1
|
Li M, Liu H, Li H, Luan D, Liu Z, Lou XWD. Electron-Deficient Cobalt Centers Realized by Rational p─π Conjugation Regulation for High-Performance Li─S Batteries. Angew Chem Int Ed Engl 2025; 64:e202503174. [PMID: 40129174 DOI: 10.1002/anie.202503174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/07/2025] [Accepted: 03/21/2025] [Indexed: 03/26/2025]
Abstract
Rational design of the coordination environment of single-atom catalysts (SACs) can enhance their catalytic activity, which is of great significance for high-loading and lean-electrolyte lithium-sulfur (Li─S) batteries. Inspired by the Lewis acid-base theory, we design a unique coordination environment for constructing electron-deficient Co SACs on carbon nanotubes (named as CNT@f-CoNC), which function as a Lewis acid, to enhance the chemisorption and catalytic activity towards polysulfides (Lewis base). Compared with porphyrin-like Co SACs, electron-deficient Co SACs (Lewis acid) exhibit much stronger binding affinity towards polysulfides (Lewis base) and a significantly lower energy barrier of the rate-determining step in the sulfur reduction reaction. As expected, even with a high sulfur loading (6.9 mg cm-2) and lean electrolyte to sulfur (E/S) ratio (4.0 µL mg-1), the areal capacity still reaches 7.7 mAh cm-2. Moreover, a 1.6 Ah-class pouch cell is successfully assembled under the harsh conditions and delivers an energy density of 422 Wh kg-1. This work provides novel insights into enhancing the electrochemical performance of Li─S batteries by modulating the local electronic density of metal sites through the rational design of the coordination environment.
Collapse
Affiliation(s)
- Mai Li
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon Materials, Qingdao University of Science & Technology, Qingdao, 266061, P.R. China
| | - Hui Liu
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon Materials, Qingdao University of Science & Technology, Qingdao, 266061, P.R. China
| | - Huifang Li
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon Materials, Qingdao University of Science & Technology, Qingdao, 266061, P.R. China
| | - Deyan Luan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, P.R. China
| | - Zhiming Liu
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon Materials, Qingdao University of Science & Technology, Qingdao, 266061, P.R. China
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266061, P.R. China
| | - Xiong Wen David Lou
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, P.R. China
| |
Collapse
|
2
|
Kwon T, Guo H, Kim JO, Chae S, Lim EY, Park JB, Lee E, Choi I, Kim BJ, Lee YJ, Lee SG, Lee JH. Rationally Designed Binder with Polysulfide-Affinitive Moieties and Robust Network Structures for Improved Polysulfide Trapping and Structural Stability of Sulfur Cathode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407224. [PMID: 39648473 DOI: 10.1002/smll.202407224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/14/2024] [Indexed: 12/10/2024]
Abstract
Lithium-sulfur batteries (LSBs) have emerged as a promising next-generation energy storage application owing to their high specific capacity and energy density. However, inherent insulating property of sulfur, along with its significant volume expansion during cycling, and shuttling behavior of lithium-polysulfides (LiPSs), hinder their practical application. To overcome these issues, a crosslinked cationic waterborne polyurethane (CCWPU) is rationally designed as a binder for LSBs. The mechanical robustness of CCWPU enables it to withstand the high stress derived from volume expansion of sulfur, facilitating charge-transferring through conserved charge-transfer pathway and promoting interconversion of LiPSs. Additionally, polar urethane groups offer favorable interaction sites with LiPSs, mitigating shuttling behavior of LiPSs via polar-polar interaction. Density functional theory investigations further elucidate that the incorporation of cationic moieties enhances LiPSs immobilization by confining Sn x- (x = 1 or 2) in LiPSs, thereby improving sulfur utilization. Benefiting from these, the cell with CCWPU demonstrates reduced polarization, superior LiPSs conversion rates, and stable cycling performance. Moreover, water-processable nature of CCWPU aligns with environmental consciousness. These diverse functionalities of CCWPU provide valuable insights for the development of advanced binder for LSBs, ultimately improving the electrochemical performances of LSBs.
Collapse
Affiliation(s)
- Taekyun Kwon
- School of Chemical Engineering, Pusan National University, 2, Busandaehak-ro 63beong-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Hengquan Guo
- School of Chemical Engineering, Pusan National University, 2, Busandaehak-ro 63beong-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Ji-Oh Kim
- School of Chemical Engineering, Pusan National University, 2, Busandaehak-ro 63beong-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Seongwook Chae
- School of Chemical Engineering, Pusan National University, 2, Busandaehak-ro 63beong-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Eun Young Lim
- School of Chemical Engineering, Pusan National University, 2, Busandaehak-ro 63beong-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Jae Bin Park
- School of Chemical Engineering, Pusan National University, 2, Busandaehak-ro 63beong-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Eunsol Lee
- School of Chemical Engineering, Pusan National University, 2, Busandaehak-ro 63beong-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Inhye Choi
- School of Chemical Engineering, Pusan National University, 2, Busandaehak-ro 63beong-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Byeong Jin Kim
- Department of Organic Material Science and Engineering, Pusan National University, 2, Busandaehak-ro 63beong-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - You-Jin Lee
- Battery Research Division, Electrical Materials Research Division, Korea Electrotechnology Research Institute, Changwon, 51543, Republic of Korea
| | - Seung Geol Lee
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jin Hong Lee
- School of Chemical Engineering, Pusan National University, 2, Busandaehak-ro 63beong-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
- Department of Organic Material Science and Engineering, Pusan National University, 2, Busandaehak-ro 63beong-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| |
Collapse
|
3
|
Yuan J, Wang P, Song N, Wang Y, Ma J, Xiong S, Li X, Feng J, Xi B. Alloying Strategy Regulating Size and Electronic Structure of Mo 0.25Nb 0.75Se 2 to Achieve High-Performance Lithium-Sulfur Batteries. Angew Chem Int Ed Engl 2025; 64:e202420866. [PMID: 39623120 DOI: 10.1002/anie.202420866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
The utilization of catalysts in lithium--sulfur batteries has proven to be an efficacious avenue for enhancing the kinetics of polysulfide conversion. Specially, the size and electronic structure of catalysts play a pivotal role in harnessing the active sites and intrinsic catalysis activity. Outstanding MoSe2 and NbSe2 are were selected from 16 universal transition metal selenides based on the proposed binary descriptor. Then, an alloying strategy is was devised to prepare Mo0.25Nb0.75Se2 flakelets for further improvement of the intrinsic catalysis. The integration of density functional theory calculations and electrochemical analysis demonstrates that alloying Mo with Nb can regulate the surface energy and indexes of band match and lattice mismatch, thereby enabling Mo0.25Nb0.75Se2 to possess a small size, suitable adsorption energy and low reaction energy barrier. This optimization enhances the catalysis of sulfur reduction/evolution reaction and the reversible deposition/stripping of lithium. Consequently, an assembled Ah-level pouch cell is realized with dramatic cycle stability. With the electrolyte/sulfur ratio of 2.36 μL mg S-1, the cell can deliver a high energy density of up to 505.4 Wh kgtotal -1. This work pioneers a universal strategy for sculpting the geometric configurations and electronic structures of catalysts, to achieve enhanced catalytic activity and precise interpretation of structure-activity relationships.
Collapse
Affiliation(s)
- Jia Yuan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Peng Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Ning Song
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Yu Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Jizhen Ma
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Shenglin Xiong
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Xiaogang Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Jinkui Feng
- School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Baojuan Xi
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
4
|
Chai L, Li R, Sun Y, Zhou K, Pan J. MOF-derived Carbon-Based Materials for Energy-Related Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413658. [PMID: 39791306 DOI: 10.1002/adma.202413658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/23/2024] [Indexed: 01/12/2025]
Abstract
New carbon-based materials (CMs) are recommended as attractively active materials due to their diverse nanostructures and unique electron transport pathways, demonstrating great potential for highly efficient energy storage applications, electrocatalysis, and beyond. Among these newly reported CMs, metal-organic framework (MOF)-derived CMs have achieved impressive development momentum based on their high specific surface areas, tunable porosity, and flexible structural-functional integration. However, obstacles regarding the integrity of porous structures, the complexity of preparation processes, and the precise control of active components hinder the regulation of precise interface engineering in CMs. In this context, this review systematically summarizes the latest advances in tailored types, processing strategies, and energy-related applications of MOF-derived CMs and focuses on the structure-activity relationship of metal-free carbon, metal-doped carbon, and metallide-doped carbon. Particularly, the intrinsic correlation and evolutionary behavior between the synergistic interaction of micro/nanostructures and active species with electrochemical performances are emphasized. Finally, unique insights and perspectives on the latest relevant research are presented, and the future development prospects and challenges of MOF-derived CMs are discussed, providing valuable guidance to boost high-performance electrochemical electrodes for a broader range of application fields.
Collapse
Affiliation(s)
- Lulu Chai
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Rui Li
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yanzhi Sun
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Junqing Pan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
5
|
Wang F, Wang T, Shi Z, Cui S, Wang N, Kang G, Su G, Liu W, Jin Y. Single-Atom Cobalt Catalyst with Boron and Nitrogen Codoped Graphene (Co-BN-G) Enables Adsorption and Catalytic Conversion of Polysulfides for High-Performance Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39374934 DOI: 10.1021/acsami.4c09591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
In lithium-sulfur batteries, the shuttling effect and sluggish redox conversion of soluble polysulfides lead to unsatisfactory sulfur utilization and capacity retention. In this research, we used a one-pot hydrothermal method to prepare graphene with single-atom Co and B, N codoped as a sulfur host in Li-S batteries, thereby suppressing the shuttling effect and facilitating the redox conversion of lithium polysulfides (LiPSs). A series of characterizations demonstrated that dual doping of B and N introduces more lattice defects and structural deformations in graphene oxide, thus enhancing its adsorption of polysulfides. Simultaneously, single-atom cobalt can also polarize adsorption and accelerate the conversion reaction of LiPSs. The Li-S cell with the as-prepared Co-BN-G sulfur host materials exhibited an excellent capacity of 1034 mAh g-1 at 0.5 C and satisfactory cycle performance (retention of 69% over 500 cycles). Even at a rate of 2 C, a discharge capacity of 851 mAh g-1 is achieved. The results show that the Co-BN-G configuration efficiently captures LiPSs and enhances their rate conversion kinetics in redox reactions, demonstrating significant practical potential.
Collapse
Affiliation(s)
- Furan Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Tiancheng Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Zehao Shi
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Shengrui Cui
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Ning Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Guohong Kang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Ge Su
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Wei Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Yongcheng Jin
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| |
Collapse
|
6
|
Xing H, Niu Y, Wang J, Liu Y, Yao X, Xu Y. Embedding cobalt (II, III) oxide nanoparticles into nitrogen-doped carbon nanotubes-grafted hollow polyhedrons as sulfur hosts for ultralong-life lithium-sulfur batteries. J Colloid Interface Sci 2023; 649:832-843. [PMID: 37390531 DOI: 10.1016/j.jcis.2023.06.146] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/01/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Abstract
The sluggish reaction kinetics and unfavorable shuttling effect are regarded as obstacles to the practical application of lithium-sulfur (Li-S) batteries. To resolve these inherent drawbacks, we synthesized novel multifunctional Co3O4@NHCP/CNT as the cathode materials consisting of carbon nanotubes (CNTs)-grafted N-doped hollow carbon polyhedrons (NHCP) embedded with cobalt (II, III) oxide (Co3O4) nanoparticles. The results indicate that the NHCP and interconnected CNTs could provide favorable channels for electron/ion transport and physically restrict the diffusion of lithium polysulfides (LiPSs). Furthermore, N doping and in-situ Co3O4 embedding could endow the carbon matrix with strong chemisorption and effective electrocatalytic activity toward LiPSs, thus prominently promoting the sulfur redox reaction. Benefiting from these synergistic effects, the Co3O4@NHCP/CNT electrode exhibits a high initial capacity of 1322.1 mAh/g at 0.1 C, and a capacity retention of 710.4 mAh/g after 500 cycles at 1 C. Impressively, even at a relatively high current density of 4 C, the Co3O4@NHCP/CNT electrode achieves a high capacity of 653.4 mAh/g and outstanding long-term cycle stability for 1000 cycles with a low decay rate of 0.035% per cycle. Hence, the design of N-doped CNTs-grafted hollow carbon polyhedrons coupled with transition metal oxides would provide effective promising perspective for developing high-performance Li-S batteries.
Collapse
Affiliation(s)
- Haiyang Xing
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Engineering Research Center of Advanced Energy Materials & Devices, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yao Niu
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Engineering Research Center of Advanced Energy Materials & Devices, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jing Wang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Engineering Research Center of Advanced Energy Materials & Devices, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yali Liu
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Engineering Research Center of Advanced Energy Materials & Devices, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xianghua Yao
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Engineering Research Center of Advanced Energy Materials & Devices, Xi'an Jiaotong University, Xi'an 710049, China
| | - Youlong Xu
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Engineering Research Center of Advanced Energy Materials & Devices, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
7
|
Wang K, Liu S, Shu Z, Zheng Q, Zheng M, Dong Q. Single-atom site catalysis in Li-S batteries. Phys Chem Chem Phys 2023; 25:25942-25960. [PMID: 37746671 DOI: 10.1039/d3cp02857g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
With their high theoretical energy density, Li-S batteries are regarded as the ideal battery system for next generation electrochemical energy storage. In the last 15 years, Li-S batteries have made outstanding academic progress. Recently, research studies have placed more emphasis on their practical application aspects, which puts forward strict requirements for the loading of S cathodes and the amount of electrolytes. To meet the above requirements, electrode catalysis design is of crucial significance. Among all the catalysts, single-atom site catalysts (SASCs) are considered to be ideal catalyst materials for the commercialization of Li-S batteries due to their high activity and highest utilization of catalytic sites. This perspective introduces the kinetic mechanism of S cathodes, the basic concept and synthesis strategy of SASCs, and then systematically summarizes the research progress of SASCs for S cathodes and, the related functional interlayers/separators in recent years. Finally, the opportunities and challenges of SASCs in Li-S batteries are summarized and prospected.
Collapse
Affiliation(s)
- Kun Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| | - Sheng Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| | - Zhenghao Shu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| | - Qingyi Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| | - Mingsen Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| | - Quanfeng Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| |
Collapse
|
8
|
Parida SK, Barik T, Chalke BA, Amirthapandian S, Jena H. Highly Porous Polypyrrole (PPy) Hydrogel Support for the Design of a Co-N-C Electrocatalyst for Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37571-37579. [PMID: 37498826 DOI: 10.1021/acsami.3c08022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Atomically dispersed metal-nitrogen-carbon (M-N-C) catalysts have emerged as one of the most promising platinum-group metal (PGM)-free cathode catalysts for oxygen reduction reaction (ORR). Among the various approaches to enhance the ORR performance of the catalysts, increasing the density of accessible active sites is of paramount importance. Thus, nitrogen-rich support with abundant porosity can be very propitious. Herein, we report a highly porous polypyrrole (PPy) hydrogel as a versatile support for the facile design of a Co-N-C electrocatalyst for ORR. The resulting Co-N-C catalyst with abundant micro- and mesoporous combinations demonstrates a half-wave potential (E1/2) of 0.825 V vs reversible hydrogen electrode (RHE) in O2-saturated 0.1M KOH with just 2.1 wt % Co content. The ORR performance reduces only 11 mV (E1/2) after 5000 cycles of accelerated durability test (ADT), portraying its excellent stability. The catalyst retains ≈83% of its original current during a short-term durability test at 0.8 V vs RHE for 25 h. Furthermore, the catalyst shows electron transfer approaching ≈4 with low H2O2 yield in the potential range 0.5-0.9 V vs RHE. This work provides a simple design strategy to synthesize M-N-C catalysts with increased accessible active site density and enhanced mass transport for ORR and other electrocatalytic applications.
Collapse
Affiliation(s)
- Sanjit Kumar Parida
- Materials Chemistry Division, Materials Chemistry and Metal Fuel Cycle Group, IGCAR, A CI of Homi Bhabha National Institute, Kalpakkam 603102, India
| | - Tulasi Barik
- Department of Chemistry, Madanapalle Institute of Technology and Science, Madanapalle, Andhra Pradesh 517325, India
| | - Bhagyashree A Chalke
- Department of Condensed Matter Physics and Materials Science, TIFR, Mumbai 400005, India
| | | | - Hrudananda Jena
- Materials Chemistry Division, Materials Chemistry and Metal Fuel Cycle Group, IGCAR, A CI of Homi Bhabha National Institute, Kalpakkam 603102, India
| |
Collapse
|
9
|
Guo J, Jiang H, Wang K, Yu M, Jiang X, He G, Li X. Enhancing Electron Conductivity and Electron Density of Single Atom Based Core-Shell Nanoboxes for High Redox Activity in Lithium Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301849. [PMID: 37093540 DOI: 10.1002/smll.202301849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/28/2023] [Indexed: 05/03/2023]
Abstract
Herein, an integrated structure of single Fe atom doped core-shell carbon nanoboxes wrapped by self-growing carbon nanotubes (CNTs) is designed. Within the nanoboxes, the single Fe atom doped hollow cores are bonded to the shells via the carbon needles, which act as the highways for the electron transport between cores and shells. Moreover, the single Fe atom doped nanobox shells is further wrapped and connected by self-growing carbon nanotubes. Simultaneously, the needles and carbon nanotubes act as the highways for electron transport, which can improve the overall electron conductivity and electron density within the nanoboxes. Finite element analysis verifies the unique structure including both internal and external connections realize the integration of active sites in nano scale, and results in significant increase in electron transfer and the catalytic performance of Fe-N4 sites in both Li2 Sn lithiation and Li2 S delithiation. The Li-S batteries with the double-shelled single atom catalyst delivered the specific capacity of 702.2 mAh g-1 after 550 cycles at 1.0 C. The regional structure design and evaluation method provide a new strategy for the further development of single atom catalysts for more electrochemical processes.
Collapse
Affiliation(s)
- Jiao Guo
- State Key Laboratory of Fine Chemicals, Chemical Engineering Department, Dalian University of Technology, Dalian, 116024, China
| | - Helong Jiang
- State Key Laboratory of Fine Chemicals, Chemical Engineering Department, Dalian University of Technology, Dalian, 116024, China
| | - Kuandi Wang
- State Key Laboratory of Fine Chemicals, Chemical Engineering Department, Dalian University of Technology, Dalian, 116024, China
| | - Miao Yu
- State Key Laboratory of Fine Chemicals, Chemical Engineering Department, Dalian University of Technology, Dalian, 116024, China
| | - Xiaobin Jiang
- State Key Laboratory of Fine Chemicals, Chemical Engineering Department, Dalian University of Technology, Dalian, 116024, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Chemical Engineering Department, Dalian University of Technology, Dalian, 116024, China
| | - Xiangcun Li
- State Key Laboratory of Fine Chemicals, Chemical Engineering Department, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
10
|
Gao R, Ji S, Wang F, Wang K, Wang H, Ma X, Linkov V, Wang X, Wang R. Enhancement of Organic Oxygen Atoms on Metal Cobalt for Sulfur Adsorption and Catalytic Polysulfide Conversion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20141-20150. [PMID: 37058551 DOI: 10.1021/acsami.3c01801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Metals and their compounds effectively suppress the polysulfide shuttle effect on the cathodes of a lithium-sulfur (Li-S) battery by chemisorbing polysulfides and catalyzing their conversion. However, S fixation on currently available cathode materials is below the requirements of large-scale practical application of this battery type. In this study, perylenequinone was utilized to improve polysulfide chemisorption and conversion on cobalt (Co)-containing Li-S battery cathodes. According to IGMH analysis, the binding energies of DPD and carbon materials as well as polysulfide adsorption were significantly enhanced in the presence of Co. According to in situ Fourier transform infrared spectroscopy, the hydroxyl and carbonyl groups in perylenequinone are able to form O-Li bonds with Li2Sn, facilitating chemisorption and catalytic conversion of polysulfides on metallic Co. The newly prepared cathode material demonstrated superior rate and cycling performances in the Li-S battery. It exhibited an initial discharge capacity of 780 mAh g-1 at 1 C and a minimum capacity decay rate of only 0.041% over 800 cycles. Even with a high S loading, the cathode material maintained an impressive capacity retention rate of 73% after 120 cycles at 0.2 C.
Collapse
Affiliation(s)
- Ruili Gao
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shan Ji
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Fanghui Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Kunpeng Wang
- Key Laboratory of Opticelectric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hui Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xianguo Ma
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550003, China
| | - Vladimir Linkov
- South African Institute for Advanced Materials Chemistry, Univerisity of the Western Cape, Cape Town 7535, South Africa
| | - Xuyun Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Rongfang Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
11
|
Huang T, Zhang G, Chen R, Lin S, Zhou H, Li J, Chung LH, Hu X, Yu L, He J. Donor-Acceptor Conjugated Microporous Polymer toward Enhanced Redox Kinetics in Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21075-21085. [PMID: 37079721 DOI: 10.1021/acsami.3c01558] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Conjugated microporous polymers (CMPs) with porous structure and rich polar units are favorable for high-performance lithium-sulfur (Li-S) batteries. However, understanding the role of building blocks in polysulfide catalytic conversion is still limited. In this work, two triazine-based CMPs are constructed by electron-accepting triazine with electron-donating triphenylbenzene (CMP-B) or electron-accepting triphenyltriazine (CMP-T), which can grow on a conductive carbon nanotube (CNT) to serve as separator modifiers for Li-S batteries. CMP-B@CNT features faster ion transportation than the counterpart of CMP-T@CNT. More importantly, compared with acceptor-acceptor (A-A) CMP-T, donor-acceptor (D-A) CMP-B possesses a higher degree of conjugation and a narrower band gap, which are conducive to the electron transfer along the polymer skeleton, thus accelerating the sulfur redox kinetics. Consequently, the CMP-B@CNT functional separator endows Li-S cells with an outstanding initial capacity of 1371 mAh g-1 at 0.1 C and favorable cycling stability with a capacity degradation rate of 0.048% per cycle at 1 C for 800 cycles. This work provides insight into the rational design of efficient catalysts for advanced Li-S batteries.
Collapse
Affiliation(s)
- Tian Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Gengyuan Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Ruwei Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Shangjun Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Hujing Zhou
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiangtao Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Lai-Hon Chung
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xuanhe Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Lin Yu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jun He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
12
|
Nie T, Zhu Y, Fang M, Ma L, Xu J, Cao Y, Hu S, Zhang X, Niu D. Realizing anti-self-discharged lithium-sulfur batteries by using hierarchical porous carbon nanofibers embedded with Fe/Ni-N catalytic sites. J Colloid Interface Sci 2023; 640:908-916. [PMID: 36907150 DOI: 10.1016/j.jcis.2023.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Lithium-sulfur (Li-S) batteries are featured with high gravimetric energy density, yet their commercial application is significantly deteriorated with the severe self-discharging resulted from the polysulfides shuttle and sluggish electrochemical kinetics. Here, a hierarchical porous carbon nanofibers implanted with Fe/Ni-N (denoted as Fe-Ni-HPCNF) catalytic sites are prepared and used as a kinetics booster toward anti-self-discharged Li-S batteries. In this design, the Fe-Ni-HPCNF possesses interconnected porous skeleton and abundant exposed active sites, enabling fast Li-ion conduction, excellent shuttle inhibition and catalytic ability for polysulfides' conversion. Combined with these advantages, this cell with the Fe-Ni-HPCNF equipped separator exhibits an ultralow self-discharged rate of 4.9% after resting for one week. Moreover, the modified batteries deliver a superior rate performance (783.3 mAh g-1 at 4.0 C) and an outstanding cycling life (over 700 cycles with 0.057% attenuation rate at 1.0 C). This work may guide the advanced design of anti-self-discharged Li-S batteries.
Collapse
Affiliation(s)
- Tiantian Nie
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuejin Zhu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Minxiang Fang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lianbo Ma
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Jie Xu
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China.
| | - Yongjie Cao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| | - Shuozhen Hu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinsheng Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Dongfang Niu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
13
|
Wang S, Liu X, Deng Y. Ultrafine Co-Species Interspersed g-C 3N 4 Nanosheets and Graphene as an Efficient Polysulfide Barrier to Enable High Performance Li-S Batteries. Molecules 2023; 28:molecules28020588. [PMID: 36677646 PMCID: PMC9863667 DOI: 10.3390/molecules28020588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/08/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Lithium-sulfur (Li-S) batteries are regarded as one of the promising advanced energy storage systems due to their ultrahigh capacity and energy density. However, their practical applications are still hindered by the serious shuttle effect and sluggish reaction kinetics of soluble lithium polysulfides. Herein, g-C3N4 nanosheets and graphene decorated with an ultrafine Co-species nanodot heterostructure (Co@g-C3N4/G) as separator coatings were designed following a facile approach. Such an interlayer can not only enable effective polysulfide affinity through the physical barrier and chemical binding but also simultaneously have a catalytic effect on polysulfide conversion. Because of these superior merits, the Li-S cells assembled with Co@g-C3N4/G-PP separators matched with the S/KB composites (up to ~70 wt% sulfur in the final cathode) exhibit excellent rate capability and good cyclic stability. A high specific capacity of ~860 mAh g-1 at 2.0 C as well as a capacity-fading rate of only ~0.035% per cycle over 350 cycles at 0.5 C can be achieved. This bifunctional separator can even endow a Li-S cell at a low current density to exhibit excellent cycling capability, with a capacity retention rate of ~88.4% at 0.2 C over 250 cycles. Furthermore, a Li-S cell with a Co@g-C3N4/G-PP separator possesses a stable specific capacity of 785 mAh g-1 at 0.2 C after 150 cycles and a superior capacity retention rate of ~84.6% with a high sulfur loading of ~3.0 mg cm-2. This effective polysulfide-confined separator holds good promise for promoting the further development of high-energy-density Li-S batteries.
Collapse
Affiliation(s)
- Shanxing Wang
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xinye Liu
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yuanfu Deng
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
- Electrochemical Energy Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou 510640, China
- Correspondence:
| |
Collapse
|
14
|
Wen L, Li M, Shi J, Yu T, Liu Y, Liu M, Zhou Z, Guo L. Rational design of covalent heptazine framework photocatalysts with high oxidation ability through reaction-dependent strategy. J Colloid Interface Sci 2023; 630:394-402. [DOI: 10.1016/j.jcis.2022.10.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/12/2022] [Accepted: 10/22/2022] [Indexed: 11/21/2022]
|
15
|
Tian S, Huang J, Yang H, Liu G, Zeng Q, Wang D, Sun X, Tao K, Liu G, Peng S. Self-Supporting Multicomponent Hierarchical Network Aerogel as Sulfur Anchoring-Catalytic Medium for Highly Stable Lithium-Sulfur Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205163. [PMID: 36284483 DOI: 10.1002/smll.202205163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/25/2022] [Indexed: 06/16/2023]
Abstract
The low utilization rate of active materials, shuttle effect of lithium polysulfides (LiPSs), and slow reaction kinetics lead to the extremely low efficiency and poor high current cycle stability of lithium sulfur batteries (Li-S batteries). In this paper, a self-supporting multicomponent hierarchical network aerogel is proposed as the modified cathode (S/GO@MX@VS4 ). It consists of graphene (GO) and MXene nanosheets (MX) loaded with VS4 nanoparticles. The experimental results and first-principles calculations show that the GO@MX@VS4 aerogel has strong adsorption and reversible conversion effects on LiPSs. It can not only inhibit the shuttle effect and improve the utilization rate of active substances by keeping the chain crystal structure of VS4 , but also promote the reversibility and kinetics of the reaction by accelerating the liquid-solid transformation in the reduction process and the decomposition of insoluble Li2 S in the oxidation process. The GO@MX@VS4 aerogel modified cathode with a multicomponent synergy exhibits the capacity ratios (Q1 /Q2 ) at different discharge stages is close to the theoretical value (1:2.8), and the capacity decay per cycle is 0.019% in 1200 cycles at 5C. Also, a high areal capacity of 6.90 mAh cm-2 is provided even at high sulfur loading (7.39 mg cm-2 ) and low electrolyte/sulfur ratio (E/S, 8.0 µL mg-1 ).
Collapse
Affiliation(s)
- Shuhao Tian
- School of Materials and Energy, National & Locai Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Juanjuan Huang
- School of Materials and Energy, National & Locai Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Hongcen Yang
- School of Materials and Energy, National & Locai Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Guo Liu
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Qi Zeng
- School of Materials and Energy, National & Locai Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Di Wang
- School of Materials and Energy, National & Locai Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Xiao Sun
- School of Materials and Energy, National & Locai Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Kun Tao
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Guohan Liu
- G. Liu, Institute of Sensor Technology, Gansu Academy of Sciences, Lanzhou, Gansu, 730000, China
| | - Shanglong Peng
- School of Materials and Energy, National & Locai Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|