1
|
Singh S, Hamid Z, Babu R, Gómez-Graña S, Hu X, McCulloch I, Hoye RLZ, Govind Rao V, Polavarapu L. Halide Perovskite Photocatalysts for Clean Fuel Production and Organic Synthesis: Opportunities and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2419603. [PMID: 40345975 DOI: 10.1002/adma.202419603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/01/2025] [Indexed: 05/11/2025]
Abstract
The need to constrain the use of fossil fuels causing global warming is motivating the development of a variety of photocatalysts for solar-to-fuel generation and chemical synthesis. In particular, semiconductor-based photocatalysts have been extensively exploited in solar-driven organic synthesis, carbon dioxide (CO2) conversion into value-added products, and hydrogen (H2) generation from water (H2O) splitting. Recently, metal halide perovskites (MHPs) have emerged as an important class of semiconductors for heterogeneous photocatalysis owing to their interesting properties. Despite key issues with long-term stability and degradation in polar solvents due to their ionic character, there has been significant progress in halide perovskite-based photocatalysts with improving their stability and performance in the gas and liquid phases. This review discusses the state-of-the-art for using halide perovskite-based photocatalysts and photoelectrocatalysis in hydrogen production from water and halogen acid solutions, CO2 reduction into value-added chemicals, and various organic chemical transformations. The different types of halide perovskites used, design strategies to overcome the instability issues in polar solvents, and the efficiencies achieved are discussed. Furthermore, the outstanding challenges associated with the use of polar electrolytes and how the stability and performance can be improved are discussed.
Collapse
Affiliation(s)
- Siddharth Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Zeinab Hamid
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Ramavath Babu
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas-Marcosende, Vigo, 36310, Spain
| | - Sergio Gómez-Graña
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas-Marcosende, Vigo, 36310, Spain
| | - Xiaowen Hu
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), Guangdong Provincial Key Laboratory of Optical Information Materials and Technology National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Iain McCulloch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
- Andlinger Center for Energy and the Environment and Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Robert L Z Hoye
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Vishal Govind Rao
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | | |
Collapse
|
2
|
Joshi S, Singh B, Aloysius D, Ganapathy D, Gupta S. Insights into Lead-Free Bismuth-Based Halide Perovskites Toward Alcohol Oxidation Under Blue LED Illumination. ACS APPLIED MATERIALS & INTERFACES 2025; 17:19818-19825. [PMID: 40129314 DOI: 10.1021/acsami.5c02068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
In recent years, lead halide perovskite materials have been explored as photocatalysts for various organic transformations. However, the toxicity of "lead" has directed further research toward lead-free halide perovskites. Herein, two bismuth-based lead-free halide perovskites with the chemical compositions Cs3Bi2Br9 and Cs3Bi2Br6I3 were synthesized via a modified antisolvent-assisted precipitation method, which resulted in a hexagonal morphology of the synthesized materials. Cs3Bi2Br9 was observed to have a higher bandgap (Eg = 2.5 eV) than Cs3Bi2Br6I3 (Eg = 2.0 eV). The photocatalytic activity of both materials was studied. Both photocatalysts were employed to oxidize 1-phenylethanol to acetophenone under the irradiation of blue LEDs (light-emitting diodes, λ = 427 nm). The oxidation reaction with Cs3Bi2Br9 provided 100% conversion after 8 h of illumination. However, only 23% conversion was observed for Cs3Bi2Br6I3 even after 14 h of illumination. Cs3Bi2Br9 has a deep-lying valence band (VB) with a higher oxidation potential of the photogenerated holes and a conduction band (CB) with a higher reduction potential of photogenerated electrons than Cs3Bi2Br6I3, giving a better yield for alcohol (1-phenylethanol) oxidation. Furthermore, impedance spectroscopy and BET analysis have been studied to gain critical insights into the photocatalytic activity of the two materials.
Collapse
Affiliation(s)
- Shalini Joshi
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg 491002, India
| | - Baldau Singh
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg 491002, India
| | - Deepak Aloysius
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg 491002, India
| | - Dhandapani Ganapathy
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg 491002, India
| | - Satyajit Gupta
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg 491002, India
| |
Collapse
|
3
|
Mishra K, Hendrix I, Gerardo J, Yamamoto N, Yan Y. Merging of Two Photoredox Cycles with One Perovskite Catalyst Achieving Dual Functionalization: N-Heterocyclization and Site-Selective Bromination of N-Arylamines. J Org Chem 2025; 90:4244-4253. [PMID: 40080873 PMCID: PMC11970103 DOI: 10.1021/acs.joc.4c03045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Dual functionalization in organic synthesis represents a powerful strategy aimed at achieving multiple transformations within a single reaction cycle, thereby streamlining synthetic processes, enhancing efficiency, and imparting economic paths for complex molecules. Here, we report a heterogeneous perovskite nanocrystal (NC) photocatalytic system that can simultaneously drive two photoredox cycles in a single reaction. The dual process incorporates two distinct functional groups (N-heterocycles and bromines) into N-arylamines under the influence of a single catalyst (CsPbBr3 NCs), allowing for the concurrent formation of two distinct architectures of 3-bromo-N-arylindoles. Mechanistically, long-lived charge separation and charge carrier accumulation at the NC surface enable perovskite to drive these two photoredox cycles simultaneously. The dual approach exploits light-induced holes to drive an amine oxidation in one cycle (I) and cooperatively utilizes dibromomethane (CH2Br2), a solvent-grade mild reagent for site-selective bromination, to achieve the other photoredox cycle (II). We find that chiral perovskite induces enantioselective axial C-N bond formation, but is inactive for axial C-C bond formation of arylindoles. Merging two photoredox cycles simultaneously to achieve dual functionalization is rare; thus, the perovskite NC photocatalysis not only aligns with the principles of green chemistry but also holds immense potential for the rapid and economical design of complex molecules.
Collapse
Affiliation(s)
- Kanchan Mishra
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| | - Isaac Hendrix
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| | - Jesse Gerardo
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| | - Nobuyuki Yamamoto
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States; Molecular Structure Center, Indiana University, Bloomington, Indiana 47405, United States
| | - Yong Yan
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| |
Collapse
|
4
|
Amberg W, Lindner H, Sahin Y, Staudinger E, Morad V, Sabisch S, Feld LG, Li Y, Dirin DN, Kovalenko MV, Carreira EM. Ligand Influence on the Performance of Cesium Lead Bromide Perovskite Quantum Dots in Photocatalytic C(sp 3)-H Bromination Reactions. J Am Chem Soc 2025; 147:8548-8558. [PMID: 40019792 PMCID: PMC11912481 DOI: 10.1021/jacs.4c17013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/17/2025] [Accepted: 01/29/2025] [Indexed: 03/05/2025]
Abstract
Lead halide perovskite quantum dots (LHP QDs) CsPbX3 generate immense interest as narrow-band emitters for displays, lasers, and quantum light sources. All QD applications rely on suited engineering of surface capping ligands. The first generation of LHP QDs employed oleic acid/oleyl amine capping and have found only a limited use in photoredox catalysis. These catalysts have been reported to be unstable and decompose over the course of the reaction, thus reducing turnover numbers (TONs) and limiting their synthetic ability. Herein, the impact of eight distinct surface ligands on monodisperse CsPbBr3 QDs is reported, affording a thorough comprehension of their performance in photocatalytic C-H brominations. These efforts yielded QDs operating at extremely low catalyst loadings (<100 ppb) with TONs over 9,000,000 per LHP QD. We emphasize that the optimal catalytic performance requires increased QD surface accessibility without compromising the QD structural and colloidal integrity. Control experiments indicated that well-known photoredox catalysts such as Ir(ppy)3, Ru(bpy)3Cl2, or 4CzlPN are ineffective in the same reaction. Mechanistic studies reveal that the C-Br bond reduction in CH2Br2 is the rate-limiting step and is likely facilitated through interaction with the CsPbBr3 QD surface. This work outlines a holistic approach toward the design of practically useful photocatalysts out of QDs comprising structurally soft QD cores and dynamically bound capping ligands.
Collapse
Affiliation(s)
- Willi
M. Amberg
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zurich, Switzerland
| | - Henry Lindner
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zurich, Switzerland
| | - Yesim Sahin
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zurich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa—Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Erich Staudinger
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zurich, Switzerland
| | - Viktoriia Morad
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zurich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa—Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Sebastian Sabisch
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zurich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa—Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Leon G. Feld
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zurich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa—Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Yuxuan Li
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zurich, Switzerland
| | - Dmitry N. Dirin
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zurich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa—Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Maksym V. Kovalenko
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zurich, Switzerland
- NCCR
Catalysis, ETH Zürich, 8093 Zurich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa—Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Erick M. Carreira
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zurich, Switzerland
- NCCR
Catalysis, ETH Zürich, 8093 Zurich, Switzerland
| |
Collapse
|
5
|
Thanetchaiyakup A, Sadek M, Bati G, Xiao Y, Wang X, Yang J, Liu Z, Wang SY, Soo HS. Metal Halide Perovskites for Photocatalysis: Performance and Mechanistic Studies. Chem Asian J 2024; 19:e202400787. [PMID: 39261288 DOI: 10.1002/asia.202400787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
Metal halide perovskites, both lead-based and lead-free variants, have emerged as highly versatile materials with widespread applications across various fields, including photovoltaics, optoelectronics, and photocatalysis. This review provides a succinct overview of the recent advancements in the utilization of lead and lead-free halide perovskites specifically in photocatalysis. We explore the diverse range of photocatalytic reactions enabled by metal halide perovskites, including organic transformations, carbon dioxide reduction, pollutant degradation, and hydrogen production. We highlight key developments, mechanistic insights, and challenges in the field, offering our perspectives on the future research directions and potential applications. By summarizing recent findings from the literature, this review aims to provide a timely resource for researchers interested in harnessing the full potential of metal halide perovskites for sustainable and efficient photocatalytic processes.
Collapse
Affiliation(s)
- Adisak Thanetchaiyakup
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Mansour Sadek
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Gabor Bati
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yonghao Xiao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xingyu Wang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou, 215123, P. R. China
| | - Jingcheng Yang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou, 215123, P. R. China
| | - Zhenpeng Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou, 215123, P. R. China
| | - Shun-Yi Wang
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou, 215123, P. R. China
| | - Han Sen Soo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
6
|
Cao Q, Feng J, Chang KT, Liang W, Lu H. Emerging Opportunities of Colloidal Quantum Dots for Photocatalytic Organic Transformations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2409096. [PMID: 39340294 DOI: 10.1002/adma.202409096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/12/2024] [Indexed: 09/30/2024]
Abstract
Colloidal quantum dots (QDs) have emerged as a versatile photocatalyst for a wide range of photocatalytic transformations owing to its high absorption coefficient, large surface-to-volume ratio, high stability, and efficient charge and energy transfer dynamics. The past decades have witnessed a rapid development of QDs for artificial photocatalysis. In this review, the unique characteristics of QDs are focused on, including quantum size effect, compositional and structural diversity, tunable surface chemistry, and photophysics, that can be utilized for photocatalytic transformations. The recent advancements in photocatalytic organic transformations enabled by QDs photocatalysts are summarized. The unique opportunities of QDs are highlighted to tackle organic reactions that are previously unattainable with small molecule photocatalysts. Lastly, an outlook is provided for future directions in this field.
Collapse
Affiliation(s)
- Qinxuan Cao
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Jianning Feng
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Kin Ting Chang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Wenfei Liang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Haipeng Lu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
7
|
Yan C, Qian Y, Liao Z, Le Z, Fan Q, Zhu H, Xie Z. Recent progress of metal halide perovskite materials in heterogeneous photocatalytic organic reactions. Photochem Photobiol Sci 2024; 23:1393-1415. [PMID: 38850494 DOI: 10.1007/s43630-024-00599-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Photocatalytic technology is widely regarded as an important way to utilize solar energy and achieve carbon neutrality, which has attracted considerable attentions in various fields over the past decades. Metal halide perovskites (MHPs) are recognized as "superstar" materials due to their exceptional photoelectric properties, readily accessible and tunable structure, which made them intensively studied in solar cells, light-emitting diodes, and solar energy conversion fields. Since 2018, increased attention has been focused on applying the MHPs as a heterogeneous visible light photocatalyst in catalyzing organic synthesis reactions. In this review, we present an overview of photocatalytic technology and principles of heterogeneous photocatalysis before delving into the structural characteristics, stability, and classifications of MHPs. We then focus on recent developments of MHPs in photocatalyzing various organic synthesis reactions, such as oxidation, cyclization, C-C coupling etc., based on their classifications and reported reaction types. Finally, we discuss the main limitations and prospects regarding the application of metal halide perovskites in organic synthesis.
Collapse
Affiliation(s)
- Chunpei Yan
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, China
| | - Yan Qian
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, China
| | - Zhaohong Liao
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, China
| | - Zhanggao Le
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, China
| | - Qiangwen Fan
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, China.
| | - Haibo Zhu
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, China
| | - Zongbo Xie
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, China
| |
Collapse
|
8
|
Cortés-Villena A, Bellezza D, Cunha C, Rosa-Pardo I, Seijas-Da Silva Á, Pina J, Abellán G, Seixas de Melo JS, Galian RE, Pérez-Prieto J. Engineering Metal Halide Perovskite Nanocrystals with BODIPY Dyes for Photosensitization and Photocatalytic Applications. J Am Chem Soc 2024; 146:14479-14492. [PMID: 38572736 PMCID: PMC11140745 DOI: 10.1021/jacs.3c14335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
The sensitization of surface-anchored organic dyes on semiconductor nanocrystals through energy transfer mechanisms has received increasing attention owing to their potential applications in photodynamic therapy, photocatalysis, and photon upconversion. Here, we investigate the sensitization mechanisms through visible-light excitation of two nanohybrids based on CsPbBr3 perovskite nanocrystals (NC) functionalized with borondipyrromethene (BODIPY) dyes, specifically 8-(4-carboxyphenyl)-1,3,5,7-tetramethyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BDP) and 8-(4-carboxyphenyl)-2,6-diiodo-1,3,5,7-tetramethyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (I2-BDP), named as NC@BDP and NC@I2-BDP, respectively. The ability of I2-BDP dyes to extract hot hole carriers from the perovskite nanocrystals is comprehensively investigated by combining steady-state and time-resolved fluorescence as well as femtosecond transient absorption spectroscopy with spectroelectrochemistry and quantum chemical theoretical calculations, which together provide a complete overview of the phenomena that take place in the nanohybrid. Förster resonance energy transfer (FRET) dominates (82%) the photosensitization of the singlet excited state of BDP in the NC@BDP nanohybrid with a rate constant of 3.8 ± 0.2 × 1010 s-1, while charge transfer (64%) mediated by an ultrafast charge transfer rate constant of 1.00 ± 0.08 × 1012 s-1 from hot states and hole transfer from the band edge is found to be mainly responsible for the photosensitization of the triplet excited state of I2-BDP in the NC@I2-BDP nanohybrid. These findings suggest that the NC@I2-BDP nanohybrid is a unique energy transfer photocatalyst for oxidizing α-terpinene to ascaridole through singlet oxygen formation.
Collapse
Affiliation(s)
- Alejandro Cortés-Villena
- Institute
of Molecular Science, University of Valencia, c/Catedrático José
Beltrán Martínez 2, 46980 Paterna, Valencia, Spain
| | - Delia Bellezza
- Institute
of Molecular Science, University of Valencia, c/Catedrático José
Beltrán Martínez 2, 46980 Paterna, Valencia, Spain
| | - Carla Cunha
- CQC-IMS,
Department of Chemistry, University of Coimbra, Coimbra P-3004-535, Portugal
| | - Ignacio Rosa-Pardo
- Institute
of Molecular Science, University of Valencia, c/Catedrático José
Beltrán Martínez 2, 46980 Paterna, Valencia, Spain
| | - Álvaro Seijas-Da Silva
- Institute
of Molecular Science, University of Valencia, c/Catedrático José
Beltrán Martínez 2, 46980 Paterna, Valencia, Spain
| | - João Pina
- CQC-IMS,
Department of Chemistry, University of Coimbra, Coimbra P-3004-535, Portugal
| | - Gonzalo Abellán
- Institute
of Molecular Science, University of Valencia, c/Catedrático José
Beltrán Martínez 2, 46980 Paterna, Valencia, Spain
| | | | - Raquel E. Galian
- Institute
of Molecular Science, University of Valencia, c/Catedrático José
Beltrán Martínez 2, 46980 Paterna, Valencia, Spain
| | - Julia Pérez-Prieto
- Institute
of Molecular Science, University of Valencia, c/Catedrático José
Beltrán Martínez 2, 46980 Paterna, Valencia, Spain
| |
Collapse
|
9
|
Feng J, Mak CH, Yu L, Han B, Shen HH, Santoso SP, Yuan M, Li FF, Song H, Colmenares JC, Hsu HY. Structural Modification Strategies, Interfacial Charge-Carrier Dynamics, and Solar Energy Conversion Applications of Organic-Inorganic Halide Perovskite Photocatalysts. SMALL METHODS 2024; 8:e2300429. [PMID: 37381684 DOI: 10.1002/smtd.202300429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/17/2023] [Indexed: 06/30/2023]
Abstract
Over the past few decades, organic-inorganic halide perovskites (OIHPs) as novel photocatalyst materials have attracted intensive attention for an impressive variety of photocatalytic applications due to their excellent photophysical (chemical) properties. Regarding practical application and future commercialization, the air-water stability and photocatalytic performance of OIHPs need to be further improved. Accordingly, studying modification strategies and interfacial interaction mechanisms is crucial. In this review, the current progress in the development and photocatalytic fundamentals of OIHPs is summarized. Furthermore, the structural modification strategies of OIHPs, including dimensionality control, heterojunction design, encapsulation techniques, and so on for the enhancement of charge-carrier transfer and the enlargement of long-term stability, are elucidated. Subsequently, the interfacial mechanisms and charge-carrier dynamics of OIHPs during the photocatalytic process are systematically specified and classified via diverse photophysical and electrochemical characterization methods, such as time-resolved photoluminescence measurements, ultrafast transient absorption spectroscopy, electrochemical impedance spectroscopy measurements, transient photocurrent densities, and so forth. Eventually, various photocatalytic applications of OIHPs, including hydrogen evolution, CO2 reduction, pollutant degradation, and photocatalytic conversion of organic matter.
Collapse
Affiliation(s)
- Jianpei Feng
- School of Energy and Environment & Department of Materials Science and Engineering & Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon Tong, Hong Kong, 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Chun Hong Mak
- School of Energy and Environment & Department of Materials Science and Engineering & Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon Tong, Hong Kong, 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Li Yu
- School of Energy and Environment & Department of Materials Science and Engineering & Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon Tong, Hong Kong, 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, Guangdong, 510006, P. R. China
| | - Bin Han
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Shella Permatasari Santoso
- Chemical Engineering Department, Faculty of Engineering, Widya Mandala Surabaya Catholic University, Surabaya, East Java, 60114, Indonesia
| | - Mingjian Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Fang-Fang Li
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Haisheng Song
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | | | - Hsien-Yi Hsu
- School of Energy and Environment & Department of Materials Science and Engineering & Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon Tong, Hong Kong, 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
| |
Collapse
|
10
|
Lin Y, Yan Y. CsPbBr 3 Perovskite Nanocrystals for Photocatalytic [3+2] Cycloaddition. CHEMSUSCHEM 2024; 17:e202301060. [PMID: 37607341 DOI: 10.1002/cssc.202301060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 08/24/2023]
Abstract
Visible-light-induced halide-exchange between halide perovskite and organohalide solvents has been studied in which photoinduced electron transfer from CsPbBr3 nanocrystals (NCs) to dihalomethane solvent molecules produces halide anions via reductive dissociation, followed by a spontaneous anion-exchange. Photogenerated holes in this process are less focused. Here, for CsPbBr3 in dibromomethane (DBM), we discover that Br radical (Br⋅) is a key intermediate resulting from the hole oxidation. We successfully trapped Br⋅ with reported methods and found that Br⋅ is continuously generated in DBM under visible light irradiation, hence imperative for catalytic reaction design. Continuous Br⋅ formation within this halide-exchange process is active for photocatalytic [3+2] cycloaddition for vinylcyclopentane synthesis, a privileged scaffold in medicinal chemistry, with good yield and rationalized diastereoselectivity. The NC photocatalyst is highly recyclable due to Br-based self-healing, leading to a particularly economic and neat heterogeneous reaction where the solvent DBM also acts as a co-catalyst in perovskite photocatalysis. Halide perovskites, notable for efficient solar energy conversion, are demonstrated as exceptional photocatalysts for Br radical-mediated [3+2] cycloaddition. We envisage such perovskite-induced Br radical strategy may serve as a powerful chemical tool for developing valuable halogen radical-involved reactions.
Collapse
Affiliation(s)
- Yixiong Lin
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA-92182, USA
| | - Yong Yan
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA-92182, USA
| |
Collapse
|
11
|
Jagadeeswararao M, Galian RE, Pérez-Prieto J. Photocatalysis Based on Metal Halide Perovskites for Organic Chemical Transformations. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:94. [PMID: 38202549 PMCID: PMC10780689 DOI: 10.3390/nano14010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
Heterogeneous photocatalysts incorporating metal halide perovskites (MHPs) have garnered significant attention due to their remarkable attributes: strong visible-light absorption, tuneable band energy levels, rapid charge transfer, and defect tolerance. Additionally, the promising optical and electronic properties of MHP nanocrystals can be harnessed for photocatalytic applications through controlled crystal structure engineering, involving composition tuning via metal ion and halide ion variations, dimensional tuning, and surface chemistry modifications. Combination of perovskites with other materials can improve the photoinduced charge separation and charge transfer, building heterostructures with different band alignments, such as type-II, Z-scheme, and Schottky heterojunctions, which can fine-tune redox potentials of the perovskite for photocatalytic organic reactions. This review delves into the activation of organic molecules through charge and energy transfer mechanisms. The review further investigates the impact of crystal engineering on photocatalytic activity, spanning a diverse array of organic transformations, such as C-X bond formation (X = C, N, and O), [2 + 2] and [4 + 2] cycloadditions, substrate isomerization, and asymmetric catalysis. This study provides insights to propel the advancement of metal halide perovskite-based photocatalysts, thereby fostering innovation in organic chemical transformations.
Collapse
Affiliation(s)
| | - Raquel E. Galian
- Institute of Molecular Science, University of Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain;
| | - Julia Pérez-Prieto
- Institute of Molecular Science, University of Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain;
| |
Collapse
|
12
|
Mishra K, Guyon D, San Martin J, Yan Y. Chiral Perovskite Nanocrystals for Asymmetric Reactions: A Highly Enantioselective Strategy for Photocatalytic Synthesis of N-C Axially Chiral Heterocycles. J Am Chem Soc 2023; 145:17242-17252. [PMID: 37499231 PMCID: PMC10926773 DOI: 10.1021/jacs.3c04593] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Catalytic approaches to generate enantiospecific chiral centers are the major premise of modern organic chemistry. Heterogeneous catalysis is responsible for the vast majority of chemical transformations, yet the direct employment of chiral solid catalysts for asymmetric synthesis is mostly overlooked. Here, we demonstrated that a heterogeneous metal-halide perovskite nanocrystal (NC) catalyst is active for asymmetric organic synthesis under visible-light activation. Chiral 1-phenylethylamine (PEA)-hybridized perovskite PEA/CsPbBr3 NC photocatalysts exhibit an enantioselective (up to 99% enantiomer excess, ee) avenue to produce N-C axially chiral N-heterocycles, i.e., N-arylindoles from N-arylamine photo-oxidation. Mechanistic investigation indicated a discriminated prochiral binding of the N-arylamine substrates onto the chiral-NC surface with ca. -2.4 kcal/mol enantiodifferentiation. Our perovskite NC heterogeneous catalytic system not only demonstrates a promising strategy to address the long-term challenges in atroposelective pharmaceutical scaffold synthesis but also paves the road to directly employ chiral solids for asymmetric synthesis.
Collapse
Affiliation(s)
- Kanchan Mishra
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| | - Dylana Guyon
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| | - Jovan San Martin
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| | - Yong Yan
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| |
Collapse
|
13
|
He S, Du J, Liang W, Zhang B, Liang G, Wu K. Thermally Activated Delayed Near-Infrared Photoluminescence from Functionalized Lead-Free Nanocrystals. Angew Chem Int Ed Engl 2023; 62:e202217287. [PMID: 36517417 DOI: 10.1002/anie.202217287] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
As an analogue to thermally activated delayed fluorescence (TADF) of organic molecules, thermally activated delayed photoluminescence (TADPL) observed in molecule-functionalized semiconductor nanocrystals represents an exotic mechanism to harvest energy from dark molecular triplets and to obtain controllable, long-lived PL from nanocrystals. The reported TADPL systems have successfully covered the visible spectrum. However, TADF molecules already emit very efficiently in the visible, diminishing the technological impact of the less-efficient nanocrystal-molecule TADPL. Here we report bright, near-infrared TADPL in lead-free CuInSe2 nanocrystals functionalized with carboxylated tetracene ligands, which results from efficient triplet energy transfer from photoexcited nanocrystals to ligands, followed with thermally activated reverse energy transfer from ligand triplets back to nanocrystals. This strategy prolonged the nanocrystal exciton lifetime from 100 ns to 60 μs at room temperature.
Collapse
Affiliation(s)
- Shan He
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Jun Du
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Wenfei Liang
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Boyu Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| | - Guijie Liang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| |
Collapse
|
14
|
Nie C, Lin X, Zhao G, Wu K. Low‐Toxicity ZnSe/ZnS Quantum Dots as Potent Photoreductants and Triplet Sensitizers for Organic Transformations. Angew Chem Int Ed Engl 2022; 61:e202213065. [DOI: 10.1002/anie.202213065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Chengming Nie
- State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 China
| | - Xuyang Lin
- State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Guohui Zhao
- State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
15
|
San Martin J, Dang N, Raulerson E, Beard MC, Hartenberger J, Yan Y. Perovskite Photocatalytic CO 2 Reduction or Photoredox Organic Transformation? Angew Chem Int Ed Engl 2022; 61:e202205572. [PMID: 35925861 PMCID: PMC9804990 DOI: 10.1002/anie.202205572] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Indexed: 01/09/2023]
Abstract
Metal-halide perovskites have been explored as photocatalysts for CO2 reduction. We report that perovskite photocatalytic CO2 reduction in organic solvents is likely problematic. Instead, the detected products (i.e., CO) likely result from a photoredox organic transformation involving the solvent. Our observations have been validated using isotopic labeling experiments, band energy analysis, and new control experiments. We designed a typical perovskite photocatalytic setup in organic solvents that led to CO production of up to ≈1000 μmol g-1 h-1 . CO2 reduction in organic solvents must be studied with extra care because photoredox organic transformations can produce orders of magnitude higher rate of CO or CH4 than is typical for CO2 reduction routes. Though CO2 reduction is not likely to occur, in situ CO generation is extremely fast. Hence a suitable system can be established for challenging organic reactions that use CO as a feedstock but exploit the solvent as a CO surrogate.
Collapse
Affiliation(s)
- Jovan San Martin
- Department of Chemistry and BiochemistrySan Diego State UniversitySan DiegoCA 92182USA
| | - Nhu Dang
- Department of Chemistry and BiochemistrySan Diego State UniversitySan DiegoCA 92182USA
| | | | - Matthew C. Beard
- National Renewable Energy LaboratoryGoldenCO 80401USA
- Renewable and Sustainable Energy InstituteUniversity of ColoradoBoulderCO 80309USA
| | - Joseph Hartenberger
- Department of Chemistry and BiochemistrySan Diego State UniversitySan DiegoCA 92182USA
| | - Yong Yan
- Department of Chemistry and BiochemistrySan Diego State UniversitySan DiegoCA 92182USA
| |
Collapse
|
16
|
Liu M, Xia P, Zhao G, Nie C, Gao K, He S, Wang L, Wu K. Energy‐Transfer Photocatalysis Using Lead Halide Perovskite Nanocrystals: Sensitizing Molecular Isomerization and Cycloaddition. Angew Chem Int Ed Engl 2022; 61:e202208241. [DOI: 10.1002/anie.202208241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Indexed: 12/30/2022]
Affiliation(s)
- Meng Liu
- State Key Laboratory of Molecular Reaction Dynamics Dynamics Research Center for Energy and Environmental Materials Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 China
- University of the Chinese Academy of Sciences Beijing 100049 China
| | - Pan Xia
- State Key Laboratory of Molecular Reaction Dynamics Dynamics Research Center for Energy and Environmental Materials Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 China
| | - Guohui Zhao
- State Key Laboratory of Molecular Reaction Dynamics Dynamics Research Center for Energy and Environmental Materials Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 China
- University of the Chinese Academy of Sciences Beijing 100049 China
| | - Chengming Nie
- State Key Laboratory of Molecular Reaction Dynamics Dynamics Research Center for Energy and Environmental Materials Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 China
| | - Kaimin Gao
- State Key Laboratory of Molecular Reaction Dynamics Dynamics Research Center for Energy and Environmental Materials Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 China
- University of the Chinese Academy of Sciences Beijing 100049 China
| | - Shan He
- State Key Laboratory of Molecular Reaction Dynamics Dynamics Research Center for Energy and Environmental Materials Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 China
| | - Lifeng Wang
- State Key Laboratory of Molecular Reaction Dynamics Dynamics Research Center for Energy and Environmental Materials Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 China
- University of the Chinese Academy of Sciences Beijing 100049 China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics Dynamics Research Center for Energy and Environmental Materials Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 China
- University of the Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
17
|
San Martin J, Dang N, Raulerson E, Beard MC, Hartenberger J, Yan Y. Perovskite Photocatalytic CO2 Reduction or Photoredox Organic Transformation? Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Nhu Dang
- San Diego State University Chemistry UNITED STATES
| | - Emily Raulerson
- National Renewable Energy Laboratory Chemistry UNITED STATES
| | | | | | - Yong Yan
- San Diego State University Chemistry and Biochemistry 5500 Campanile Drive 92182 San Diego UNITED STATES
| |
Collapse
|
18
|
Liu M, Xia P, Zhao G, Nie C, Gao K, he S, Wang L, Wu K. Energy‐Transfer Photocatalysis Using Lead Halide Perovskite Nanocrystals: Sensitizing Molecular Isomerization and Cycloaddition. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Meng Liu
- Chinese Academy of Sciences Dalian Institute of Chemical Physics State Key Laboratory of Molecular Reaction Dynamics CHINA
| | - Pan Xia
- Chinese Academy of Sciences Dalian Institute of Chemical Physics State Key Laboratory of Molecular Reaction Dynamics CHINA
| | - Guohui Zhao
- Chinese Academy of Sciences Dalian Institute of Chemical Physics State Key Laboratory of Molecular Reaction Dynamics CHINA
| | - Chengming Nie
- Chinese Academy of Sciences Dalian Institute of Chemical Physics State Key Laboratory of Molecular Reaction Dynamics CHINA
| | - Kaimin Gao
- Chinese Academy of Sciences Dalian Institute of Chemical Physics State Key Laboratory of Molecular Reaction Dynamics CHINA
| | - Shan he
- Chinese Academy of Sciences Dalian Institute of Chemical Physics State Key Laboratory of Molecular Reaction Dynamics CHINA
| | - Lifeng Wang
- Chinese Academy of Sciences Dalian Institute of Chemical Physics State Key Laboratory of Molecular Reaction Dynamics CHINA
| | - Kaifeng Wu
- Dalian Institute of Chemical Physics State Key Laboratory of Molecular Reaction Dynamics 457 Zhongshan RdBldg 36 116023 Dalian CHINA
| |
Collapse
|