1
|
Li Y, Chen B, Yao D, Gao X, Chen J, Lu C, Pang X. Enhancing salt resistance and all-day efficient solar interfacial evaporation of antibacterial sodium alginate-based porous hydrogels via surface patterning. Carbohydr Polym 2025; 359:123588. [PMID: 40306792 DOI: 10.1016/j.carbpol.2025.123588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/17/2025] [Accepted: 04/06/2025] [Indexed: 05/02/2025]
Abstract
The fully bio-based solar-driven interfacial evaporator offers the advantage of being environmentally friendly, but achieving efficient evaporation throughout the day, good salt resistance, and excellent antibacterial properties remains a significant challenge. In this study, a fully bio-based porous hydrogel with a core-shell structure was prepared using sodium alginate (SA) as the matrix and pulp fiber (PF) as the reinforcing material. Crosslinking SA with Cu2+ ions imparts excellent antibacterial properties to the evaporator. In the hydrogel core, SA forms vertically aligned lamellar pore structures, with PF providing support between the layers, which gives the evaporator good mechanical properties, water transport capacity, and thermal insulation performance. The dense surface layer formed by SA contains CuS nanoparticles, resulting in high photothermal conversion efficiency. A trapezoidal pattern constructed on the surface enhances the evaporation rate by 14 % and improves salt resistance through the Marangoni effect, enabling the evaporator to maintain an evaporation rate of 2.42 kg m-2 h-1 in a 15 wt% saline solution. Additionally, the trapezoidal pattern increases the evaporation rate by 37.5 % at low incident angles, achieving efficient all-day evaporation. The prepared hydrogel shows great potential for seawater desalination applications.
Collapse
Affiliation(s)
- Yanzi Li
- School of Materials Science and Engineering, Henan University of Science & Technology, Luoyang 471023, PR China
| | - Baoshu Chen
- Key Laboratory of materials and surface technology (Ministry of Education), School of Materials Science and Engineering, Xihua University, Chengdu 610039, PR China
| | - Dahu Yao
- School of Materials Science and Engineering, Henan University of Science & Technology, Luoyang 471023, PR China
| | - Xiping Gao
- School of Materials Science and Engineering, Henan University of Science & Technology, Luoyang 471023, PR China
| | - Jing Chen
- School of Materials Science and Engineering, Henan University of Science & Technology, Luoyang 471023, PR China
| | - Chang Lu
- School of Materials Science and Engineering, Henan University of Science & Technology, Luoyang 471023, PR China.
| | - Xinchang Pang
- School of Materials Science and Engineering, Henan University of Science & Technology, Luoyang 471023, PR China.
| |
Collapse
|
2
|
Geng W, Zhang H, Lei W, Zhao X, Chen C. Welding Pollen-Based Solar Evaporator for Clean Water Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408576. [PMID: 39499059 DOI: 10.1002/smll.202408576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/25/2024] [Indexed: 11/07/2024]
Abstract
The world faces a trade-off between water availability and food supply, as agricultural irrigation consumes the largest freshwater globally. Inspired by inherent water transport channels in plants, a cost-effective welding pollen-based solar evaporator (PSE) is developed to obtain clean water from seawater desalination. Based on the convex and folded surface structure of natural pollen (Helianthus annuus) and the porous structure of welding pollen evaporator interconnection, the PSE reveals an efficient evaporation rate of 1.86 kg m-2 h-1 under one-sun illumination and further exhibits excellent cycling performance for 10 cycles tested in 7.0 wt.% saline water without salt accumulation. In addition, PSE has superior mechanical stability (3.44 MPa) and remains stable after being immersed in pH 1 and 14 solutions for 24 h without sacrificing mechanical properties. Importantly, the work has demonstrated the success of the freshwater collected from the evaporation process, which can effectively facilitate the cultivation of lettuce, rice, and wheat. These findings highlight the practical application of pollen as a low-cost, eco-friendly natural resource in interfacial solar evaporation. Furthermore, they inspire addressing current global water scarcity and promoting sustainable agriculture.
Collapse
Affiliation(s)
- Wenjing Geng
- School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui, 230036, P. R. China
| | - Hongjie Zhang
- College of Textiles and Apparel, Quanzhou Normal University, Quanzhou, 362000, P. R. China
| | - Weiwei Lei
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, P. R. China
| | - Cheng Chen
- School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui, 230036, P. R. China
| |
Collapse
|
3
|
Liang Y, Wang D, Yu H, Wu X, Lu Y, Yang X, Owens G, Xu H. Recent innovations in 3D solar evaporators and their functionalities. Sci Bull (Beijing) 2024; 69:3590-3617. [PMID: 39353816 DOI: 10.1016/j.scib.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/08/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
Interfacial solar evaporation (ISE) has emerged as a promising technology to alleviate global water scarcity via energy-efficient purification of both wastewater and seawater. While ISE was originally identified and developed during studies of simple double-layered two-dimensional (2D) evaporators, observed limitations in evaporation rate and functionality soon led to the development of three-dimensional (3D) evaporators, which is now recognized as one of the most pivotal milestones in the research field. 3D evaporators significantly enhance the evaporation rates beyond the theoretical limits of 2D evaporators. Furthermore, 3D evaporators could have multifaceted functionalities originating from various functional evaporation surfaces and 3D structures. This review summarizes recent advances in 3D evaporators, focusing on rational design, fabrication and energy nexus of 3D evaporators, and the derivative functions for improving solar evaporation performance and exploring novel applications. Future research prospects are also proposed based on the in-depth understanding of the fundamental aspects of 3D evaporators and the requirements for practical applications.
Collapse
Affiliation(s)
- Yunzheng Liang
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Deyu Wang
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Huimin Yu
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Xuan Wu
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Yi Lu
- International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaofei Yang
- International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Gary Owens
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Haolan Xu
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia.
| |
Collapse
|
4
|
Wang Y, Wei T, Wang Y, Zeng J, Wang T, Wang Q, Zhang S, Zeng M, Wang F, Dai P, Jiang X, Hu M, Zhao J, Hu Z, Zhu J, Wang X. Quasi-waffle solar distiller for durable desalination of seawater. SCIENCE ADVANCES 2024; 10:eadk1113. [PMID: 38809973 PMCID: PMC11135395 DOI: 10.1126/sciadv.adk1113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/24/2024] [Indexed: 05/31/2024]
Abstract
Water purification via interfacial solar steam generation exhibits promising potential. However, salt crystallization on evaporators reduces solar absorption and obstructs water supply. To address it, a waffle-shaped solar evaporator (WSE) has been designed. WSE is fabricated via a zinc-assisted pyrolysis route, combining low-cost biomass carbon sources, recyclable zinc, and die-stamping process. This route enables cost-effective production without the need of sophisticated processing. As compared to conventional plane-shaped evaporators, WSE is featured by extra sidewalls for triggering the convection with the synergistic solute and thermal Marangoni effects. Consequently, WSE achieves spontaneous salt rejection and durable evaporation stability. It has demonstrated continuous operation for more than 60 days in brine without fouling.
Collapse
Affiliation(s)
- Yanjun Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Tianqi Wei
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Yue Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Jinjue Zeng
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Tao Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Qi Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Shuo Zhang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Mengyue Zeng
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Fengyue Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Pengcheng Dai
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiangfen Jiang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Ming Hu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Jin Zhao
- State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Zheng Hu
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Jia Zhu
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Xuebin Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| |
Collapse
|
5
|
Yang X, Tang J, Song Z, Li W, Gong X, Liu W. Enhancing the anti-biofouling property of solar evaporator through the synergistic antibacterial effect of lignin and nano silver. Int J Biol Macromol 2024; 268:131953. [PMID: 38685536 DOI: 10.1016/j.ijbiomac.2024.131953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Solar desalination is an effective solution to address the global water scarcity issue. However, biofouling poses a significant challenge for solar evaporators due to the presence of bacteria in seawater. In this study, an anti-biofouling evaporator was constructed using the synergistic antibacterial effect of lignin and silver nanoparticles (AgNPs). The AgNPs were easily synthesized using lignin as reductant under mild reaction conditions. Subsequently, the Lignin-AgNPs solution was integrated into polyacrylamide hydrogel (PAAm) without any purification steps, resulting in the formation of Lignin/AgNPs-PAAm (LAg-PAAm). Under the combined action of AgNPs and the hydroquinone groups present in oxidized lignin, LAg-PAAm achieved over 99 % disinfection efficiency within 1 h, effectively preventing biofilm formation in pore channels of solar evaporators. The anti-biofouling solar evaporator demonstrated an evaporation rate of 1.85 kg m-2 h-1 under 1 sun irradiation, and maintained stable performance for >30 days due to its high efficient bactericidal effect. Furthermore, it also exhibited exceptional salt-rejection capability attributed to its superior hydrophilicity.
Collapse
Affiliation(s)
- Xiaoqin Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science and Technology (Ministry of Education), Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Jiebin Tang
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science and Technology (Ministry of Education), Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Institute for Advanced Interdisciplinary Research (iAIR), School of Chemitry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Zhaoping Song
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science and Technology (Ministry of Education), Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350108, China.
| | - Wei Li
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science and Technology (Ministry of Education), Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xi Gong
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science and Technology (Ministry of Education), Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Wenxia Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science and Technology (Ministry of Education), Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
6
|
Tian Y, Jiang Y, Zhu R, Yang X, Wu D, Wang X, Yu J, Li Y, Gao T, Li F. Solar-Driven Multistage Device Integrating Dropwise Condensation and Guided Water Transport for Efficient Freshwater and Salt Collection. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7335-7345. [PMID: 38626301 DOI: 10.1021/acs.est.3c10450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Interfacial solar vapor generation (ISVG) is an emerging technology to alleviate the global freshwater crisis. However, high-cost, low freshwater collection rate, and salt-blockage issues significantly hinder the practical application of solar-driven desalination devices based on ISVG. Herein, with a low-cost copper plate (CP), nonwoven fabric (NWF), and insulating ethylene-vinyl acetate foam (EVA foam), a multistage device is elaborately fabricated for highly efficient simultaneous freshwater and salt collection. In the designed solar-driven device, a superhydrophobic copper plate (SH-CP) serves as the condensation layer, facilitating rapid mass and heat transfer through dropwise condensation. Moreover, the hydrophilic NWF is designed with rational hydrophobic zones and specific high-salinity solution outlets (Design-NWF) to act as the water evaporation layer and facilitate directional salt collection. As a result, the multistage evaporator with eight stages exhibits a high water collection rate of 2.25 kg m-2 h-1 under 1 sun irradiation. In addition, the desalination device based on the eight-stage evaporator obtains a water collection rate of 13.44 kg m-2 and a salt collection rate of 1.77 kg m-2 per day under natural irradiation. More importantly, it can maintain a steady production for 15 days without obvious performance decay. This bifunctional multistage device provides a feasible and efficient approach for simultaneous desalination and solute collection.
Collapse
Affiliation(s)
- Yankuan Tian
- Shanghai Frontiers Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Yifei Jiang
- Shanghai Frontiers Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Ruishu Zhu
- Innovation Center for Textile Science & Technology, Donghua University, Shanghai 201620, People's Republic of China
| | - Xin Yang
- Shanghai Frontiers Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Dequn Wu
- Shanghai Frontiers Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Xueli Wang
- Innovation Center for Textile Science & Technology, Donghua University, Shanghai 201620, People's Republic of China
| | - Jianyong Yu
- Innovation Center for Textile Science & Technology, Donghua University, Shanghai 201620, People's Republic of China
| | - Yiju Li
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
| | - Tingting Gao
- Shanghai Frontiers Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Faxue Li
- Shanghai Frontiers Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| |
Collapse
|
7
|
Yang Y, He Y, Yang S, Dong D, Zhang J, Ding J, Zhang J, Chen YM. Tough, durable and saline-tolerant CNT@Gel-nacre nanocomposite for interfacial solar steam generation. J Colloid Interface Sci 2023; 650:182-192. [PMID: 37402324 DOI: 10.1016/j.jcis.2023.06.148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/08/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023]
Abstract
Solar-driven interfacial evaporation materials based on nanocomposite hydrogels have emerged for seawater desalination. Nevertheless, the issue of mechanical degradation derived from the swelling behavior of hydrogel is often seriously underestimated, which strongly hinders the practical application for long-term solar vapor generation, especially in high-salinity brine. Herein, a novel CNT@Gel-nacre with enhanced capillary pumping design has been proposed and fabricated for tough and durable solar-driven evaporator through uniformly doping carbon nanotubes (CNTs) into the tough gel-nacre. Particularly, the salting out process gives rise to volume shrinkage and phase separation of polymer chains, endowing the nanocomposite hydrogel with significantly enhanced mechanical properties while simultaneously rendering more compact microchannels for water transportation, boosting the capillary pumping. Based on this unique design, the gel-nacre nanocomposite exhibits outstanding mechanical performances (13.41 MPa strength, 55.60 MJ m-3 toughness), especially mechanical durability in high salinity brine for long-term service. Furthermore, excellent water evaporation rate of 1.31 kg m-2h-1 and conversion efficiency of 93.5% in 3.5 wt% sodium chloride solution, as well as stable cycling without salt accumulation can be achieved. This work demonstrates an effective strategy for achieving solar-driven evaporator with superior mechanical properties and durability even in brine environment, showing huge potentials in long-term seawater desalination.
Collapse
Affiliation(s)
- Yang Yang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Yuan He
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Sihui Yang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Diandian Dong
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Jingjing Zhang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Jiansen Ding
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Jingwen Zhang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Yong Mei Chen
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China.
| |
Collapse
|
8
|
Wang S, Xiao C, Lu S, Guo Y, Wu S, Li H, Chen L. Starch hydrogel with Poly(ionic liquid)s grafted SiO 2 for efficient desalination and wastewater purification. J Colloid Interface Sci 2023; 656:358-366. [PMID: 37995405 DOI: 10.1016/j.jcis.2023.11.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Solar-driven interface evaporation is promising to alleviate the fresh water scarcity in an economical and sustainable way. However, most of currently reported photothermal conversion materials (PMs) are time-consuming costly, inefficient, or complex preparation process, which causes low utilization efficiency, and difficult to be practical for large-scale application. To solve this problem, a facile and green strategy for preparing hydrogel evaporator (SiO2-PILs/starch) by grafting poly(ionic liquid)s onto silica and doping it with starch is proposed. Benefiting from the broad solar absorption (ca.91 %), strong hydrophilic, and superb salt tolerance and stain resistance of SiO2-PILs/starch. Under 1 sun irradiation, the SiO2-PILs/starch achieves a remarkable solar evaporation efficiency of 91.72 % in pure water and 81.45 % in 20 wt% NaCl solution, respectively. In particular, SiO2-PILs/starch exhibited outstanding long-term salt stability (8 h) and crystalline salt can be self-cleaned in the dark environment. It is worth noting that the prepared hydrogel also possesses a satisfied evaporation efficiency of 75.84 % in oily wastewater (3 wt% n-hexadecane solution) due to its excellent water retention. These properties of SiO2-PILs/starch may provide desperately needed solution for efficient desalination and guaranteed high applicability and durability in practice.
Collapse
Affiliation(s)
- Shanshan Wang
- College of Chemical Engineering, Experimental teaching department, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Xincun 1, Lanzhou 730030, PR China
| | - Chaohu Xiao
- College of Chemical Engineering, Experimental teaching department, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Xincun 1, Lanzhou 730030, PR China
| | - Shun Lu
- College of Chemical Engineering, Experimental teaching department, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Xincun 1, Lanzhou 730030, PR China
| | - Yuyan Guo
- College of Chemical Engineering, Experimental teaching department, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Xincun 1, Lanzhou 730030, PR China
| | - Shang Wu
- College of Chemical Engineering, Experimental teaching department, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Xincun 1, Lanzhou 730030, PR China
| | - Hailing Li
- College of Chemical Engineering, Experimental teaching department, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Xincun 1, Lanzhou 730030, PR China
| | - Lihua Chen
- College of Chemical Engineering, Experimental teaching department, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Xincun 1, Lanzhou 730030, PR China.
| |
Collapse
|
9
|
Liu J, Wang L, Jia T, Wang Z, Xu T, An N, Zhao M, Zhang R, Zhao X, Li C. Boosting Water Evaporation by Construction of Photothermal Materials with a Biomimetic Black Soil Aggregate Structure. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37609-37618. [PMID: 37523855 DOI: 10.1021/acsami.3c09288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Solar-driven interfacial evaporation is considered an efficient way to get fresh water from seawater. However, the low evaporation rate, surface salt crystallization, and low energy collection of the photothermal evaporation layer limit its further application in an outdoor freshwater field. And the aggregate structure design of the material itself is often ignored in solar-driven water evaporation. Black soil (BS), with a unique soil aggregate structure, is rich in tubular pores, which can be used for multilevel sunlight utilization and good capillary water transport. Based on the extraordinary photothermal properties and pumping capacity of BS, a reasonable unidirectional salt-collecting device is designed, which can realize long-term collection of mineral salts and continuous evaporation of seawater and generate electric energy in the continuous evaporation. Inspired by the unique aggregate structure, the photothermal material doping of halloysite and nigrosin will simulate the generation of this aggregate structure and retain a good water transport effect while obtaining multistage utilization of sunlight. The solar-driven evaporation rate of a nigrosin-halloysite solar steam generator is 1.75 kg m-2 h-1 under 1 kW m-2 mimic solar radiation; it can achieve stable salt leaching-induced voltage generation of 240 mV. This work demonstrates not only a solar evaporator that can continuously achieve desalination but also the design strategy of BS-like aggregate photothermal materials, which promotes the development of low-cost resource recovery and energy generation for practical outdoor seawater desalination.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry Based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Luoqing Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry Based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Tao Jia
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry Based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Zuoyu Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry Based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Tao Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry Based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Nan An
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry Based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Meng Zhao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry Based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Ruoyu Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry Based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Xiuhua Zhao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry Based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Chenglong Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| |
Collapse
|
10
|
Choi J, Na J, Jeon S. Ion-selective solar crystallizer with rivulets. iScience 2023; 26:106926. [PMID: 37378321 PMCID: PMC10291469 DOI: 10.1016/j.isci.2023.106926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Bulk evaporation of brine is a sustainable method to obtain minerals with the inherent advantage of selective crystallization based on ion solubility differences, but it has a critical drawback of requiring a prolonged time period. In contrast, solar crystallizers based on interfacial evaporation can reduce the processing time, but their ion-selectivity may be limited due to insufficient re-dissolution and crystallization processes. This study presents the first-ever development of an ion-selective solar crystallizer featuring an asymmetrically corrugated structure (A-SC). The asymmetric mountain structure of A-SC creates V-shaped rivulets that facilitate solution transport, promoting not only evaporation but also the re-dissolution of salt formed on the mountain peaks. When A-SC was employed to evaporate a solution containing a mixture of Na+ and K+ ions, the evaporation rate was 1.51 kg/m2h and the relative concentration of Na+ to K+ in the crystallized salt was 4.45 times higher than that in the initial solution.
Collapse
Affiliation(s)
- Jihun Choi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Jaehyun Na
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Sangmin Jeon
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| |
Collapse
|
11
|
Sun MH, Li C, Liu J, Min P, Yu ZZ, Li X. Three-Dimensional Mirror-Assisted and Concave Pyramid-Shaped Solar-Thermal Steam Generator for Highly Efficient and Stable Water Evaporation and Brine Desalination. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37248165 DOI: 10.1021/acsami.3c02087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Although significant advances have been achieved in developing solar-driven water evaporators for seawater desalination, there is still room for simultaneously enhancing water evaporation efficiency, salt resistance, and utilization of solar energy. Herein, for the first time, we demonstrate a highly efficient three-dimensional (3D) mirror-assisted and concave pyramid-shaped solar-thermal water evaporation system for high-yield and long-term desalination of seawater and brine water, which consists of a 3D concave pyramid-shaped solar-thermal architecture on the basis of polypyrrole-coated nonwoven fabrics (PCNFs), a 3D mirror array, a self-floating polystyrene foam layer, and a tail-like PCNF for upward transport of water. The 3D concave pyramid-shaped solar-thermal architecture enables multiple solar light reflections to absorb more solar energy, while the 3D mirror-assisted solar light enhancement design can activate the solar-thermal energy conversion of the back side of the concave pyramid-shaped PCNF architecture to improve the solar-thermal energy conversion efficiency. Crucially, selective accumulation of the precipitated salts on the back side of the concave pyramid-shaped architecture is realized, ensuring a favorable salt-resistant feature. The 3D mirror-assisted and concave pyramid-shaped solar-driven water evaporation system achieves a record high water evaporation rate of 4.75 kg m-2 h-1 under 1-sun irradiation only and exhibits long-term desalination stability even when evaporating high-salinity brine waters, demonstrating its great applicability and reliability for high-yield solar-driven desalination of seawater and high-salinity brine water.
Collapse
Affiliation(s)
- Ming-Hong Sun
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Changjun Li
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ji Liu
- School of Chemistry, CRANN and AMBER, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Peng Min
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhong-Zhen Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaofeng Li
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|