1
|
Ren Y, Liu Y, Deng S, Cao J, Liu F, Yao M. Phase Engineering of Zirconia Support Promotes the Catalytic Dehydrogenation of Formic Acid by Pd Active Sites. Inorg Chem 2024; 63:24623-24633. [PMID: 39671269 DOI: 10.1021/acs.inorgchem.4c03815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2024]
Abstract
The development of Pd-based catalysts with outstanding activity and stability can further promote the hydrogen storage application of formic acid (FA). Regulating the support structure is an effective strategy for enhancing active sites in heterogeneous catalytic systems. This study prepared three types of nanosized ZrO2 through phase engineering to support Pd metal and investigated the implications of support structure on the microenvironment of active sites, thus revealing the structure-activity relationship of the catalysts. The hollow nanoframes like Pd/ZrO2-F with a moderate t-ZrO2 content exhibit remarkable stability and catalytic performance with a TOF of 1348 h-1 at an ambient temperature. Density functional theory (DFT) calculations verify that the crystal phase of ZrO2 can dramatically affect the metal-support interaction and change the Pd electronic state. Moreover, the dehydrogenation energy profiles reveal the synergy effect between ZrO2 phases on Pd active sites in the reaction. Pd/m-ZrO2 is more conducive to the dissociation of FA, and Pd/t-ZrO2 has energy advantages in hydrogen recombination. This work provides a new perspective for understanding the synergistic effect of the zirconia crystal phase on formic acid dehydrogenation by Pd active sites.
Collapse
Affiliation(s)
- Yuan Ren
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, China
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang, Guizhou 550025, China
| | - Yuantong Liu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, China
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang, Guizhou 550025, China
| | - Shiqiang Deng
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, China
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang, Guizhou 550025, China
| | - Jianxin Cao
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, China
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang, Guizhou 550025, China
| | - Fei Liu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, China
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang, Guizhou 550025, China
| | - Mengqin Yao
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, China
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang, Guizhou 550025, China
| |
Collapse
|
2
|
Wang J, Guo J, Zhou Q, Hu S, Zhang X. Improving the Performance of Pd for Formic Acid Dehydrogenation by Introducing Barium Titanate. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18713-18721. [PMID: 38568896 DOI: 10.1021/acsami.3c17345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Formic acid, a safe and widely available organic compound, produces hydrogen under mild conditions, with the existence of Pd-based catalysts. Efficiently generating hydrogen via formic acid decomposition (FAD) is restricted by the cleavage of the C-H bond in adsorbed HCOO* and strong adsorption of hydrogen on the Pd surface. Herein, tetragonal-phase barium titanate (TBT) was in situ grown on reduced graphene oxide (rGO) to support Pd (Pd/TBT/rGO) for FAD. The internal electric field exists around TBT owing to its spontaneous polarization capacity. The physical characterizations illustrate that the introduction of barium titanate affects the catalytic performance of the catalyst by decreasing the particle size of Pd nanoparticles (NPs) and forming electron-rich Pd. The as-synthesized Pd/TBT/rGO exhibited excellent catalytic activity and hydrogen selectivity for FAD with a high initial turnover frequency up to 3019.72 h-1 at 333 K. The reason for this enhancement is not only the small-size Pd NPs but also the internal electric field from TBT, which promotes the desorption of adsorbed hydrogen on the Pd surface. Additionally, the electron-rich Pd is favorable to the cleavage of the C-H bond in HCOO*. This work will improve the understanding of the characterization of barium titanate and provide a new design strategy for the FAD catalyst.
Collapse
Affiliation(s)
- Junyu Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiangnan Guo
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qinggang Zhou
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuozhen Hu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinsheng Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Zhu Q, Yin X, Tan Y, Wei D, Li Y, Pei X. Highly dispersed palladium nano-catalyst anchored on N-doped nanoporous carbon microspheres derived from chitosan for efficient and stable hydrogenation of quinoline. Int J Biol Macromol 2024; 254:127949. [PMID: 37951427 DOI: 10.1016/j.ijbiomac.2023.127949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
Under the background of green chemistry, the synthesis of N-heterocycles using efficient, stable and long-life catalysts has still faced great challenges. Herein, we used biomass resource chitosan to fabricate a nanoporous chitosan carbon microsphere (CCM), and successfully designed a stable and efficient Pd nano-catalyst (CCM/Pd). Various physicochemical characterizations provided convincible evidences that the palladium nanoparticles (NPs) were tightly and evenly dispersed on the CCM with a mean diameter of 2.28 nm based on the nanoporous structure and abundant functional N/O groups in CCM. Importantly, the graphitized constructure, the formed defects and larger surface area in CCM were able to promote the immobilization of Pd NPs and the electron transfer between Pd and CCM, thereby significantly improving the catalytic activity. The CCM/Pd catalyst was applied for hydrogenation of quinoline compounds, which showed excellent catalytic activity and durability, as well as good substrate applicability. The application of renewable biomass-based catalysts contributes to the progression of a green/sustainable society.
Collapse
Affiliation(s)
- Qiudi Zhu
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China
| | - Xiaogang Yin
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China.
| | - Youjuan Tan
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China
| | - Duoduo Wei
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China
| | - Yan Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xianglin Pei
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China; Guizhou Key Laboratory of Inorganic Nonmetallic Functional Materials, Lightweight Materials Engineering Research Center of the Education Department of Guizhou, Guizhou Normal University, Guiyang 550025, China.
| |
Collapse
|
4
|
Zhang Q, Wang Y, Jin X, Liu X. Selective and controlled H 2 generation upon additive-free HCOOH dehydrogenation over a Pd/NCS nanocatalyst. NANOSCALE 2023; 15:15975-15981. [PMID: 37782093 DOI: 10.1039/d3nr03797e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Although sodium formate is widely used as a conventional additive to enhance selective H2 evolution from HCOOH dehydrogenation, this leads to a waste of resources and an increase in the cost of H2 production. For this reason, N-doped carbon nanospheres with abundant graphitic C/N have been designed to enrich the electron cloud density of the Pd atom for improving its catalytic activity in H2 generation upon additive-free HCOOH dehydrogenation. Herein, we have synthesized N-doped carbon nanosphere-stabilized Pd nanoparticles (Pd/NCSs) as high-efficiency nano-catalysts, via fixation of Pd nanoparticles onto N-doped carbon nanospheres (NCSs), for selective and controlled H2 generation upon additive-free HCOOH dehydrogenation. Pd/NCS-800 (1640 h-1) provided a 12 times larger TOF than commercial Pd/C (134 h-1) in H2 generation upon additive-free HCOOH dehydrogenation. It seemed that graphitic N/C of NCS-800 enriched the electron cloud density of the Pd atom, which was favorable for the cleavage of C-H bonds in HCOOH dehydrogenation. In addition, the selective H2 evolution from additive-free HCOOH dehydrogenation over Pd/NCS-800 is successfully controlled by adjusting the pH.
Collapse
Affiliation(s)
- Qing Zhang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China.
| | - Yanlan Wang
- Department of chemistry and chemical engineering, Liaocheng University, 252059 Liaocheng, China
| | - Xiaotao Jin
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China.
| | - Xiang Liu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China.
| |
Collapse
|
5
|
Zhang J, Cao J, Zhou J, Zhang J, Zhao Y, Zhang Z, Liu R. Direct Synthesis of Esters from Alkylarenes and Carboxylic Acids: The C-H Bond Dehydroesterification. J Org Chem 2023. [PMID: 37276511 DOI: 10.1021/acs.joc.3c00752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Herein, a reaction in which the benzyl C-H bonds of alkylarenes are directly esterified by carboxylic acids to produce benzyl esters in high yields is reported. This reaction is catalyzed by Pd nanoparticles (NPs) on N-doped carbon (CN) composites based on a carbonizing Al-MIL-101(NH2) material, and no oxidants or hydrogen acceptors are required. Use of o-alkylbenzoic acids as substrates leads to phthalides, whereas with carboxylic acids and alkylarenes as the feedstock, the reaction produces the benzyl esters. These reactions that use readily available alkylarenes instead of benzyl halides or benzyl alcohols as raw materials for one-step synthesis of benzyl esters without oxidants are inherently atom- and step-efficient. The CN composites and the CN-supported Pd NP catalysts were prepared and are well characterized. The proposed mechanism involves dehydrogenation of both the carboxylic groups and the benzylic groups and the transformation of benzylic C-H bond into the C-O bond via hydrogen abstraction from the benzylic group through an organopalladium intermediate. The kinetic isotope effect (kH/kD = 2.77) indicated that C(sp3)-H bond cleavage of the alkane aromatics is the rate-determining step.
Collapse
Affiliation(s)
- Jin Zhang
- School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Jianghan Cao
- School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Jiabin Zhou
- School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Jie Zhang
- School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Yinglin Zhao
- School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Zhida Zhang
- School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Renhua Liu
- School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
- Engineering Research Center of Pharmaceutical Process Chemistry, Meilong Road 130, Shanghai 200237, China
| |
Collapse
|
6
|
Plasma synthesis of graphite oxide supported PdNi catalysts with enhanced catalytic activity and stability for 4-nitrophenol reduction. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
7
|
ZIF-8 derived N-doped porous carbon confined ultrafine PdNi bimetallic nanoparticles for semi-hydrogenation of alkynes. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|