 0.3 g/L catalyst dosage, and 10 ppm initial concentration, respectively. The synthesized photocatalyst shows excellent recycling performance up to 7 times, and these studies proved that the prepared catalyst is cost-effective and efficiently employed for removing pollutants.
Collapse
Affiliation(s)
- Tamilarasan Nallaselvam
- Department of Mechanical Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - Sakthivel Rajamohan
- Department of Mechanical Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India.
| | - Balaji Kalaiarasu
- Department of Mechanical Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - Anh Tuan Hoang
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Vietnam
| |
Collapse
|
10
|
Sánchez-Fuente M, López-Magano A, Moya A, Mas-Ballesté R. Stabilized Chiral Organic Material Containing BINAP Oxide Units as a Heterogeneous Asymmetric Organocatalyst for Allylation of Aldehydes. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37307137 DOI: 10.1021/acsami.3c04430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Condensation of BINAPO-(PhCHO)2 and 1,3,5-tris(4-aminophenyl)benzene (TAPB) results in a new imine-based chiral organic material (COM) that can be further post-functionalized through reductive transformation of imine linkers to amines. While the imine-based material does not show the necessary stability to be used as a heterogeneous catalyst, the reduced amine-linked framework can be efficiently employed in asymmetric allylation of different aromatic aldehydes. Yields and enantiomeric excesses found are comparable to those observed for the molecular BINAP oxide catalyst, but importantly, the amine-based material also permits its recyclability.
Collapse
Affiliation(s)
- Miguel Sánchez-Fuente
- Department of Inorganic Chemistry (Module 7), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Alberto López-Magano
- Department of Inorganic Chemistry (Module 7), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Alicia Moya
- Department of Inorganic Chemistry (Module 7), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Rubén Mas-Ballesté
- Department of Inorganic Chemistry (Module 7), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
11
|
López-Magano A, Daliran S, Oveisi AR, Mas-Ballesté R, Dhakshinamoorthy A, Alemán J, Garcia H, Luque R. Recent Advances in the Use of Covalent Organic Frameworks as Heterogenous Photocatalysts in Organic Synthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209475. [PMID: 36563668 DOI: 10.1002/adma.202209475] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/30/2022] [Indexed: 06/16/2023]
Abstract
Organic photochemistry is intensely developed in the 1980s, in which the nature of excited electronic states and the energy and electron transfer processes are thoroughly studied and finally well-understood. This knowledge from molecular organic photochemistry can be transferred to the design of covalent organic frameworks (COFs) as active visible-light photocatalysts. COFs constitute a new class of crystalline porous materials with substantial application potentials. Featured with outstanding structural tunability, large porosity, high surface area, excellent stability, and unique photoelectronic properties, COFs are studied as potential candidates in various research areas (e.g., photocatalysis). This review aims to provide the state-of-the-art insights into the design of COF photocatalysts (pristine, functionalized, and hybrid COFs) for organic transformations. The catalytic reaction mechanism of COF-based photocatalysts and the influence of dimensionality and crystallinity on heterogenous photocatalysis performance are also discussed, followed by perspectives and prospects on the main challenges and opportunities in future research of COFs and COF-based photocatalysts.
Collapse
Affiliation(s)
- Alberto López-Magano
- Inorganic Chemistry Department, Módulo 7, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Saba Daliran
- Department of Chemistry, Faculty of Sciences, University of Zabol, Zabol, 98615-538, Iran
| | - Ali Reza Oveisi
- Department of Chemistry, Faculty of Sciences, University of Zabol, Zabol, 98615-538, Iran
| | - Rubén Mas-Ballesté
- Inorganic Chemistry Department, Módulo 7, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Amarajothi Dhakshinamoorthy
- School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - José Alemán
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Instituto de Tecnología Química CSIC-UPV, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, Valencia, 46022, Spain
| | - Hermenegildo Garcia
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Rafael Luque
- Department of Organic Chemistry, University of Cordoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, Cordoba, E14014, Spain
- Department of Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya str., Moscow, 117198, Russian Federation
| |
Collapse
|
12
|
Heuer J, Kuckhoff T, Li R, Landfester K, Ferguson CTJ. Tunable Photocatalytic Selectivity by Altering the Active Center Microenvironment of an Organic Polymer Photocatalyst. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2891-2900. [PMID: 36594942 PMCID: PMC9869337 DOI: 10.1021/acsami.2c17607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
The favored production of one product over another is a major challenge in synthetic chemistry, reducing the formation of byproducts and enhancing atom efficacy. The formation of catalytic species that have differing reactivities based on the substrate being converted, has been targeted to selectively control reactions. Here, we report the production of photocatalytic self-assembled amphiphilic polymers, with either hydrophilic or hydrophobic microenvironments at the reactive center. Benzothiadiazole-based photocatalysts were polymerized into either the hydrophilic or the hydrophobic compartment of a diblock copolymer by RAFT polymerization. The difference in the reactivity of each microenvironment was dictated by the physical properties of the substrate. Stark differences in reactivity were observed for polar substrates, where a hydrophilic microenvironment was favored. Conversely, both microenvironments performed similarly for very hydrophobic substrates, showing that reagent partitioning is not the only factor that drives photocatalytic conversion. Furthermore, the use of secondary swelling solvents allowed an additional reagent exchange between the continuous phase and the heterogeneous photocatalyst, resulting in a significant 5-fold increase in conversion for a radical carbon-carbon coupling.
Collapse
Affiliation(s)
- Julian Heuer
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz55128, Germany
| | - Thomas Kuckhoff
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz55128, Germany
| | - Rong Li
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz55128, Germany
| | | | - Calum T. J. Ferguson
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz55128, Germany
- School
of Chemistry, University of Birmingham, Edgbaston, BirminghamB15 2TT, United
Kingdom
| |
Collapse
|
13
|
Zhou C, Wang R, Gao L, Huang X, Zhang X. Unveiling the Synthetic Potential of 1,3,5-Tri(10 H-phenothiazin-10-yl)benzene-Based Optoelectronic Material: A Metal-Free and Recyclable Photocatalyst for Sequential Functionalization of C(sp 2)-H Bonds. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30962-30968. [PMID: 35759530 DOI: 10.1021/acsami.2c08766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
1,3,5-Tri(10H-phenothiazin-10-yl)benzene (3PTZ) is endowed with unique redox and photoresponsive characteristics and has been utilized as a p-type redox center for organic battery cathode material and a room-temperature phosphorescence (RTP) material, respectively. Conversely, its exploration in other research fields, particularly organic synthesis, remains unknown. Here, we demonstrate that 3PTZ-POP synthesized via cross-linking of 3PTZ is capable of harvesting visible-light photons and selectively converting solar energy to chemical energy. Specifically, 3PTZ-POP functions as a metal-free and recyclable photocatalyst to promote the sequential C(sp2)-H functionalizations of N-arylacrylamides with readily available trifluoromethylsulfonyl chloride as the radical precursor. An array of 3,3-disubstituted 2-oxindoles bearing a pharmaceutically important CF3 moiety are delivered in moderate to excellent yields under mild and sustainable conditions.
Collapse
Affiliation(s)
- Cen Zhou
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Rui Wang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, 8 Shangsan Lu, Fuzhou 350007, China
| | - Lang Gao
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, 8 Shangsan Lu, Fuzhou 350007, China
| | - Xiaozhou Huang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, 8 Shangsan Lu, Fuzhou 350007, China
| | - Xiao Zhang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, 8 Shangsan Lu, Fuzhou 350007, China
| |
Collapse
|
14
|
Daliran S, Oveisi AR, Peng Y, López-Magano A, Khajeh M, Mas-Ballesté R, Alemán J, Luque R, Garcia H. Metal–organic framework (MOF)-, covalent-organic framework (COF)-, and porous-organic polymers (POP)-catalyzed selective C–H bond activation and functionalization reactions. Chem Soc Rev 2022; 51:7810-7882. [DOI: 10.1039/d1cs00976a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The review summarizes the state-of-the-art of C–H active transformations over crystalline and amorphous porous materials as new emerging heterogeneous (photo)catalysts.
Collapse
Affiliation(s)
- Saba Daliran
- Department of Chemistry, Faculty of Sciences, Department of Chemistry, University of Zabol, 98615-538 Zabol, Iran
| | - Ali Reza Oveisi
- Department of Chemistry, Faculty of Sciences, Department of Chemistry, University of Zabol, 98615-538 Zabol, Iran
| | - Yong Peng
- Instituto de Tecnología Química CSIC-UPV, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Alberto López-Magano
- Inorganic Chemistry Department, Módulo 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Mostafa Khajeh
- Department of Chemistry, Faculty of Sciences, Department of Chemistry, University of Zabol, 98615-538 Zabol, Iran
| | - Rubén Mas-Ballesté
- Inorganic Chemistry Department, Módulo 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José Alemán
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Rafael Luque
- Department of Organic Chemistry, University of Cordoba, Campus de Rabanales, EdificioMarie Curie (C-3), CtraNnal IV-A, Km 396, E14014 Cordoba, Spain
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya str., 117198, Moscow, Russia
| | - Hermenegildo Garcia
- Instituto de Tecnología Química CSIC-UPV, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|