1
|
Wang L, Li J, Zong M, Liu Y, Zhu J, Wu L, Che R. Stretchable, Adhesive, Self-healing, High-efficiency Microwave Absorption by a Gel-Like Single-Component Poly(ionic liquid). SMALL METHODS 2025:e2500335. [PMID: 40364658 DOI: 10.1002/smtd.202500335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/27/2025] [Indexed: 05/15/2025]
Abstract
Fabrication of gel-based microwave absorbers is an effective strategy for overcoming the shortcomings of conventional powder-like absorbers, such as complicated processes and undesirable properties. However, the present gel-based microwave absorbers generally consist of a polymer skeleton and a liquid dispersion medium and suffer from leakage of the dispersion medium. In this study, a novel gel-like poly(ionic liquid) (PIL) microwave absorber with excellent properties is prepared. A maximum reflection loss (RLmax) of -58.8 dB GHz and an effective absorption bandwidth (EAB) of 10.56 GHz are achieved, which is mainly ascribed to high ionic conduction loss derived from lower glass transition temperature (Tg). Furthermore, the prepared PILs consisted of cationic imidazole-containing alkoxy moieties as the polymer chain and bis(trifluoromethanesulfonyl) imide (TFSI-) as the counter ion in the absence of a dispersion medium. The PILs displayed stretchability and adhesive and self-healing abilities, thus providing a new candidate for developing high-efficiency microwave absorbers for practical applications.
Collapse
Affiliation(s)
- Lei Wang
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Jingrui Li
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Meng Zong
- The MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, Ministry of Education, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Yi Liu
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Jianfeng Zhu
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Limin Wu
- Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Advanced Coatings Research Center of Ministry of Education of China, Sate Key Laboratory of Coatings for Advanced Equipment, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
2
|
Zhou Y, Yu C, Zhang X, Zheng Y, Wang B, Bao Y, Shan G, Wang H, Pan P. Ultrasensitive Ionic Conductors with Tunable Resistance Switching Temperature Enabled by Phase Transformation of Polymer Cocrystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309568. [PMID: 38227221 DOI: 10.1002/adma.202309568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/04/2024] [Indexed: 01/17/2024]
Abstract
Phase-transformable ionic conductors (PTICs) show significant prospects for functional applications due to their reversible resistance switching property. However, the representative design principle of PTICs is utilizing the melt-crystallization transition of ionic liquids, and the resistance switching temperatures of such PTICs cannot be tuned as desired. Herein, a new strategy is proposed to design PTICs with on-demand resistance switching temperatures by using the melt-crystallization transition of polymer cocrystal phase, whose melting temperature shows a linear relationship with the polymer compositions. Owing to the melt of polymer cocrystal domains and the tunable migration of ions in the resistance switching region, the obtained PTICs display ultrahigh temperature sensitivity with a superior temperature coefficient of resistance of -8.50% °C-1 around human body temperature, as compared to various ionic conductors previously reported. Therefore, the PTICs can detect tiny temperature variation, allowing for the intelligent applications for overheating warning and heat dissipation. It is believed that this work may inspire future researches on the development of advanced soft electrical devices.
Collapse
Affiliation(s)
- Yichen Zhou
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Chengtao Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, 324000, China
| | - Xing Zhang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Ying Zheng
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, 324000, China
| | - Bao Wang
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, 324000, China
| | - Yongzhong Bao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, 324000, China
| | - Guorong Shan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, 324000, China
| | - Hangxiang Wang
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, China
| | - Pengju Pan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, 324000, China
| |
Collapse
|
3
|
Zhao Z, Cao Z, Wu Z, Du W, Meng X, Chen H, Wu Y, Jiang L, Liu M. Bicontinuous vitrimer heterogels with wide-span switchable stiffness-gated iontronic coordination. SCIENCE ADVANCES 2024; 10:eadl2737. [PMID: 38457508 PMCID: PMC10923496 DOI: 10.1126/sciadv.adl2737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/02/2024] [Indexed: 03/10/2024]
Abstract
Currently, it remains challenging to balance intrinsic stiffness with programmability in most vitrimers. Simultaneously, coordinating materials with gel-like iontronic properties for intrinsic ion transmission while maintaining vitrimer programmable features remains underexplored. Here, we introduce a phase-engineering strategy to fabricate bicontinuous vitrimer heterogel (VHG) materials. Such VHGs exhibited high mechanical strength, with an elastic modulus of up to 116 MPa, a high strain performance exceeding 1000%, and a switchable stiffness ratio surpassing 5 × 103. Moreover, highly programmable reprocessing and shape memory morphing were realized owing to the ion liquid-enhanced VHG network reconfiguration. Derived from the ion transmission pathway in the ILgel, which responded to the wide-span switchable mechanics, the VHG iontronics had a unique bidirectional stiffness-gated piezoresistivity, coordinating both positive and negative piezoresistive properties. Our findings indicate that the VHG system can act as a foundational material in various promising applications, including smart sensors, soft machines, and bioelectronics.
Collapse
Affiliation(s)
- Ziguang Zhao
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Ziquan Cao
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhixin Wu
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Wenxin Du
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Xue Meng
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Huawei Chen
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Yuchen Wu
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Lei Jiang
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Mingjie Liu
- Key Laboratory of Bio-Inspired Smart Interfacial, Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P.R. China
| |
Collapse
|
4
|
Suen JW, Elumalai NK, Debnath S, Mubarak NM, Lim CI, Reddy Moola M, Tan YS, Khalid M. Investigating the Correlation between Electrolyte Concentration and Electrochemical Properties of Ionogels. Molecules 2023; 28:5192. [PMID: 37446854 DOI: 10.3390/molecules28135192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Ionogels are hybrid materials comprising an ionic liquid confined within a polymer matrix. They have garnered significant interest due to their unique properties, such as high ionic conductivity, mechanical stability, and wide electrochemical stability. These properties make ionogels suitable for various applications, including energy storage devices, sensors, and solar cells. However, optimizing the electrochemical performance of ionogels remains a challenge, as the relationship between specific capacitance, ionic conductivity, and electrolyte solution concentration is yet to be fully understood. In this study, we investigate the impact of electrolyte solution concentration on the electrochemical properties of ionogels to identify the correlation for enhanced performance. Our findings demonstrate a clear relationship between the specific capacitance and ionic conductivity of ionogels, which depends on the availability of mobile ions. The reduced number of ions at low electrolyte solution concentrations leads to decreased ionic conductivity and specific capacitance due to the scarcity of a double layer, constraining charge storage capacity. However, at a 31 vol% electrolyte solution concentration, an ample quantity of ions becomes accessible, resulting in increased ionic conductivity and specific capacitance, reaching maximum values of 58 ± 1.48 μS/cm and 45.74 F/g, respectively. Furthermore, the synthesized ionogel demonstrates a wide electrochemical stability of 3.5 V, enabling diverse practical applications. This study provides valuable insights into determining the optimal electrolyte solution concentration for enhancing ionogel electrochemical performance for energy applications. It highlights the impact of ion pairs and aggregates on ion mobility within ionogels, subsequently affecting their resultant electrochemical properties.
Collapse
Affiliation(s)
- Ji Wei Suen
- Department of Mechanical Engineering, Faculty of Engineering and Science, Curtin University, Miri 98009, Malaysia
| | - Naveen Kumar Elumalai
- Energy and Resources Institute, Faculty of Science and Technology, Charles Darwin University, Darwin, NT 0909, Australia
| | - Sujan Debnath
- Department of Mechanical Engineering, Faculty of Engineering and Science, Curtin University, Miri 98009, Malaysia
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei
| | - Chye Ing Lim
- Department of Mechanical Engineering, Faculty of Engineering and Science, Curtin University, Miri 98009, Malaysia
| | - Mohan Reddy Moola
- Department of Mechanical Engineering, Faculty of Engineering and Science, Curtin University, Miri 98009, Malaysia
| | - Yee Seng Tan
- Research Centre for Crystalline Materials, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Petaling Jaya 47500, Malaysia
| | - Mohammad Khalid
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, Bandar Sunway, Petaling Jaya 47500, Malaysia
- Division of Research and Development, Lovely Professional University, Phagwara 144411, Punjab, India
- School of Applied and Life Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| |
Collapse
|