1
|
Li M, Huang Y, Luo Q, Ji Y. Nitrogen-doped graphene supported single-atom catalysts for efficient electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid: a density functional theory study. Phys Chem Chem Phys 2025; 27:3206-3216. [PMID: 39840406 DOI: 10.1039/d4cp04568h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) is a promising alternative for oxygen evolution reactions. The search for efficient catalysts has been attracting increasing scientific attention. This work explores the performance of nitrogen-doped graphene-supported single-atom catalysts (M-NC SACs) for the reaction. Hydroxide was found to compete with HMF for the adsorption site on early transition metal SACs. Electronic structure analysis showed that only the electron density of the functional group directly bonded to the metal site is significantly perturbed upon adsorption. Two reaction free energies were identified as descriptors for constructing the activity volcano. Scaling relation analysis elucidated the general mechanism of the reaction including the trend for the activation of the aldehyde and alcohol groups of HMF, the potential-limiting steps, and the preferred reaction pathways. In general, the reaction is limited by an aldehyde/alcohol oxidation step in the scenarios of weak/strong adsorption regardless of the reaction pathways. Nine promising candidate catalysts were proposed, including Mn, Sc, Co, Cd, Ru, Y, Cr, Fe, and Zn SACs with limiting potentials not exceeding 0.51 V. This work provides valuable insights into the electrocatalytic oxidation mechanism of HMF to FDCA on M-NC SACs and proposes candidate catalysts to guide future research.
Collapse
Affiliation(s)
- Mingrong Li
- Center for Computational Quantum Chemistry Department, School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Yungan Huang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Qiong Luo
- Center for Computational Quantum Chemistry Department, School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Yongfei Ji
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| |
Collapse
|
2
|
Wang B, Pu S, Ma B, Zou X, Xiong Q, Hou X, Xu K. Selenium Hydride-Induced Oxidase-like Activity Inhibition of Amorphous/Crystalline Manganese Dioxide: Colorimetric Assay for Selenium Detection. Anal Chem 2024; 96:18718-18726. [PMID: 39531382 DOI: 10.1021/acs.analchem.4c03738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Hydride generation-based optical sensors have achieved on-site visual selenium (Se) determination with high anti-interference capability, yet they rely on the change of single-color intensity with a narrow linear dynamic range. Herein, we combined selenium hydride (H2Se)-induced activity inhibition of a manganese dioxide (MnO2) nanozyme with different degrees of 3,3',5,5'-tetramethylbenzidine (TMB) oxidation to realize sensitive multicolor visual detection of Se(IV). Due to its high oxidase-like (OXD-like) activity and sensitive response to H2Se, amorphous/crystalline manganese dioxide (ac-MnO2) was selected to form the headspace single droplet for microextraction and recognition. Via headspace redox reaction with H2Se, ac-MnO2 was reduced into low valence accompanied by in situ generation of Se nanoparticles, leading to the formation of a Se-MnOx aggregate. The experimental results and theoretical calculation indicated that, compared with MnO2, Se-MnOx had decreased active sites for adsorbing O2 to generate •O2-, resulting in the nanozyme activity inhibition that was totally dependent on Se(IV) concentration. The implementation of this strategy enabled accurate Se(IV) detection with a linear range from 10 to 600 μg L-1 and a limit of detection of 1.8 μg L-1. The portable smartphone-based detection for real sample analysis further demonstrated that this assay can be an easy, convenient, and intelligent tool for on-site selenium determination.
Collapse
Affiliation(s)
- Bodong Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Shan Pu
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Bingxin Ma
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xingyan Zou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Qing Xiong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiandeng Hou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Kailai Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
3
|
Qin H, Guo M, Zhou C, Li J, Jing X, Wan Y, Song W, Yu H, Peng G, Yao Z, Liu J, Hu K. Enhancing singlet oxygen production of dioxygen activation on the carbon-supported rare-earth oxide nanocluster and rare-earth single atom catalyst to remove antibiotics. WATER RESEARCH 2024; 252:121184. [PMID: 38377699 DOI: 10.1016/j.watres.2024.121184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/22/2024]
Abstract
Singlet oxygen (1O2) is extensively employed in the fields of chemical, biomedical and environmental. However, it is still a challenge to produce high- concentration 1O2 by dioxygen activation. Herein, a system of carbon-supported rare-earth oxide nanocluster and single atom catalysts (named as RE2O3/RE-C, RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc and Y) with similar morphology, structure, and physicochemical characteristic are constructed to activate dissolved oxygen (DO) to enhance 1O2 production. The catalytic activity trends and mechanisms are revealed experimentally and are also proven by theoretical analyses and calculations. The 1O2 generation activity trend is Gd2O3/Gd-C>Er2O3/Er-C>Sm2O3/Sm-C>pristine carbon (C). More than 95.0% of common antibiotics (ciprofloxacin, ofloxacin, norfloxacin and carbamazepine) can be removed in 60 min by Gd2O3/Gd-C. Density functional theory calculations indicate that Gd2O3 nanoclusters and Gd single atoms exhibit the moderate adsorption energy of ·O2- to enhance 1O2 production. This study offers a universal strategy to enhance 1O2 production in dioxygen activation for future application and reveals the natural essence of basic mechanisms of 1O2 production via rare-earth oxide nanoclusters and rare-earth single atoms.
Collapse
Affiliation(s)
- Haonan Qin
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; Key Laboratory of Rare Earth, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Meina Guo
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; Key Laboratory of Rare Earth, Chinese Academy of Sciences, Ganzhou 341000, China; Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341000, China
| | - Chenliang Zhou
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; Key Laboratory of Rare Earth, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Jiarong Li
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; Key Laboratory of Rare Earth, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Xuequan Jing
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; Key Laboratory of Rare Earth, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Yinhua Wan
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; Key Laboratory of Rare Earth, Chinese Academy of Sciences, Ganzhou 341000, China; Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341000, China; Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Weijie Song
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; Key Laboratory of Rare Earth, Chinese Academy of Sciences, Ganzhou 341000, China; Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341000, China; Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongdong Yu
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; Key Laboratory of Rare Earth, Chinese Academy of Sciences, Ganzhou 341000, China; Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341000, China
| | - Guan Peng
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; Key Laboratory of Rare Earth, Chinese Academy of Sciences, Ganzhou 341000, China; Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341000, China
| | - Zhangwei Yao
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; Key Laboratory of Rare Earth, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Jiaming Liu
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; Key Laboratory of Rare Earth, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Kang Hu
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; Key Laboratory of Rare Earth, Chinese Academy of Sciences, Ganzhou 341000, China; Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341000, China.
| |
Collapse
|
4
|
Zhao X, Fang R, Wang F, Li Y. Integrating Dual-Single-Atom Moieties with N, S Co-Coordination Configurations for Oxidative Cascaded Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304053. [PMID: 37357174 DOI: 10.1002/smll.202304053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/08/2023] [Indexed: 06/27/2023]
Abstract
Oxidation reaction is of critical importance in chemical industry, in which the primary O2 activation step still calls for high-performance catalysts. Here, a newly developed precise locating carbonization strategy for the fabrication of 21 kinds of dual-metal single-atom catalysts with N, S co-coordinated configurations is reported. As is exemplified by CoN3 S1 /CuN4 @NC, systematical characterizations and in situ observations imply the atomic CoN3 S1 and CuN4 sites immobilized on N-doped carbon, over which the remarkable electron redistribution originating from their unsymmetrical coordination configurations. Impressively, the obtained CoN3 S1 /CuN4 @NC exhibits unprecedented capability in O2 activation and enables a spontaneous process through its dynamic configuration, significantly outperforming the CoN4 /CuN4 @NC and CoN3 S1 @NC counterparts. Hence, the CoN3 S1 /CuN4 @NC shows attractive performance in domino synthesis of natural flavone and 19 kinds of derivatives from benzyl alcohol, 2'-hydroxyacetophenone, and corresponding substituted substrates via aerobic oxidative coupling-dehydrogenation. Detailed reaction mechanisms and molecule behaviors over CoN3 S1 /CuN4 @NC are also investigated through in situ experiments and simulations.
Collapse
Affiliation(s)
- Xin Zhao
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Ruiqi Fang
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Fengliang Wang
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yingwei Li
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- South China University of Technology-Zhuhai Institute of Modern Industrial Innovation, Zhuhai, 519175, China
| |
Collapse
|
5
|
Yang W, Yu H, Wang B, Wang X, Zhang H, Lei D, Lou LL, Yu K, Liu S. Leveraging Pt/Ce 1-xLa xO 2-δ To Elucidate Interfacial Oxygen Vacancy Active Sites for Aerobic Oxidation of 5-Hydroxymethylfurfural. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37667-37680. [PMID: 35968674 DOI: 10.1021/acsami.2c07065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The interfacial oxygen-defective sites of oxide-supported metal catalysts are generally regarded as active centers in diverse redox reactions. Identification of their structure-property relationship at the atomic scale is of great importance but challenging. Herein, a series of La3+-doped three-dimensionally ordered macroporous CeO2 (3D-Ce1-xLaxO2-δ) were synthesized and applied as supports for Pt nanoparticles. The pieces of evidence from a suite of in-situ/ex-situ characterizations and theoretical calculations revealed that the La3+-mono-substituted La-□(-Ce)2 sites (where □ represents an oxygen vacancy) exhibited superior charge transfer ability, behaving as trapping centers for Pt nanoparticles. The resulting interfacial Ptδ+/La-□(-Ce)2 sites served as the reversible active species in the aerobic oxidation of 5-hydroxymethylfurfural to boost catalytic performance by simultaneously promoting oxygen activated capacity and the cleavage of O-H/C-H bonds of adsorbed hydroxymethyl groups. Consequently, the Pt/3D-Ce0.9La0.1O2-δ catalyst possessing the highest number of Ptδ+/La-□(-Ce)2 sites showed the best catalytic performance with 99.6% yield to 2,5-furandicarboxylic acid in 10 h. These results offer more insights into the promoting mechanism of interfacial oxygen-defective sites for the liquid-phase aerobic oxidation of aldehydes and alcohols.
Collapse
Affiliation(s)
- Weiping Yang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Transmedia Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Haochen Yu
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, National Institute of Advanced Materials, Nankai University, Tianjin 300350, China
| | - Beibei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Transmedia Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuemin Wang
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, National Institute of Advanced Materials, Nankai University, Tianjin 300350, China
| | - Hao Zhang
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, National Institute of Advanced Materials, Nankai University, Tianjin 300350, China
| | - Da Lei
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, National Institute of Advanced Materials, Nankai University, Tianjin 300350, China
| | - Lan-Lan Lou
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, National Institute of Advanced Materials, Nankai University, Tianjin 300350, China
| | - Kai Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Transmedia Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shuangxi Liu
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, National Institute of Advanced Materials, Nankai University, Tianjin 300350, China
| |
Collapse
|