1
|
Gooijer S, Capelo-Avilés S, Sharma S, Giancola S, Galán-Mascaros JR, Vlugt TJH, Dubbeldam D, Vicent-Luna JM, Calero S. TAMOF-1 for capture and separation of the main flue gas components. JOURNAL OF MATERIALS CHEMISTRY. A 2025:d5ta01362c. [PMID: 40352965 PMCID: PMC12059982 DOI: 10.1039/d5ta01362c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/28/2025] [Indexed: 05/14/2025]
Abstract
Experimental screening of Metal Organic Frameworks (MOFs) for separation applications can be costly and time-consuming. Computational methods can provide many benefits in this process, as expensive compounds and a wide range of operating conditions can be tested while crucial mechanistic insights are gained. TAMOF-1, a recently developed MOF, stands out for its exceptional stability, robustness and cost-effective synthesis. Its good CO2 uptake capacity makes it a promising agent for flue gas separation applications. In this work, we combine experiments with simulations at the atomistic and numerical level to investigate the adsorption and separation of CO2 and N2. Using Monte Carlo simulations, we accurately reproduce experimental adsorption isotherms and elucidate the adsorption mechanisms. TAMOF-1 effectively separates CO2 from N2 because of preferential binding sites near Cu2+ atoms. To assess separation performance in equilibrium at different conditions along the entire isotherm pressure range, adsorbed mole fractions, selectivities, and the trade-off between selectivity and uptake (TSN) are calculated. The dynamic separation performance is assessed by breakthrough experiments and numerical simulations, demonstrating efficient dynamic separation of CO2 and N2, with CO2 being retained in the column.
Collapse
Affiliation(s)
- S Gooijer
- Materials Simulation and Modelling, Department of Applied Physics and Science Education, Eindhoven University of Technology PO Box 513 5600MB Eindhoven The Netherlands
| | - S Capelo-Avilés
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 Tarragona 43007 Spain
| | - S Sharma
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical Engineering, Delft University of Technology Leeghwaterstraat 39 2628 CB Delft The Netherlands
| | - S Giancola
- Orchestra Scientific SL Av. Països Catalans 16 Tarragona 43007 Spain
| | - J R Galán-Mascaros
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 Tarragona 43007 Spain
- Catalan Institution for Research and Advanced Studies (ICREA) Passeig Lluís Companys 16 Barcelona 08007 Spain
| | - T J H Vlugt
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical Engineering, Delft University of Technology Leeghwaterstraat 39 2628 CB Delft The Netherlands
| | - D Dubbeldam
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Amsterdam Netherlands
| | - J M Vicent-Luna
- Materials Simulation and Modelling, Department of Applied Physics and Science Education, Eindhoven University of Technology PO Box 513 5600MB Eindhoven The Netherlands
| | - S Calero
- Materials Simulation and Modelling, Department of Applied Physics and Science Education, Eindhoven University of Technology PO Box 513 5600MB Eindhoven The Netherlands
| |
Collapse
|
2
|
Capelo-Avilés S, de Fez-Febré M, Balestra SRG, Cabezas-Giménez J, Tomazini de Oliveira R, Gallo Stampino II, Vidal-Ferran A, González-Cobos J, Lillo V, Fabelo O, Escudero-Adán EC, Falvello LR, Parra JB, Rumori P, Turnes Palomino G, Palomino Cabello C, Giancola S, Calero S, Galán-Mascarós JR. Selective adsorption of CO 2 in TAMOF-1 for the separation of CO 2/CH 4 gas mixtures. Nat Commun 2025; 16:3243. [PMID: 40185758 PMCID: PMC11971439 DOI: 10.1038/s41467-025-58426-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 03/17/2025] [Indexed: 04/07/2025] Open
Abstract
TAMOF-1 is a robust, highly porous metal-organic framework built from Cu2+ centers linked by a L-histidine derivative. Thanks to its high porosity and homochirality, TAMOF-1 has shown interesting molecular recognition properties, being able to resolve racemic mixtures of small organic molecules in gas and liquid phases. Now, we have discovered that TAMOF-1 also offers a competitive performance as solid adsorbent for CO2 physisorption, offering promising CO2 adsorption capacity ( > 3.8 mmol g-1) and CO2/CH4 Ideal Adsorbed Solution Theory (IAST) selectivity ( > 40) at ambient conditions. Moreover, the material exhibits favorable adsorption kinetics under dynamic conditions, demonstrating good stability in high-humidity environments and minimal degradation in strongly acidic media. We have identified the key interactions of CO2 within the TAMOF-1 framework by a combination of structural (neutron diffraction), spectroscopic and theoretical analyses which conclude a dual-site adsorption mechanism with the majority of adsorbed CO2 molecules occupying the empty voids in the TAMOF-1 channels without strong, directional supramolecular interactions. This very weak dominant binding opens the possibility of a low energy regeneration process for convenient CO2 purification. These features identify TAMOF-1 as a viable solid-state adsorbent for the realization of affordable biogas upgrading.
Collapse
Affiliation(s)
- Santiago Capelo-Avilés
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institut of Science and Technology (BIST), Avinguda Països Catalans 16, Tarragona, 43007, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel.lí Domingo s/n, Marcel.lí Domingo s/n, Tarragona, 43007, Spain
| | - Mabel de Fez-Febré
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institut of Science and Technology (BIST), Avinguda Països Catalans 16, Tarragona, 43007, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel.lí Domingo s/n, Marcel.lí Domingo s/n, Tarragona, 43007, Spain
- Arcamo Controls, S. A. Juan Esplandiú 15, Madrid, Spain
| | - Salvador R G Balestra
- Departamento de Física Atómica, Molecular y Nuclear, Área de Física Teórica, Universidad de Sevilla, Sevilla, 41012, Spain
| | - Juanjo Cabezas-Giménez
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institut of Science and Technology (BIST), Avinguda Països Catalans 16, Tarragona, 43007, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel.lí Domingo s/n, Marcel.lí Domingo s/n, Tarragona, 43007, Spain
- AGC Pharma Chemicals Europe, c/ de la Pomereda 13, 08380 Malgrat de Mar, Barcelona, Spain
| | - Raiana Tomazini de Oliveira
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institut of Science and Technology (BIST), Avinguda Països Catalans 16, Tarragona, 43007, Spain
| | - Irene I Gallo Stampino
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institut of Science and Technology (BIST), Avinguda Països Catalans 16, Tarragona, 43007, Spain
| | - Anton Vidal-Ferran
- ICREA, Passeig Lluís Companys, 23, Barcelona, 08010, Spain
- Department of Inorganic and Organic Chemistry, Universitat de Barcelona (UB), Barcelona, 08028, Spain
| | - Jesús González-Cobos
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institut of Science and Technology (BIST), Avinguda Països Catalans 16, Tarragona, 43007, Spain
- Institut de Recherches sur la Catalyse et l'Environnement de Lyon, UMR 5256, CNRS, Université Claude Bernard Lyon 1, 2 Avenue A. Einstein, Villeurbanne, France
| | - Vanesa Lillo
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institut of Science and Technology (BIST), Avinguda Països Catalans 16, Tarragona, 43007, Spain
| | - Oscar Fabelo
- Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble, 38000, France
| | - Eduardo C Escudero-Adán
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institut of Science and Technology (BIST), Avinguda Països Catalans 16, Tarragona, 43007, Spain
| | - Larry R Falvello
- Instituto de Nanociencia y Materiales de Aragón (INMA) and Departamento de Química Inorgánica, CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain
| | - José B Parra
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe 26, Francisco Pintado Fe 26, Oviedo, 33011, Spain
| | - Paolo Rumori
- Departamento de Química, Universidad de las Islas Baleares, Cra. de Valldemossa km 7.5, Ctra. de Valldemossa km 7.5, Palma de Mallorca, 07122, Spain
| | - Gemma Turnes Palomino
- Departamento de Química, Universidad de las Islas Baleares, Cra. de Valldemossa km 7.5, Ctra. de Valldemossa km 7.5, Palma de Mallorca, 07122, Spain
| | - Carlos Palomino Cabello
- Departamento de Química, Universidad de las Islas Baleares, Cra. de Valldemossa km 7.5, Ctra. de Valldemossa km 7.5, Palma de Mallorca, 07122, Spain
| | - Stefano Giancola
- Orchestra Scientific S.L. Av. Països Catalans 16, Tarragona, 43007, Spain.
| | - Sofia Calero
- Materials Simulation and Modelling, Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
| | - José Ramón Galán-Mascarós
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institut of Science and Technology (BIST), Avinguda Països Catalans 16, Tarragona, 43007, Spain.
- ICREA, Passeig Lluís Companys, 23, Barcelona, 08010, Spain.
| |
Collapse
|
3
|
Zhu N, Wu J, Zhao D. Nanospace Engineering for C 8 Aromatic Isomer Separation. ACS NANO 2025; 19:2029-2046. [PMID: 39762116 DOI: 10.1021/acsnano.4c15755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
C8 aromatic isomers, namely para-xylene (PX), meta-xylene (MX), ortho-xylene (OX), and ethylbenzene (EB), are essential industrial chemicals with a wide range of applications. The effective separation of these isomers is crucial across various sectors, including petrochemicals, pharmaceuticals, and polymer manufacturing. Traditional separation methods, such as distillation and solvent extraction, are energy-intensive. In contrast, selective adsorption has emerged as an efficient technique for separating C8 aromatic isomers, in which nanospace engineering offers promising strategies to address existing challenges by precisely tailoring the structures and properties of porous materials at the nanoscale. This review explores the application of nanospace engineering in modifying the pore structures and characteristics of diverse porous materials─including zeolites, metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and other porous substances─to enhance their performance in C8 aromatic isomer separation. Additionally, this review provides a comprehensive summary of how different separation techniques, temperature fluctuations, enthalpy/entropy considerations, and desorption processes influence separation efficiency. It also presents a forward-looking perspective on remaining challenges and potential opportunities for advancing C8 aromatic isomer separation.
Collapse
Affiliation(s)
- Nengxiu Zhu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore
| | - Jiayi Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore
| |
Collapse
|
4
|
Ercakir G, Aksu GO, Altintas C, Keskin S. Hierarchical Computational Screening of Quantum Metal-Organic Framework Database to Identify Metal-Organic Frameworks for Volatile Organic-Compound Capture from Air. ACS ENGINEERING AU 2023; 3:488-497. [PMID: 38144678 PMCID: PMC10739624 DOI: 10.1021/acsengineeringau.3c00039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 12/26/2023]
Abstract
The design and discovery of novel porous materials that can efficiently capture volatile organic compounds (VOCs) from air are critical to address one of the most important challenges of our world, air pollution. In this work, we studied a recently introduced metal-organic framework (MOF) database, namely, quantum MOF (QMOF) database, to unlock the potential of both experimentally synthesized and hypothetically generated structures for adsorption-based n-butane (C4H10) capture from air. Configurational Bias Monte Carlo (CBMC) simulations were used to study the adsorption of a quaternary gas mixture of N2, O2, Ar, and C4H10 in QMOFs for two different processes, pressure swing adsorption (PSA) and vacuum-swing adsorption (VSA). Several adsorbent performance evaluation metrics, such as C4H10 selectivity, working capacity, the adsorbent performance score, and percent regenerability, were used to identify the best adsorbent candidates, which were then further studied by molecular simulations for C4H10 capture from a more realistic seven-component air mixture consisting of N2, O2, Ar, C4H10, C3H8, C3H6, and C2H6. Results showed that the top five QMOFs have C4H10 selectivities between 6.3 × 103 and 9 × 103 (3.8 × 103 and 5 × 103) at 1 bar (10 bar). Detailed analysis of the structure-performance relations showed that low/mediocre porosity (0.4-0.6) and narrow pore sizes (6-9 Å) of QMOFs lead to high C4H10 selectivities. Radial distribution function analyses of the top materials revealed that C4H10 molecules tend to confine close to the organic parts of MOFs. Our results provided the first information in the literature about the VOC capture potential of a large variety and number of MOFs, which will be useful to direct the experimental efforts to the most promising adsorbent materials for C4H10 capture from air.
Collapse
Affiliation(s)
- Goktug Ercakir
- Department of Chemical and
Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Gokhan Onder Aksu
- Department of Chemical and
Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Cigdem Altintas
- Department of Chemical and
Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Seda Keskin
- Department of Chemical and
Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| |
Collapse
|
5
|
Zhou J, Ke T, Song Y, Cai H, Wang Z, Chen L, Xu Q, Zhang Z, Bao Z, Ren Q, Yang Q. Highly Efficient Separation of C8 Aromatic Isomers by Rationally Designed Nonaromatic Metal–Organic Frameworks. J Am Chem Soc 2022; 144:21417-21424. [DOI: 10.1021/jacs.2c10595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jingyi Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
| | - Tian Ke
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
| | - Yifei Song
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, Zhejiang, China
| | - Hongyi Cai
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
| | - Zhuo’an Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
| | - Luyao Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
| | - Qianqian Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
- School of Pharmaceutical and Materials Engineering, Taizhou University, 318000 Taizhou, Zhejiang, China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, Zhejiang, China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, Zhejiang, China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, Zhejiang, China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, Zhejiang, China
| |
Collapse
|