1
|
Sun Z, Ji X, Lu S, Du J. Shining a light on environmental science: Recent advances in SERS technology for rapid detection of persistent toxic substances. J Environ Sci (China) 2025; 153:251-263. [PMID: 39855797 DOI: 10.1016/j.jes.2024.08.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/06/2024] [Accepted: 08/18/2024] [Indexed: 01/27/2025]
Abstract
Persistent toxic substances (PTS) represent a paramount environmental issue in the 21st century. Understanding the concentrations and forms of PTS in the environment is crucial for accurately assessing their environmental health impacts. This article presents a concise overview of the components of PTS, pertinent environmental regulations, and conventional detection methodologies. Additionally, we offer an in-depth review of the principles, development, and practical applications of surface-enhanced Raman scattering (SERS) in environmental monitoring, emphasizing the advancements in detecting trace amounts of PTS in complex environmental matrices. Recent progress in enhancing SERS sensitivity, improving selectivity, and practical implementations are detailed, showcasing innovative materials and methods. Integrating SERS with advanced algorithms are highlighted as pivotal areas for future research.
Collapse
Affiliation(s)
- Zhenli Sun
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Xunlong Ji
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Shaoyu Lu
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jingjing Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
2
|
Mondal I, Haick H. Smart Dust for Chemical Mapping. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419052. [PMID: 40130762 PMCID: PMC12075923 DOI: 10.1002/adma.202419052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/05/2025] [Indexed: 03/26/2025]
Abstract
This review article explores the transformative potential of smart dust systems by examining how existing chemical sensing technologies can be adapted and advanced to realize their full capabilities. Smart dust, characterized by submillimeter-scale autonomous sensing platforms, offers unparalleled opportunities for real-time, spatiotemporal chemical mapping across diverse environments. This article introduces the technological advancements underpinning these systems, critically evaluates current limitations, and outlines new avenues for development. Key challenges, including multi-compound detection, system control, environmental impact, and cost, are discussed alongside potential solutions. By leveraging innovations in miniaturization, wireless communication, AI-driven data analysis, and sustainable materials, this review highlights the promise of smart dust to address critical challenges in environmental monitoring, healthcare, agriculture, and defense sectors. Through this lens, the article provides a strategic roadmap for advancing smart dust from concept to practical application, emphasizing its role in transforming the understanding and management of complex chemical systems.
Collapse
Affiliation(s)
- Indrajit Mondal
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifa3200003Israel
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifa3200003Israel
- Life Science Technology (LiST) GroupDanube Private UniversityFakultät Medizin/Zahnmedizin, Steiner Landstraße 124
, Krems‐SteinÖSTERREICH3500Austria
| |
Collapse
|
3
|
Li Q, Yu S, Li Z, Liu W, Cheng H, Chen S. Metasurface-enhanced biomedical spectroscopy. NANOPHOTONICS (BERLIN, GERMANY) 2025; 14:1045-1068. [PMID: 40290277 PMCID: PMC12019954 DOI: 10.1515/nanoph-2024-0589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/18/2024] [Indexed: 04/30/2025]
Abstract
Enhancing the sensitivity of biomedical spectroscopy is crucial for advancing medical research and diagnostics. Metasurfaces have emerged as powerful platforms for enhancing the sensitivity of various biomedical spectral detection technologies. This capability arises from their unparalleled ability to improve interactions between light and matter through the localization and enhancement of light fields. In this article, we review representative approaches and recent advances in metasurface-enhanced biomedical spectroscopy. We provide a comprehensive discussion of various biomedical spectral detection technologies enhanced by metasurfaces, including infrared spectroscopy, Raman spectroscopy, fluorescence spectroscopy, and other spectral modalities. We demonstrate the advantages of metasurfaces in improving detection sensitivity, reducing detection limits, and achieving rapid biomolecule detection while discussing the challenges associated with the design, preparation, and stability of metasurfaces in biomedical detection procedures. Finally, we explore future development trends of metasurfaces for enhancing biological detection sensitivity and emphasize their wide-ranging applications.
Collapse
Affiliation(s)
- Qiang Li
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin300071, China
| | - Shiwang Yu
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin300071, China
| | - Zhancheng Li
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin300071, China
| | - Wenwei Liu
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin300071, China
| | - Hua Cheng
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin300071, China
| | - Shuqi Chen
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin300071, China
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin300350, China
- The Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi030006, China
| |
Collapse
|
4
|
Lin LL, Alvarez-Puebla R, Liz-Marzán LM, Trau M, Wang J, Fabris L, Wang X, Liu G, Xu S, Han XX, Yang L, Shen A, Yang S, Xu Y, Li C, Huang J, Liu SC, Huang JA, Srivastava I, Li M, Tian L, Nguyen LBT, Bi X, Cialla-May D, Matousek P, Stone N, Carney RP, Ji W, Song W, Chen Z, Phang IY, Henriksen-Lacey M, Chen H, Wu Z, Guo H, Ma H, Ustinov G, Luo S, Mosca S, Gardner B, Long YT, Popp J, Ren B, Nie S, Zhao B, Ling XY, Ye J. Surface-Enhanced Raman Spectroscopy for Biomedical Applications: Recent Advances and Future Challenges. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16287-16379. [PMID: 39991932 DOI: 10.1021/acsami.4c17502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The year 2024 marks the 50th anniversary of the discovery of surface-enhanced Raman spectroscopy (SERS). Over recent years, SERS has experienced rapid development and became a critical tool in biomedicine with its unparalleled sensitivity and molecular specificity. This review summarizes the advancements and challenges in SERS substrates, nanotags, instrumentation, and spectral analysis for biomedical applications. We highlight the key developments in colloidal and solid SERS substrates, with an emphasis on surface chemistry, hotspot design, and 3D hydrogel plasmonic architectures. Additionally, we introduce recent innovations in SERS nanotags, including those with interior gaps, orthogonal Raman reporters, and near-infrared-II-responsive properties, along with biomimetic coatings. Emerging technologies such as optical tweezers, plasmonic nanopores, and wearable sensors have expanded SERS capabilities for single-cell and single-molecule analysis. Advances in spectral analysis, including signal digitalization, denoising, and deep learning algorithms, have improved the quantification of complex biological data. Finally, this review discusses SERS biomedical applications in nucleic acid detection, protein characterization, metabolite analysis, single-cell monitoring, and in vivo deep Raman spectroscopy, emphasizing its potential for liquid biopsy, metabolic phenotyping, and extracellular vesicle diagnostics. The review concludes with a perspective on clinical translation of SERS, addressing commercialization potentials and the challenges in deep tissue in vivo sensing and imaging.
Collapse
Affiliation(s)
- Linley Li Lin
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Ramon Alvarez-Puebla
- Departamento de Química Física e Inorganica, Universitat Rovira i Virgili, Tarragona 43007, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona 08010, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Ikerbasque, Basque Foundation for Science, University of Santiago de nCompostela, Bilbao 48013, Spain
- Centro de Investigación Cooperativa en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
- Cinbio, University of Vigo, Vigo 36310, Spain
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jing Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350117, China
| | - Laura Fabris
- Department of Applied Science and Technology, Politecnico di Torino Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guokun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry and Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Aiguo Shen
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Shikuan Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yikai Xu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Chunchun Li
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Shao-Chuang Liu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jian-An Huang
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
- Research Unit of Disease Networks, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
- Biocenter Oulu, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
| | - Indrajit Srivastava
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas 79106, United States
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Limei Tian
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems Texas A&M University, College Station, Texas 77843, United States
| | - Lam Bang Thanh Nguyen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Xinyuan Bi
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Dana Cialla-May
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Pavel Matousek
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI, Harwell Campus, Oxfordshire OX11 0QX, United Kingdom
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Nicholas Stone
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Randy P Carney
- Department of Biomedical Engineering, University of California, Davis, California 95616, United States
| | - Wei Ji
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 145040, China
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Zhou Chen
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - In Yee Phang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Malou Henriksen-Lacey
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro de Investigación Cooperativa en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
| | - Haoran Chen
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Zongyu Wu
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Heng Guo
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems Texas A&M University, College Station, Texas 77843, United States
| | - Hao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gennadii Ustinov
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Siheng Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sara Mosca
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI, Harwell Campus, Oxfordshire OX11 0QX, United Kingdom
| | - Benjamin Gardner
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Yi-Tao Long
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Juergen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuming Nie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xing Yi Ling
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Jian Ye
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| |
Collapse
|
5
|
Bi L, Wang Y, Wang Z, Do A, Fuqua A, Balto KP, Zhang Y, Figueroa JS, Pascal TA, Tao AR, Li S. Molecular-Scale Insights into the Heterogeneous Interactions between an m-Terphenyl Isocyanide Ligand and Noble Metal Nanoparticles. NANO LETTERS 2025; 25:2027-2033. [PMID: 39846404 PMCID: PMC11803716 DOI: 10.1021/acs.nanolett.4c05885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 01/24/2025]
Abstract
The structural and chemical properties of metal nanoparticles are often dictated by their interactions with molecular ligand shells. These interactions are highly material-specific and can vary significantly even among elements within the same group or materials with similar crystal structure. In this study, we surveyed the heterogeneous interactions between an m-terphenyl isocyanide ligand and Au and Ag nanoparticles (NPs) at the single-molecule limit. Specifically, we found that the ligation behavior with this molecule differs significantly between that of Au and AgNPs. Surface-enhanced Raman spectroscopy measurements revealed unique enhancement factors for two molecular vibrational modes between two metal surfaces, indicating different ligand binding geometries. Molecular-level characterization using scanning tunneling microscopy allowed us to directly visualize these variations between Ag and Au surfaces, which we assign as two distinct binding mechanisms. This molecular-scale visualization provides clear insights into the different ligand-metal interactions as well as the chemical behavior and spectroscopic characteristics of isocyanide-functionalized NPs.
Collapse
Affiliation(s)
- Liya Bi
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, La Jolla, California 92093-0418, United States
| | - Yufei Wang
- Program
in Materials Science and Engineering, University
of California, San Diego, La Jolla, California 92093-0418, United States
- Aiiso
Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, California 92093-0448, United States
| | - Zhe Wang
- Department
of Physics and Astronomy, University of
California, Irvine, California 92697-4575, United States
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Chengdu 611731, China
| | - Alexandria Do
- Program
in Materials Science and Engineering, University
of California, San Diego, La Jolla, California 92093-0418, United States
- Aiiso
Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, California 92093-0448, United States
| | - Alexander Fuqua
- Aiiso
Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, California 92093-0448, United States
| | - Krista P. Balto
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
| | - Yanning Zhang
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Chengdu 611731, China
| | - Joshua S. Figueroa
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, La Jolla, California 92093-0418, United States
| | - Tod A. Pascal
- Program
in Materials Science and Engineering, University
of California, San Diego, La Jolla, California 92093-0418, United States
- Aiiso
Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, California 92093-0448, United States
| | - Andrea R. Tao
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, La Jolla, California 92093-0418, United States
- Aiiso
Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, California 92093-0448, United States
| | - Shaowei Li
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, La Jolla, California 92093-0418, United States
| |
Collapse
|
6
|
Kim H, Yun H, Jeong S, Lee S, Cho E, Rho J. Optical Metasurfaces for Biomedical Imaging and Sensing. ACS NANO 2025; 19:3085-3114. [PMID: 39805079 DOI: 10.1021/acsnano.4c14751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Optical metasurfaces, arrays of nanostructures engineered to manipulate light, have emerged as a transformative technology in both research and industry due to their compact design and exceptional light control capabilities. Their strong light-matter interactions enable precise wavefront modulation, polarization control, and significant near-field enhancements. These unique properties have recently driven their application in biomedical fields. In particular, metasurfaces have led to breakthroughs in biomedical imaging technologies, such as achromatic imaging, phase imaging, and extended depth-of-focus imaging. They have also advanced cutting-edge biosensing technologies, featuring high-quality factor resonators and near-field enhancements. As the demand for device miniaturization and system integration increases, metasurfaces are expected to play a pivotal role in the development of next-generation biomedical devices. In this review, we explore the latest advancements in the use of metasurfaces for biomedical applications, with a particular focus on imaging and sensing. Additionally, we discuss future directions aimed at transforming the biomedical field by leveraging the full potential of metasurfaces to provide compact, high-performance solutions for a wide range of applications.
Collapse
Affiliation(s)
- Hongyoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Heechang Yun
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Sebin Jeong
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seokho Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Eunseo Cho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSCTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
| |
Collapse
|
7
|
Shipley W, Wang Y, Chien J, Wang B, Tao AR. Characterization of Surface Patterning on Polymer-Grafted Nanocubes Using Atomic Force Microscopy and Force Volume Mapping. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20464-20473. [PMID: 39298634 DOI: 10.1021/acs.langmuir.4c01902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Atomic force microscopy (AFM), in particular force spectroscopy, is a powerful tool for understanding the supramolecular structures associated with polymers grafted to surfaces, especially in regimes of low polymer density where different morphological structures are expected. In this study, we utilize force volume mapping to characterize the nanoscale surfaces of Ag nanocubes (AgNCs) grafted with a monolayer of polyethylene glycol (PEG) chains. Spatially resolved force-distance curves taken for a single AgNC were used to map surface properties, such as adhesion energy and deformation. We confirm the presence of surface octopus micelles that are localized on the corners of the AgNC, using force curves to resolve structural differences between the micelle "bodies" and "legs". Furthermore, we observe unique features of this system including a polymer corona stemming from AgNC-substrate interactions and polymer bridging stemming from particle-particle interactions.
Collapse
Affiliation(s)
- Wade Shipley
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92023, United States
| | - Yufei Wang
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92023, United States
| | - Joelle Chien
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, California 92023-0448, United States
| | - Bin Wang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, California 92023-0448, United States
| | - Andrea R Tao
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, California 92023-0448, United States
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92023, United States
| |
Collapse
|
8
|
Trinh HD, Kim S, Yun S, Huynh LTM, Yoon S. Combinatorial Approach to Find Nanoparticle Assemblies with Maximum Surface-Enhanced Raman Scattering. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1805-1814. [PMID: 38001021 DOI: 10.1021/acsami.3c14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Plasmonic nanoparticles exhibit unique properties that distinguish them from other nanomaterials, including vibrant visible colors, the generation of local electric fields, the production of hot charge carriers, and localized heat emission. These properties are particularly enhanced in the narrow nanogaps formed between nanostructures. Therefore, creating nanogaps in a controlled fashion is the key to achieving a fundamental understanding of plasmonic phenomena originating from the nanogaps and developing advanced nanomaterials with enhanced performance for diverse applications. One of the most effective approaches to creating nanogaps is to assemble individual nanoparticles into a clustered structure. In this study, we present a fast, facile, and highly efficient method for preparing core@satellite (CS) nanoassembly structures using gold nanoparticles of various shapes and sizes, including nanospheres, nanocubes (AuNCs), nanorods, and nanotriangular prisms. The sequential assembly of these building blocks on glass substrates allows us to obtain CS nanostructures with a 100% yield within 4 h. Using 9 different building blocks, we successfully produce 16 distinct CS nanoassemblies and systematically investigate the combinations to search for the highest Raman enhancement. We find that the surface-enhanced Raman scattering (SERS) intensity of AuNC@AuNC CS nanoassemblies is 2 orders of magnitude larger than that of other CS nanoassemblies. Theoretical analyses reveal that the intensity and distribution of the electric field induced in the nanogaps by plasmon excitation, as well as the number of molecules in the interfacial region, collectively contribute to the unprecedentedly large SERS enhancement observed for AuNC@AuNC. This study not only presents a novel assembly method that can be extended to produce many other nanoassemblies but also identifies a highly promising SERS material for sensing and diagnostics through a systematic search process.
Collapse
Affiliation(s)
- Hoa Duc Trinh
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
| | - Seokheon Kim
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
| | - Seokhyun Yun
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
| | - Ly Thi Minh Huynh
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
| | - Sangwoon Yoon
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
| |
Collapse
|
9
|
Zheng Z, Rocco D, Ren H, Sergaeva O, Zhang Y, Whaley KB, Ying C, de Ceglia D, De-Angelis C, Rahmani M, Xu L. Advances in nonlinear metasurfaces for imaging, quantum, and sensing applications. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:4255-4281. [PMID: 39634716 PMCID: PMC11501303 DOI: 10.1515/nanoph-2023-0526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2024]
Abstract
Metasurfaces, composed of artificial meta-atoms of subwavelength size, can support strong light-matter interaction based on multipolar resonances and plasmonics, hence offering the great capability of empowering nonlinear generation. Recently, owing to their ability to manipulate the amplitude and phase of the nonlinear emission in the subwavelength scale, metasurfaces have been recognized as ultra-compact, flat optical components for a vast range of applications, including nonlinear imaging, quantum light sources, and ultrasensitive sensing. This review focuses on the recent progress on nonlinear metasurfaces for those applications. The principles and advances of metasurfaces-based techniques for image generation, including image encoding, holography, and metalens, are investigated and presented. Additionally, the overview and development of spontaneous photon pair generation from metasurfaces are demonstrated and discussed, focusing on the aspects of photon pair generation rate and entanglement of photon pairs. The recent blossoming of the nonlinear metasurfaces field has triggered growing interest to explore its ability to efficiently up-convert infrared images of arbitrary objects to visible images and achieve spontaneous parametric down-conversion. This recently emerged direction holds promising potential for the next-generation technology in night-vision, quantum computing, and biosensing fields.
Collapse
Affiliation(s)
- Ze Zheng
- Department of Engineering, Advanced Optics and Photonics Laboratory, School of Science Technology, Nottingham Trent University, Nottingham, UK
| | - Davide Rocco
- Department of Information Engineering, University of Brescia, Brescia, Italy
| | - Hang Ren
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Olga Sergaeva
- Department of Information Engineering, University of Brescia, Brescia, Italy
| | - Yipei Zhang
- Department of Chemistry, University of California, Berkeley, CA, USA
| | | | - Cuifeng Ying
- Department of Engineering, Advanced Optics and Photonics Laboratory, School of Science Technology, Nottingham Trent University, Nottingham, UK
| | - Domenico de Ceglia
- Department of Information Engineering, University of Brescia, Brescia, Italy
| | | | - Mohsen Rahmani
- Department of Engineering, Advanced Optics and Photonics Laboratory, School of Science Technology, Nottingham Trent University, Nottingham, UK
| | - Lei Xu
- Department of Engineering, Advanced Optics and Photonics Laboratory, School of Science Technology, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
10
|
Bdour Y, Beaton G, Gomez-Cruz J, Cabezuelo O, Stamplecoskie K, Escobedo C. Hybrid plasmonic metasurface as enhanced Raman hot-spots for pesticide detection at ultralow concentrations. Chem Commun (Camb) 2023. [PMID: 37338175 DOI: 10.1039/d3cc01015e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
A surface-enhanced Raman scattering (SERS) active metasurface composed of metallic nanohole arrays and metallic nanoparticles is developed. The metasurface can operate in aqueous environments, achieves an enhancement factor of 1.83 × 109 for Rhodamine 6G, and enables the detection of malachite green at a concentation of 0.46 ppb.
Collapse
Affiliation(s)
- Yazan Bdour
- Department of Chemical Engineering, Queen's University, 19 Division St, Kingston, ON K7L 3N6, Canada.
| | - Graham Beaton
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, K7L 3N6, Canada
| | - Juan Gomez-Cruz
- Department of Chemical Engineering, Queen's University, 19 Division St, Kingston, ON K7L 3N6, Canada.
| | - Oscar Cabezuelo
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, K7L 3N6, Canada
| | - Kevin Stamplecoskie
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, K7L 3N6, Canada
| | - Carlos Escobedo
- Department of Chemical Engineering, Queen's University, 19 Division St, Kingston, ON K7L 3N6, Canada.
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
11
|
Bao X, Wu X, Ke Y, Wu K, Jiang C, Wu B, Li J, Yue S, Zhang S, Shi J, Du W, Zhong Y, Hu H, Bai P, Gong Y, Zhang Q, Zhang W, Liu X. Giant Out-of-Plane Exciton Emission Enhancement in Two-Dimensional Indium Selenide via a Plasmonic Nanocavity. NANO LETTERS 2023; 23:3716-3723. [PMID: 37125916 DOI: 10.1021/acs.nanolett.2c04902] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Out-of-plane (OP) exciton-based emitters in two-dimensional semiconductor materials are attractive candidates for novel photonic applications, such as radially polarized sources, integrated photonic chips, and quantum communications. However, their low quantum efficiency resulting from forbidden transitions limits their practicality. In this work, we achieve a giant enhancement of up to 34000 for OP exciton emission in indium selenide (InSe) via a designed Ag nanocube-over-Au film plasmonic nanocavity. The large photoluminescence enhancement factor (PLEF) is attributed to the induced OP local electric field (Ez) within the nanocavity, which facilitates effective OP exciton-plasmon interaction and subsequent tremendous enhancement. Moreover, the nanoantenna effect resulting from the effective interaction improves the directivity of spontaneous radiation. Our results not only reveal an effective photoluminescence enhancement approach for OP excitons but also present an avenue for designing on-chip photonic devices with an OP dipole orientation.
Collapse
Affiliation(s)
- Xiaotian Bao
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, People's Republic of China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Xianxin Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuxuan Ke
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Keming Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Chuanxiu Jiang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Bo Wu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Jing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Shuai Yue
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shuai Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jianwei Shi
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wenna Du
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yangguang Zhong
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Huatian Hu
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Peng Bai
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Yiyang Gong
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Qing Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
12
|
Wang Y, Li H, Chu J, Xia Y, Ye S, Yang F, Cao W, Ge JY, Xu Y, Zhu M, Pan H, Nie Z. Site-Selective Assembly of Centimeter-Scale Arrays of Precisely Oriented Magnetic Nanoellipsoids. ACS NANO 2022; 16:21208-21215. [PMID: 36453842 DOI: 10.1021/acsnano.2c09187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The precise organization and orientation of anisotropic nanoparticles (NPs) on substrates over a large area is key to the application of NP assemblies in functional optical, electronic, and magnetic devices, but achieving such high-precision NP assembly still remains challenging. Here, we demonstrate the site-selective assembly of magnetic nanoellipsoids into large-area precisely positioned, orientationally controlled arrays via a combination of chemical patterning and magnetic manipulation. Magnetic ellipsoidal NPs are selectively positioned on predetermined chemical patterns with high fidelity through electrostatic interactions and aligned uniformly in line with an applied magnetic field. The position, orientation, and interparticle spacing of the ellipsoids can be precisely tuned by controlling the chemical patterns and magnetic field. This approach is simple to implement and can generate centimeter-scale arrays in high yield (up to 99%). The arrays exhibit collective magnetic responses that are dependent on the orientation of the ellipsoids. This work offers a tool for the fabrication of precisely engineered arrays of anisotropic NPs for applications such as metasurface and artificial spin ice.
Collapse
Affiliation(s)
- Yazi Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, P.R. China
| | - Hongyan Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, P.R. China
| | - Jiao Chu
- State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education) and Department of Physics, Fudan University, Shanghai200438, P.R. China
| | - Yifan Xia
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, P.R. China
| | - Shunsheng Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, P.R. China
| | - Fan Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, P.R. China
| | - Wei Cao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, P.R. China
| | - Jun-Yi Ge
- Materials Genome Institute, Shanghai University, Shanghai200444, P.R. China
| | - Yifei Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, P.R. China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, P.R. China
| | - Hongyu Pan
- College of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an710054, P. R. China
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, P.R. China
- Yiwu Research Institute of Fudan University, Yiwu City, 322000, P.R. China
| |
Collapse
|
13
|
Yang J, Petrescu FIT, Li Y, Song D, Shi G. A Novel Bio-Inspired Ag/3D-TiO 2/Si SERS Substrate with Ordered Moth-like Structure. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3127. [PMID: 36144914 PMCID: PMC9501013 DOI: 10.3390/nano12183127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
This paper reports a novel method to fabricate a bio-inspired SERS substrate with low reflectivity, ultra-sensitivity, excellent uniformity, and recyclability. First, double layers of polystyrene spheres with different particle sizes were assembled on the surface of a silicon wafer to act as a moth-like template. Second, through the template sacrifice method, the TiO2 film with a three-dimensional moth-like eye structure was induced by the double-layer polystyrene spheres in the previous step, and its microscopic morphology showed a high degree of order. Finally, Ag nanoparticles were assembled on the TiO2 film to form a bio-inspired SERS substrate. This ordered bio-inspired structure can not only reduce reflection, but also reinforce the uniformity of hotspot density, which helps to improve the sensitivity and uniformity of the Raman signal. This bio-inspired SERS substrate can detect R6G molecules at a concentration as low as 1.0 × 10-10 mol/L, and its enhancement factor (EF) can reach 6.56 × 106. In addition, the composite of Ag and TiO2 can realize the photocatalytic degradation of R6G and then realize the recyclability of the SERS substrate.
Collapse
Affiliation(s)
- Jingguo Yang
- Key Laboratory of Synthetic and Biotechnology Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | | | - Ying Li
- Key Laboratory of Synthetic and Biotechnology Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Dandan Song
- Key Laboratory of Synthetic and Biotechnology Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Gang Shi
- Key Laboratory of Synthetic and Biotechnology Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|