1
|
Yang Z, Lyu J, Qian J, Wang Y, Liu Z, Yao Q, Chen T, Cao Y, Xie J. Glutathione: a naturally occurring tripeptide for functional metal nanomaterials. Chem Sci 2025; 16:6542-6572. [PMID: 40134663 PMCID: PMC11931393 DOI: 10.1039/d4sc08599j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/08/2025] [Indexed: 03/27/2025] Open
Abstract
Glutathione (GSH), a naturally occurring tripeptide, plays an important role as an intracellular antioxidant in the physiological microenvironment and participates in redox balance, detoxification, and cellular and disease regulation. The unique structural features of GSH, including the reductive thiol and multiple coordination sites (carboxyl and amino group), make it a significant molecule not only in the physiological context but also as a ligand in the development of functional metal nanomaterials. In this context, GSH's role as a protective ligand and reducing agent in surface etching and ligand exchange reactions has been explored at the molecular level, expanding the diversity of GSH-protected metal nanomaterials. With photoluminescence (PL) as one of its most intriguing properties, investigations into GSH's influence on PL properties emphasize its multifaceted coordination capabilities in surface coating, charge transfer from electron-rich functional groups, chirality arising from its unique structure, and available conjugation sites. Moreover, the biocompatibility of GSH, combined with the synergistic effect of metal components, renders GSH-protected nanomaterials an "Inseparable Duo" highly suited for applications in bio-sensing, bio-imaging via PL radiative decay and anti-cancer bio-therapies through photothermal therapy, photodynamic therapy, and radiotherapy. By exploring the multifaceted roles of GSH, this Perspective aims to highlight pathways including the encouragement of deeper synthetic exploration, innovative design at the bio-nano interface, and expanded nanobiomedical applications.
Collapse
Affiliation(s)
- Zhucheng Yang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Fuzhou 350207 P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore Singapore 117585 Singapore
| | - Jingkuan Lyu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Fuzhou 350207 P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore Singapore 117585 Singapore
| | - Jing Qian
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Fuzhou 350207 P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore Singapore 117585 Singapore
| | - Yifan Wang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Fuzhou 350207 P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore Singapore 117585 Singapore
| | - Zhenghan Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Fuzhou 350207 P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore Singapore 117585 Singapore
| | - Qiaofeng Yao
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University Tianjin 300072 P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 P. R. China
| | - Tiankai Chen
- School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen) Shenzhen 518172 P. R. China
| | - Yitao Cao
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), Key Lab. of ETESPG (GHEI), South China Normal University Guangzhou 510006 P. R. China
| | - Jianping Xie
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Fuzhou 350207 P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore Singapore 117585 Singapore
| |
Collapse
|
2
|
Mondal S, Karmakar T. Unveiling Interactions of a Peptide-Bound Monolayer-Protected Metal Nanocluster with a Lipid Bilayer. J Phys Chem Lett 2025; 16:3351-3358. [PMID: 40131821 DOI: 10.1021/acs.jpclett.5c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Monolayer-protected atomically precise nanoclusters (MPCs) are potential candidates for drug delivery because of their unique, versatile, and tunable physiochemical properties. The rational design of nanosized drug carriers relies on a deep understanding of their molecular-level interactions with cell membranes and other biological entities. In this work, we applied coarse-grained molecular dynamics and umbrella sampling simulations to investigate the interactions between the magainin 2 (MG2)-loaded Au144(MPA)60 (MPA = 5-mercaptopentanoic acid) nanocluster (MG2-MPC) and a model anionic tumor cell membrane. Electrostatic interactions between MPC ligands and MG2's positively charged residues with the polar headgroups of lipids play a crucial role in the adhesion of the MG2-MPC complex to the membrane surface. Furthermore, MG2-MPCs self-assemble in the linear trimeric supramolecular aggregate on the bilayer surface, indicating a possible mechanism of MPC's action in peptide delivery to the membrane.
Collapse
Affiliation(s)
- Soumya Mondal
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Tarak Karmakar
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
3
|
Sharma P, Yuan H, Verma R, Mehla N, Hemant H, Sagar P, Comby-Zerbino C, Russier-Antoine I, Moulin C, Brevet PF, Singhal N, Neelakandan PP, Vaidya S, Fu C, Ali ME, Srivastava R, Whittaker A, Antoine R, Shanavas A. Intrinsically Pro-Apoptotic Gold Nanoclusters for Optical Tracing and Inhibition of Solid Tumors. Adv Healthc Mater 2025:e2405005. [PMID: 40109221 DOI: 10.1002/adhm.202405005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/22/2025] [Indexed: 03/22/2025]
Abstract
Intrinsically theranostic metal nanoclusters are rare unless the stabilizing ligands exhibit therapeutic properties. A promising class of quasi-molecular, near-infrared (NIR) emitting, cytotoxic gold nanoclusters, coined as AXE (Au eXcitable and Eliminable) stabilized through terminal thioester groups on fluorinated, and crosslinked polymers, is presented for simultaneous bioimaging & therapy. Nano Variable Temperature-Electrospray ionization mass spectrometry analysis of these aqueous stable nanoclusters revealed 5 to 7 core gold atoms, with SAXS measurement confirming average size to be under 1 nm, consistent with the theoretical maximum for few atom planar gold clusters. Despite its small size, AXE exhibits a remarkable Stoke shift of ≈470 nm and emission range spanning 700 to 1100 nm. Fluorination notably enhanced the quantum yield by up to twofold, attributed to charge transfer from the fluorinated monomer to the gold core, as indicated by Löwdin charge distribution analysis. The AXE nanocluster demonstrated dose-dependent pro-apoptotic effects on cancer cells while sparing normal cells at lower concentrations. Preclinical evaluation in a breast tumor model confirmed its anticancer efficacy, with intravenous and intraperitoneal administrations significantly inhibiting tumor growth and controlling lung metastasis, surpassing the clinical standard, doxorubicin.
Collapse
Affiliation(s)
- Priyanka Sharma
- Inorganic & Organic Nanomedicine (ION) Lab, Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab, 140306, India
| | - Hao Yuan
- Institut Lumière Matière (ILM) UMR 5306, Université Claude Bernard Lyon 1, CNRS, Univ Lyon, Villeurbanne, F-69100, France
| | - Ruchi Verma
- Institute of Nano Science and Technology, Sector 81, Knowledge City, Mohali, Punjab, 140306, India
| | - Nisha Mehla
- Institute of Nano Science and Technology, Sector 81, Knowledge City, Mohali, Punjab, 140306, India
| | - Hemant Hemant
- Institute of Nano Science and Technology, Sector 81, Knowledge City, Mohali, Punjab, 140306, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Poonam Sagar
- National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar, Punjab, 140308, India
| | - Clothilde Comby-Zerbino
- Institut Lumière Matière (ILM) UMR 5306, Université Claude Bernard Lyon 1, CNRS, Univ Lyon, Villeurbanne, F-69100, France
| | - Isabelle Russier-Antoine
- Institut Lumière Matière (ILM) UMR 5306, Université Claude Bernard Lyon 1, CNRS, Univ Lyon, Villeurbanne, F-69100, France
| | - Christophe Moulin
- Institut Lumière Matière (ILM) UMR 5306, Université Claude Bernard Lyon 1, CNRS, Univ Lyon, Villeurbanne, F-69100, France
| | - Pierre-François Brevet
- Institut Lumière Matière (ILM) UMR 5306, Université Claude Bernard Lyon 1, CNRS, Univ Lyon, Villeurbanne, F-69100, France
| | - Nitin Singhal
- National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar, Punjab, 140308, India
| | - Prakash P Neelakandan
- Institute of Nano Science and Technology, Sector 81, Knowledge City, Mohali, Punjab, 140306, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sonalika Vaidya
- Institute of Nano Science and Technology, Sector 81, Knowledge City, Mohali, Punjab, 140306, India
| | - Changkui Fu
- Australian Institute of Bioengineering and Nanotechnology (AIBN) and Australian Research Council Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Md Ehesan Ali
- Institute of Nano Science and Technology, Sector 81, Knowledge City, Mohali, Punjab, 140306, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Andrew Whittaker
- Australian Institute of Bioengineering and Nanotechnology (AIBN) and Australian Research Council Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Rodolphe Antoine
- Institut Lumière Matière (ILM) UMR 5306, Université Claude Bernard Lyon 1, CNRS, Univ Lyon, Villeurbanne, F-69100, France
| | - Asifkhan Shanavas
- Inorganic & Organic Nanomedicine (ION) Lab, Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab, 140306, India
| |
Collapse
|
4
|
Zhang I, Maysinger D, Beus M, Mravak A, Yu Z, Perić Bakulić M, Dion PA, Rouleau GA, Bonačić-Koutecký V, Antoine R, Sanader Maršić Ž. Gold nanoclusters Au 25AcCys 18 normalize intracellular ROS without increasing cytoplasmic alarmin acHMGB1 abundance in human microglia and neurons. NANOSCALE 2025; 17:1092-1104. [PMID: 39607703 DOI: 10.1039/d4nr03512g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
This study focuses on the modulatory effects of gold nanoclusters with 25 gold atoms and 18 acetyl cysteines (Au25AcCys18) in human microglia, human iPSC-derived neurons and SH-SY5Y differentiated human neuronal cells. The combination of chemical, biological, and computational methods shows the well-retained viability of these human cells treated with Au25AcCys18, interactions between Au25AcCys18 and transcription factor TFEB (computational approach), interactions between TFEB and HMGB1 (proximity ligation assay and molecular modeling using AlphaFold), modulation of the abundance and location of acHMGB1 by Au25AcCys18 (immunocytochemistry), and the reduction of ROS in cells treated with Au25AcCys18 (CellROX live imaging). These novel findings in human neural cells, particularly neurons, encourage further studies in experimental animal models of neurological disorders and/or human organoids to exploit the unique structural and photophysical properties of gold nanoclusters and to better understand their ability to modulate molecular mechanisms in human cells.
Collapse
Affiliation(s)
- Issan Zhang
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, H3G 1Y6 Montreal, Canada.
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, H3G 1Y6 Montreal, Canada.
| | - Maja Beus
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, H3G 1Y6 Montreal, Canada.
| | - Antonija Mravak
- Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia.
| | - Ziqi Yu
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Martina Perić Bakulić
- Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
- Center of Excellence for Science and Technology, Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| | - Patrick A Dion
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Guy A Rouleau
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Vlasta Bonačić-Koutecký
- Center of Excellence for Science and Technology, Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
- Chemistry Department, Humboldt University of Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Rodolphe Antoine
- Institut Lumière Matière, CNRS UMR 5306, Université Claude Bernard Lyon 1, Univ. Lyon, 69622 Villeurbanne Cedex, France
| | - Željka Sanader Maršić
- Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia.
- Center of Excellence for Science and Technology, Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| |
Collapse
|
5
|
Lin P, Lu Y, Zheng J, Lin Y, Zhao X, Cui L. Strategic disruption of cancer's powerhouse: precise nanomedicine targeting of mitochondrial metabolism. J Nanobiotechnology 2024; 22:318. [PMID: 38849914 PMCID: PMC11162068 DOI: 10.1186/s12951-024-02585-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/26/2024] [Indexed: 06/09/2024] Open
Abstract
Mitochondria occupy a central role in the biology of most eukaryotic cells, functioning as the hub of oxidative metabolism where sugars, fats, and amino acids are ultimately oxidized to release energy. This crucial function fuels a variety of cellular activities. Disruption in mitochondrial metabolism is a common feature in many diseases, including cancer, neurodegenerative conditions and cardiovascular diseases. Targeting tumor cell mitochondrial metabolism with multifunctional nanosystems emerges as a promising strategy for enhancing therapeutic efficacy against cancer. This review comprehensively outlines the pathways of mitochondrial metabolism, emphasizing their critical roles in cellular energy production and metabolic regulation. The associations between aberrant mitochondrial metabolism and the initiation and progression of cancer are highlighted, illustrating how these metabolic disruptions contribute to oncogenesis and tumor sustainability. More importantly, innovative strategies employing nanomedicines to precisely target mitochondrial metabolic pathways in cancer therapy are fully explored. Furthermore, key challenges and future directions in this field are identified and discussed. Collectively, this review provides a comprehensive understanding of the current state and future potential of nanomedicine in targeting mitochondrial metabolism, offering insights for developing more effective cancer therapies.
Collapse
Affiliation(s)
- Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
6
|
Wei X, Han R, Gao Y, Song P, Guo Z, Hou Y, Yu J, Tang K. Boosting Energy Deprivation by Synchronous Interventions of Glycolysis and Oxidative Phosphorylation for Bioenergetic Therapy Synergetic with Chemodynamic/Photothermal Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401738. [PMID: 38489668 PMCID: PMC11187878 DOI: 10.1002/advs.202401738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Indexed: 03/17/2024]
Abstract
Bioenergetic therapy is emerging as a promising therapeutic approach. However, its therapeutic effectiveness is restricted by metabolic plasticity, as tumor cells switch metabolic phenotypes between glycolysis and oxidative phosphorylation (OXPHOS) to compensate for energy. Herein, Metformin (MET) and BAY-876 (BAY) co-loaded CuFe2O4 (CF) nanoplatform (CFMB) is developed to boost energy deprivation by synchronous interventions of glycolysis and OXPHOS for bioenergetic therapy synergetic with chemodynamic/photothermal therapy (CDT/PTT). The MET can simultaneously restrain glycolysis and OXPHOS by inhibiting hexokinase 2 (HK2) activity and damaging mitochondrial function to deprive energy, respectively. Besides, BAY blocks glucose uptake by inhibiting glucose transporter 1 (GLUT1) expression, further potentiating the glycolysis repression and thus achieving much more depletion of tumorigenic energy sources. Interestingly, the upregulated antioxidant glutathione (GSH) in cancer cells triggers CFMB degradation to release Cu+/Fe2+ catalyzing tumor-overexpressed H2O2 to hydroxyl radical (∙OH), both impairing OXPHOS and achieving GSH-depletion amplified CDT. Furthermore, upon near-infrared (NIR) light irradiation, CFMB has a photothermal conversion capacity to kill cancer cells for PTT and improve ∙OH production for enhanced CDT. In vivo experiments have manifested that CFMB remarkably suppressed tumor growth in mice without systemic toxicity. This study provides a new therapeutic modality paradigm to boost bioenergetic-related therapies.
Collapse
Affiliation(s)
- Xiangjun Wei
- Institute of Mass SpectrometrySchool of Materials Science & Chemical EngineeringNingbo UniversityNingbo315211China
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical ApplicationZhenhai Institute of Mass SpectrometryNingbo315211China
| | - Renlu Han
- Institute of Mass SpectrometrySchool of Materials Science & Chemical EngineeringNingbo UniversityNingbo315211China
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical ApplicationZhenhai Institute of Mass SpectrometryNingbo315211China
| | - Yun Gao
- Institute of Mass SpectrometrySchool of Materials Science & Chemical EngineeringNingbo UniversityNingbo315211China
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical ApplicationZhenhai Institute of Mass SpectrometryNingbo315211China
| | - Pengxin Song
- Institute of Mass SpectrometrySchool of Materials Science & Chemical EngineeringNingbo UniversityNingbo315211China
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical ApplicationZhenhai Institute of Mass SpectrometryNingbo315211China
| | - Zhen Guo
- Institute of Mass SpectrometrySchool of Materials Science & Chemical EngineeringNingbo UniversityNingbo315211China
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical ApplicationZhenhai Institute of Mass SpectrometryNingbo315211China
| | - Yafei Hou
- Department of Microelectronics Science and EngineeringSchool of Physical Science and TechnologyNingbo UniversityNingbo315211China
| | - Jiancheng Yu
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical ApplicationZhenhai Institute of Mass SpectrometryNingbo315211China
- Faculty of Electrical Engineering and Computer ScienceNingbo UniversityNingbo315211China
| | - Keqi Tang
- Institute of Mass SpectrometrySchool of Materials Science & Chemical EngineeringNingbo UniversityNingbo315211China
- Faculty of Electrical Engineering and Computer ScienceNingbo UniversityNingbo315211China
| |
Collapse
|
7
|
Shen H, Xu J, Fu Z, Wei X, Kang X, Shi W, Zhu M. Photoluminescence Quenching of Hydrophobic Ag 29 Nanoclusters Caused by Molecular Decoupling during Aqueous Phase Transfer and EmissionRecovery through Supramolecular Recoupling. Angew Chem Int Ed Engl 2024; 63:e202317995. [PMID: 38191987 DOI: 10.1002/anie.202317995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
Exploiting emissive hydrophobic nanoclusters for hydrophilic applications remains a challenge because of photoluminescence (PL) quenching during phase transfer. In addition, the mechanism underlying PL quenching remains unclear. In this study, the PL-quenching mechanism was examined by analyzing the atomically precise structures and optical properties of a surface-engineered Ag29 nanocluster with an all-around-carboxyl-functionalized surface. Specifically, phase-transfer-triggered PL quenching was justified as molecular decoupling, which directed an unfixed cluster surface and weakened the radiative transition. Furthermore, emission recovery of the quenched nanoclusters was accomplished by using a supramolecular recoupling approach through the glutathione-addition-induced aggregation of cluster molecules, wherein the restriction of intracluster motion and intercluster rotation strengthened the radiative transition of the clusters. The results of this work offer a new perspective on structure-emission correlations for atomically precise nanoclusters and hopefully provide insight into the fabrication of highly emissive cluster-based nanomaterials for downstream hydrophilic applications.
Collapse
Affiliation(s)
- Honglei Shen
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Jiawei Xu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Ziwei Fu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Xiao Wei
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Wenxiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| |
Collapse
|
8
|
Tiwari V, Garg S, Karmakar T. Insights into the Interactions of Peptides with Monolayer-Protected Metal Nanoclusters. ACS APPLIED BIO MATERIALS 2024; 7:685-691. [PMID: 36820798 DOI: 10.1021/acsabm.2c00997] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Monolayer-protected atomically precise metal nanoclusters (MPCs) have potential applications in catalysis, imaging, and drug delivery. Understanding their interactions with biomolecules such as peptides is of paramount interest for their use in cell imaging and drug delivery. Here we have carried out atomistic molecular dynamics simulations to investigate the interactions between MPCs and an anticancer peptide, melittin. Melittin gets attached to the MPCs surface by the formation of multiple hydrogen bonds between its amino acid residues with MPCs ligands. Additionally, the positively charged Lys, Arg, and peptide's N-terminal strongly anchor the peptide to the MPC metal surface, providing extra stabilization.
Collapse
Affiliation(s)
- Vikas Tiwari
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, 110016 New Delhi, India
| | - Sonali Garg
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, 110016 New Delhi, India
| | - Tarak Karmakar
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, 110016 New Delhi, India
| |
Collapse
|
9
|
Dai J, Lei J, Zhang T, You J, Qin D, Wu Y, Liu Y, Zheng Y. Mercaptopyrimidine-templated gold nanoclusters for antithrombotic therapy. J Mater Chem B 2024; 12:1775-1781. [PMID: 38284142 DOI: 10.1039/d3tb02652c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Here we report for the first time that mercaptopyrimidine-templated gold nanoclusters (DAMP-AuNCs) can be used as a novel anticoagulant candidate for the design of antithrombotic drugs. Anticoagulant mechanisms revealed that DAMP-AuNCs significantly inhibited thrombus formation by interacting with fibrinogen. Carrageenan-induced mice tail thrombosis model experiments showed that DAMP-AuNCs had antithrombotic efficacy comparable to heparin in vivo. More importantly, these ultrasmall AuNCs possess excellent blood compatibility and only induce negligible bleeding side effects. Our study is a successful attempt at developing novel antithrombotic agents with high biosafety.
Collapse
Affiliation(s)
- Jianghong Dai
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou 646000, China.
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jiaojiao Lei
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou 646000, China.
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Tianyan Zhang
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou 646000, China.
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jingcan You
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou 646000, China.
| | - Dalian Qin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Ya Wu
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yong Liu
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Youkun Zheng
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou 646000, China.
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
10
|
Wang W, Liu T, Zhao T, Sun D, Li H, Xing P, Xin X. Self-Assembly of Atomically Precise Silver Nanoclusters in Crowded Colloids into Ultra-Long Ribbons with Tunable Supramolecular Chirality. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305102. [PMID: 37985804 PMCID: PMC10767393 DOI: 10.1002/advs.202305102] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/22/2023] [Indexed: 11/22/2023]
Abstract
Atomically precise metal nanoclusters (NCs) emerge as fascinating synthons in self-assembled materials. The self-assembly of metal NCs are highly sensitive to the environment because they have an inorganic-organic hybridized structure and a relatively complicated conformation. Here, it is shown that when confined in crowded colloids, a water-soluble Ag9 -cored nanocluster (Ag9 -NC) can self- assemble into ultra-long (up to millimeters) and photoluminescent ribbons with high flexibility. The ribbon contains rectangularly organized columns of Ag9 -NCs and can undergo secondary self-assembly to form bundled and branched structures. Formation of ribbons is observed in all the tested colloids, including lyotropic liquid crystals and disordered, three-dimensional network. The high viscosity/elasticity of the crowded colloids weakens gravity-induced sedimentation of the ribbons, leading to the formation of an interesting class of inorganic-organic composite materials where the hard Ag-containing skeleton strengthens the soft matter. The simultaneously occurring symmetry breaking during the self-assembly of Ag9 -NCs gives uncontrolled supramolecular chirality, which can be tuned through the majority rule and soldier-and-sergeant rule by the introduction of chiral seeds. The regulated chirality and the intrinsic photoluminescence of the Ag9 -NCs ribbons impart the composite material circularly polarized luminescence, opening the door for a variety of potential applications.
Collapse
Affiliation(s)
- Wenjuan Wang
- Key Laboratory of Colloid and Interface ChemistryMinistry of EducationNational Engineering Research Center for Colloidal MaterialsSchool of Chemistry and Chemical EngineeringShandong UniversityJi'nan250100P. R. China
| | - Tong Liu
- Key Laboratory of Colloid and Interface ChemistryMinistry of EducationNational Engineering Research Center for Colloidal MaterialsSchool of Chemistry and Chemical EngineeringShandong UniversityJi'nan250100P. R. China
| | - Ting Zhao
- Key Laboratory of Colloid and Interface ChemistryMinistry of EducationNational Engineering Research Center for Colloidal MaterialsSchool of Chemistry and Chemical EngineeringShandong UniversityJi'nan250100P. R. China
| | - Di Sun
- Key Laboratory of Colloid and Interface ChemistryMinistry of EducationNational Engineering Research Center for Colloidal MaterialsSchool of Chemistry and Chemical EngineeringShandong UniversityJi'nan250100P. R. China
| | - Hongguang Li
- Key Laboratory of Colloid and Interface ChemistryMinistry of EducationNational Engineering Research Center for Colloidal MaterialsSchool of Chemistry and Chemical EngineeringShandong UniversityJi'nan250100P. R. China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface ChemistryMinistry of EducationNational Engineering Research Center for Colloidal MaterialsSchool of Chemistry and Chemical EngineeringShandong UniversityJi'nan250100P. R. China
| | - Xia Xin
- Key Laboratory of Colloid and Interface ChemistryMinistry of EducationNational Engineering Research Center for Colloidal MaterialsSchool of Chemistry and Chemical EngineeringShandong UniversityJi'nan250100P. R. China
| |
Collapse
|
11
|
Shi Y, Wu Z, Qi M, Liu C, Dong W, Sun W, Wang X, Jiang F, Zhong Y, Nan D, Zhang Y, Li C, Wang L, Bai X. Multiscale Bioresponses of Metal Nanoclusters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2310529. [PMID: 38145555 DOI: 10.1002/adma.202310529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/21/2023] [Indexed: 12/27/2023]
Abstract
Metal nanoclusters (NCs) are well-recognized novel nano-agents that hold great promise for applications in nanomedicine because of their ultrafine size, low toxicity, and high renal clearance. As foreign substances, however, an in-depth understanding of the bioresponses to metal NCs is necessary but is still far from being realized. Herein, this review is deployed to summarize the biofates of metal NCs at various biological levels, emphasizing their multiscale bioresponses at the molecular, cellular, and organismal levels. In the parts-to-whole schema, the interactions between biomolecules and metal NCs are discussed, presenting typical protein-dictated nano-bio interfaces, hierarchical structures, and in vivo trajectories. Then, the accumulation, internalization, and metabolic evolution of metal NCs in the cellular environment and as-imparted theranostic functionalization are demonstrated. The organismal metabolism and transportation processes of the metal NCs are subsequently distilled. Finally, this review ends with the conclusions and perspectives on the outstanding issues of metal NC-mediated bioresponses in the near future. This review is expected to provide inspiration for tailoring the customization of metal NC-based nano-agents to meet practical requirements in different sectors of nanomedicine.
Collapse
Affiliation(s)
- Yujia Shi
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Zhennan Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Manlin Qi
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Chengyu Liu
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Weinan Dong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Wenyue Sun
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xue Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Feng Jiang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yuan Zhong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Di Nan
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yu Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Chunyan Li
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Lin Wang
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xue Bai
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| |
Collapse
|
12
|
Wang J, Li P, Wang C, Liu N, Xing D. Molecularly or atomically precise nanostructures for bio-applications: how far have we come? MATERIALS HORIZONS 2023; 10:3304-3324. [PMID: 37365977 DOI: 10.1039/d3mh00574g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
A huge variety of nanostructures are promising for biomedical applications, but only a few have been practically applied. Among the various reasons, the limited structural preciseness is a critical one, as it increases the difficulty in product quality control, accurate dosing, and ensuring the repeatability of material performance. Constructing nanoparticles with molecule-like preciseness is becoming a new research field. In this review, we focus on the artificial nanomaterials that can currently be molecularly or atomically precise, including DNA nanostructures, some metallic nanoclusters, dendrimer nanoparticles and carbon nanostructures, describing their syntheses, bio-applications and limitations, in view of up-to-date studies. A perspective on their potential for clinical translation is also given. This review is expected to provide a particular rationale for the future design of nanomedicines.
Collapse
Affiliation(s)
- Jie Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Ping Li
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Ning Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
13
|
Tiwari V, Karmakar T. Understanding Molecular Aggregation of Ligand-Protected Atomically-Precise Metal Nanoclusters. J Phys Chem Lett 2023:6686-6694. [PMID: 37463483 DOI: 10.1021/acs.jpclett.3c01770] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Monolayer-protected atomically precise nanoclusters (MPCs) are an important class of molecules due to their unique structural features and diverse applications, including bioimaging, sensors, and drug carriers. Understanding the atomistic and dynamical details of their self-assembly process is crucial for designing system-specific applications. Here, we applied molecular dynamics and on-the-fly probability-based enhanced sampling simulations to study the aggregation of Au25(pMBA)18 MPCs in aqueous and methanol solutions. The MPCs interact via both hydrogen bonds and π-stacks between the aromatic ligands to form stable dimers, oligomers, and crystals. The dimerization free energy profiles reveal a pivotal role of the ligand charged state and solvent mediating the molecular aggregation. Furthermore, MPCs' ligands exhibit suppressed conformational flexibility in the solid phase due to facile intercluster hydrogen bonds and π-stacks. Our work provides unprecedented molecular-level dynamical details of the aggregation process and conformational dynamics of MPCs ligands in solution and crystalline phases.
Collapse
Affiliation(s)
- Vikas Tiwari
- Department of Chemistry, Indian Institute of Technology, Delhi, 110016 New Delhi, India
| | - Tarak Karmakar
- Department of Chemistry, Indian Institute of Technology, Delhi, 110016 New Delhi, India
| |
Collapse
|
14
|
Hany D, Vafeiadou V, Picard D. CRISPR-Cas9 screen reveals a role of purine synthesis for estrogen receptor α activity and tamoxifen resistance of breast cancer cells. SCIENCE ADVANCES 2023; 9:eadd3685. [PMID: 37172090 PMCID: PMC10181187 DOI: 10.1126/sciadv.add3685] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In breast cancer, resistance to endocrine therapies that target estrogen receptor α (ERα), such as tamoxifen and fulvestrant, remains a major clinical problem. Whether and how ERα+ breast cancers switch from being estrogen-dependent to estrogen-independent remains unclear. With a genome-wide CRISPR-Cas9 knockout screen, we identified previously unknown biomarkers and potential therapeutic targets of endocrine resistance. We demonstrate that high levels of PAICS, an enzyme involved in the de novo biosynthesis of purines, can shift the balance of ERα activity to be more estrogen-independent and tamoxifen-resistant. We find that this may be due to elevated activities of cAMP-activated protein kinase A and mTOR, kinases known to phosphorylate ERα specifically and to stimulate its activity. Genetic or pharmacological targeting of PAICS sensitizes tamoxifen-resistant cells to tamoxifen. Addition of purines renders them more resistant. On the basis of these findings, we propose the combined targeting of PAICS and ERα as a new, effective, and potentially safe therapeutic regimen.
Collapse
Affiliation(s)
- Dina Hany
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, CH - 1211 Genève 4, Switzerland
- On leave from: Department of Pharmacology and Therapeutics Faculty of Pharmacy, Pharos University in Alexandria, Alexandria 21311, Egypt
| | - Vasiliki Vafeiadou
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, CH - 1211 Genève 4, Switzerland
| | - Didier Picard
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, CH - 1211 Genève 4, Switzerland
| |
Collapse
|
15
|
Du LQ, Zhang TY, Huang XM, Xu Y, Tan MX, Huang Y, Chen Y, Qin QP. Synthesis and anticancer mechanisms of zinc(II)-8-hydroxyquinoline complexes with 1,10-phenanthroline ancillary ligands. Dalton Trans 2023; 52:4737-4751. [PMID: 36942929 DOI: 10.1039/d3dt00150d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Twenty new zinc(II) complexes with 8-hydroxyquinoline (H-Q1-H-Q6) in the presence of 1,10-phenanthroline derivatives (D1-D10) were synthesized and formulated as [Zn(Q1)2(D1)] (DQ1), [Zn(Q2)2(D2)]·CH3OH (DQ2), [Zn(Q1)2(D3)] (DQ3), [Zn(Q1)2(D4)] (DQ4), [Zn(Q3)2(D5)] (DQ5), [Zn(Q3)2(D4)] (DQ6), [Zn(Q4)2(D5)]·CH3OH (DQ7), [Zn(Q4)2(D6)] (DQ8), [Zn(Q4)2(D3)]·CH3OH (DQ9), [Zn(Q4)2(D1)]·H2O (DQ10), [Zn(Q5)2(D4)] (DQ11), [Zn(Q6)2(D6)]·CH3OH (DQ12), [Zn(Q5)2(D2)]·5CH3OH·H2O (DQ13), [Zn(Q5)2(D7)]·CH3OH (DQ14), [Zn(Q5)2(D8)]·CH2Cl2 (DQ15), [Zn(Q5)2(D9)] (DQ16), [Zn(Q5)2(D1)] (DQ17), [Zn(Q5)2(D5)] (DQ18), [Zn(Q5)2(D10)]·CH2Cl2 (DQ19) and [Zn(Q5)2(D3)] (DQ20). They were characterized using multiple techniques. The cytotoxicity of DQ1-DQ20 was screened using human cisplatin-resistant SK-OV-3/DDP ovarian cancer (SK-OV-3CR) cells and normal hepatocyte (HL-7702) cells. Complex DQ6 showed low IC50 values (2.25 ± 0.13 μM) on SK-OV-3CR cells, more than 3.0-8.0 times more cytotoxic than DQ1-DQ5 and DQ7-DQ20 (≥6.78 μM), and even 22.2 times more cytotoxic than the standard cisplatin, the corresponding free H-Q1-H-Q6 and D1-D10 alone (>50 μM). As a comparison, DQ1-DQ20 displayed nontoxic rates against healthy HL-7702 cells. Furthermore, DQ6 and DQ11 induced significant apoptosis via mitophagy pathways. DQ6 also significantly inhibited tumor growth in an in vivo SK-OV-3-xenograft model (ca. 49.7%). Thus, DQ6 may serve as a lead complex for the discovery of new antitumor agents.
Collapse
Affiliation(s)
- Ling-Qi Du
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Tian-Yu Zhang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Xiao-Mei Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Yue Xu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Ming-Xiong Tan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Yan Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Yuan Chen
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| |
Collapse
|
16
|
Zheng Y, Zhu Y, Dai J, Lei J, You J, Chen N, Wang L, Luo M, Wu J. Atomically precise Au nanocluster-embedded carrageenan for single near-infrared light-triggered photothermal and photodynamic antibacterial therapy. Int J Biol Macromol 2023; 230:123452. [PMID: 36708904 DOI: 10.1016/j.ijbiomac.2023.123452] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/10/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
In this study, we report atomically precise gold nanoclusters-embedded natural polysaccharide carrageenan as a novel hydrogel platform for single near-infrared light-triggered photothermal (PTT) and photodynamic (PDT) antibacterial therapy. Briefly, atomically precise captopril-capped Au nanoclusters (Au25Capt18) prepared by an alkaline NaBH4 reduction method and then embedded them into the biosafe carrageenan to achieve superior PTT and PDT dual-mode antibacterial effect. In this platform, the embedded Au25Capt18, as simple-component phototherapeutic agents, exhibit superior thermal effects and singlet oxygen generation under a single near-infrared (NIR, 808 nm) light irradiation, which enables rapid elimination of bacteria. Carrageenan endows the hydrogel platform with superior gelation characteristics and wound microenvironmental regulation. The Au25Capt18-embedded hydrogels exhibited good water retention, hemostasis, and breathability, providing a favorable niche environment for promoting wound healing. In vitro experiments confirmed the excellent antibacterial activity of the Au25Capt18 hydrogels against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. The antibacterial effect and promoting wound healing function were further validated in a S. aureus-infected wound model. Biosafety evaluation showed that the Au25Capt18 hydrogel has excellent biocompatibility. This PTT/PDT dual-mode therapy offers an alternative strategy for battling bacterial infections without antibiotics. More importantly, this hydrogel is facile to prepare which is helpful for expanding applications.
Collapse
Affiliation(s)
- Youkun Zheng
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China; Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yuxin Zhu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China; Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jianghong Dai
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China; Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jiaojiao Lei
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China; Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jingcan You
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China
| | - Ni Chen
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China
| | - Liqun Wang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China; Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Mao Luo
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China; Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jianbo Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China; Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|