1
|
Gan Y, Xiong Y. Review of MXene synthesis and applications in electromagnetic shielding. RSC Adv 2025; 15:9555-9568. [PMID: 40161519 PMCID: PMC11951110 DOI: 10.1039/d4ra08030k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/06/2025] [Indexed: 04/02/2025] Open
Abstract
With the ongoing advancements in wireless communication and electronic technology, the issue of electromagnetic radiation (EMR) pollution has become increasingly significant. Consequently, developing materials to mitigate EMR pollution is essential. The utility of 2D MXene (Ti3C2T x ) for electromagnetic interference (EMI) shielding was initially reported in 2016. Since then, MXenes have garnered substantial interest from the scientific community owing to their excellent metallic conductivity, low density, expansive specific surface area, and tunable interlayer spacing. In recent years, MXenes have demonstrated considerable promise in EMI shielding applications. This paper aims to examine the structural and chemical properties of MXenes, the methodologies for their synthesis, and summarize the advancements in MXene-based EMI shielding composites, highlighting their performance benefits. Additionally, this review will discuss the prospective developments in MXene-based materials for EMI shielding.
Collapse
Affiliation(s)
- Yao Gan
- Department of Materials and Metallurgy, Guizhou University Guiyang 550025 China
| | - Yuzhu Xiong
- Department of Materials and Metallurgy, Guizhou University Guiyang 550025 China
| |
Collapse
|
2
|
Sun R, Hu P, Wang J, Yang F, Zhu F, Xing H, Luo J, Gao L, Wang K, Yin Z. Refractory Metal-Based MXenes: Cutting-Edge Preparation and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408331. [PMID: 39564760 DOI: 10.1002/smll.202408331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/28/2024] [Indexed: 11/21/2024]
Abstract
Refractory metal-based MXenes refer to MXenes with M as a refractory metal. Due to their high conductivity, large specific surface area, multiple active sites, high photothermal conversion efficiency, adjustable surface groups, and controllable nanolayer spacing, they hold broad application prospects in various fields such as photoelectrocatalysis, biomedicine, water treatment, electromagnetic shielding, and sensors. The unique physical properties of refractory metal-based MXenes are related to their electronic and crystal structures. The interstitial layer causes the carbides to exhibit different behavior compared to the original metal. At the same time, different preparation methods have a great influence on the interlayer spacing and surface termination of refractory metal-based MXenes, thus affecting their performance. This review systematically summarizes the latest progress in the preparation methods and frontier applications of refractory metal-based MXenes, offering new insights for further development. Additionally, various characterization techniques and first-principles calculations are summarized, which are crucial for optimizing refractory metal-based MXenes for applications such as catalysis, energy storage, and sensors. In summary, the current challenges and future development prospects of refractory metal-based Mxenes are addressed, aiming to provide indispensable information for the intelligent design of 2D materials in the future.
Collapse
Affiliation(s)
- Ruiyan Sun
- School of Metallurgy Engineering, State Local Joint Engineering Research Center for Functional Materials Processing, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ping Hu
- School of Metallurgy Engineering, State Local Joint Engineering Research Center for Functional Materials Processing, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jin Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Fan Yang
- School of Metallurgy Engineering, State Local Joint Engineering Research Center for Functional Materials Processing, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Fei Zhu
- School of Metallurgy Engineering, State Local Joint Engineering Research Center for Functional Materials Processing, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Hairui Xing
- School of Metallurgy Engineering, State Local Joint Engineering Research Center for Functional Materials Processing, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jiao Luo
- School of Metallurgy Engineering, State Local Joint Engineering Research Center for Functional Materials Processing, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Lili Gao
- School of Metallurgy Engineering, State Local Joint Engineering Research Center for Functional Materials Processing, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Kuaishe Wang
- School of Metallurgy Engineering, State Local Joint Engineering Research Center for Functional Materials Processing, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zongyou Yin
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
3
|
Li Y, Wang Y, Huang Y. A Review on MXene/Nanocellulose Composites: Toward Wearable Multifunctional Electromagnetic Interference Shielding Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410283. [PMID: 39696902 DOI: 10.1002/smll.202410283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/02/2024] [Indexed: 12/20/2024]
Abstract
With the rapid development of mobile communication technology and wearable electronic devices, the electromagnetic radiation generated by high-frequency information exchange inevitably threatens human health, so high-performance wearable electromagnetic interference (EMI) shielding materials are urgently needed. The 2D nanomaterial MXene exhibits superior EMI shielding performance owing to its high conductivity, however, its mechanical properties are limited due to the high porosity between MXene nanosheets. In recent years, it has been reported that by introducing natural nanocellulose as an organic framework, the EMI shielding and mechanical properties of MXene/nanocellulose composites can be synergically improved, which are expected to be widely used in wearable multifunctional shielding devices. In this review, the electromagnetic wave (EMW) attenuation mechanism of EMI shielding materials is briefly introduced, and the latest progress of MXene/nanocellulose composites in wearable multifunctional EMI shielding applications is comprehensively reviewed, wherein the advantages and disadvantages of different preparation methods and various types of composites are summarized. Finally, the challenges and perspectives are discussed, regarding the performance improvement, the performance control mechanism, and the large-scale production of MXene/nanocellulose composites. This review can provide guidance on the design of flexible MXene/nanocellulose composites for multifunctional electromagnetic protection applications in the future intelligent wearable field.
Collapse
Affiliation(s)
- Yuhong Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Yang Wang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Yi Huang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
- Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
4
|
Liu YL, Zhu TY, Wang Q, Huang ZJ, Sun DX, Yang JH, Qi XD, Wang Y. Hierarchically Porous Polypyrrole Foams Contained Ordered Polypyrrole Nanowire Arrays for Multifunctional Electromagnetic Interference Shielding and Dynamic Infrared Stealth. NANO-MICRO LETTERS 2024; 17:97. [PMID: 39724460 DOI: 10.1007/s40820-024-01588-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/07/2024] [Indexed: 12/28/2024]
Abstract
As modern communication and detection technologies advance at a swift pace, multifunctional electromagnetic interference (EMI) shielding materials with active/positive infrared stealth, hydrophobicity, and electric-thermal conversion ability have received extensive attention. Meeting the aforesaid requirements simultaneously remains a huge challenge. In this research, the melamine foam (MF)/polypyrrole (PPy) nanowire arrays (MF@PPy) were fabricated via one-step electrochemical polymerization. The hierarchical MF@PPy foam was composed of three-dimensional PPy micro-skeleton and ordered PPy nanowire arrays. Due to the upwardly grown PPy nanowire arrays, the MF@PPy foam possessed good hydrophobicity ability with a water contact angle of 142.00° and outstanding stability under various harsh environments. Meanwhile, the MF@PPy foam showed excellent thermal insulation property on account of the low thermal conductivity and elongated ligament characteristic of PPy nanowire arrays. Furthermore, taking advantage of the high conductivity (128.2 S m-1), the MF@PPy foam exhibited rapid Joule heating under 3 V, resulting in dynamic infrared stealth and thermal camouflage effects. More importantly, the MF@PPy foam exhibited remarkable EMI shielding effectiveness values of 55.77 dB and 19,928.57 dB cm2 g-1. Strong EMI shielding was put down to the hierarchically porous PPy structure, which offered outstanding impedance matching, conduction loss, and multiple attenuations. This innovative approach provides significant insights to the development of advanced multifunctional EMI shielding foams by constructing PPy nanowire arrays, showing great applications in both military and civilian fields.
Collapse
Affiliation(s)
- Yu-Long Liu
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Ting-Yu Zhu
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Qin Wang
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Zi-Jie Huang
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - De-Xiang Sun
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Jing-Hui Yang
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Xiao-Dong Qi
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, People's Republic of China.
| | - Yong Wang
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, People's Republic of China.
| |
Collapse
|
5
|
Wang Q, Zhang J, Zhou Z, Zhao J, Yi Y, Feng S, Sui Z, Zhang W, Lu C. Sandwich-Structured Mxene/Waste Polyurethane Foam Composites For Highly Efficient Electromagnetic Interference, Infrared Shielding and Joule Heating. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309803. [PMID: 38659183 DOI: 10.1002/smll.202309803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Electromagnetic interference (EMI) shielding and infrared (IR) stealth materials have attracted increasing attention owing to the rapid development of modern communication and military surveillance technologies. However, to realize excellent EMI shielding and IR stealth performance simultaneously remains a great challenge. Herein, a facile strategy is demonstrated to prepare high-efficiency EMI shielding and IR stealth materials of sandwich-structured MXene-based thin foam composites (M-W-M) via filtration and hot-pressing. In this composite, the conductive Ti3C2Tx MXene/cellulose nanofiber (MXene/CNF) film serves as the outer layer, which reflects electromagnetic waves and reduces the IR emissivity. Meanwhile, the middle layer is composed of a porous waste polyurethane foam (WPUF), which not only improves thermal insulation capacity but also extends electromagnetic wave propagation paths. Owing to the unique sandwich structure of "film-foam-film", the M-W-M composite exhibits a high EMI shielding effectiveness of 83.37 dB, and in the meantime extremely low emissivity (22.17%) in the wavelength range of 7-14 µm and thermal conductivity (0.19 W m-1 K-1), giving rise to impressive IR stealth performance at various surrounding temperatures. Remarkably, the M-W-M composite also shows excellent Joule heating properties, capable of maintaining the IR stealth function during Joule heating.
Collapse
Affiliation(s)
- Qunhao Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu, 610065, China
| | - Jian Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu, 610065, China
- Fujian Provincial Key Laboratory of Environmental Engineering, Fujian Provincial Academy of Environmental Science, Fujian, 350013, China
| | - Zehang Zhou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu, 610065, China
| | - Jiangqi Zhao
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Ya Yi
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu, 610065, China
| | - Shiyi Feng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu, 610065, China
| | - Zengyan Sui
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu, 610065, China
| | - Wei Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu, 610065, China
- Advanced Polymer Materials Research Center of Sichuan University, Shishi, 362700, China
| | - Canhui Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu, 610065, China
- Advanced Polymer Materials Research Center of Sichuan University, Shishi, 362700, China
| |
Collapse
|
6
|
Liu Y, Liu Y, Zhao X. MXene Composite Electromagnetic Shielding Materials: The Latest Research Status. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39066695 DOI: 10.1021/acsami.4c11189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
MXene emerges as a premier candidate for electromagnetic shielding owing to its unique properties as a novel two-dimensional material. Its exceptional electrical conductivity, chemical reactivity, surface tunability, and facile processing render it highly suitable for diverse electromagnetic shielding applications. The research status of MXene and MXene-based electromagnetic shielding materials is systematically discussed in this paper. First, the research status of MXene as a single-component electromagnetic shielding material is briefly introduced. Subsequently, the research status of composite structures constructed by MXene with polymers, carbon derivatives, and ferrites is introduced in detail. Furthermore, the research progress of MXene-based ternary and quaternary composite electromagnetic shielding materials is further focused. Finally, the application of MXene-based composite electromagnetic shielding materials is prospected. A deeper understanding of MXene's electromagnetic shielding properties is facilitated by this paper, providing the direction for the future development of two-dimensional materials in the design and processing of electromagnetic shielding materials.
Collapse
Affiliation(s)
- Yi Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yuanjun Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Tianjin Key Laboratory of Advanced Textile Composites, Tiangong University, Tianjin 300387, China
- Tianjin Key Laboratory of Advanced Fiber and Energy Storage Technology, Tiangong University, Tianjin 300387, China
| | - Xiaoming Zhao
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Tianjin Key Laboratory of Advanced Textile Composites, Tiangong University, Tianjin 300387, China
- Tianjin Key Laboratory of Advanced Fiber and Energy Storage Technology, Tiangong University, Tianjin 300387, China
| |
Collapse
|
7
|
Park JH, Park J, Tang F, Song YG, Jeong YG. Electromagnetic Interference Shielding and Joule Heating Properties of Flexible, Lightweight, and Hydrophobic MXene/Nickel-Coated Polyester Fabrics Manufactured by Dip-Dry Coating and Electroless Plating. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38490-38500. [PMID: 38980000 DOI: 10.1021/acsami.4c06735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
High-performance electromagnetic interference (EMI) shielding materials with high flexibility, low density, and hydrophobic surface are crucial for modern integrated electronics and telecommunication systems in advanced industries like aerospace, military, artificial intelligence, and wearable electronics. In this study, we present flexible and hydrophobic MXene/Ni-coated polyester (PET) fabrics featuring a double-layered structure, fabricated via a facile and scalable dip-dry coating process followed by electroless nickel plating. Increasing the dip-dry coating iterations up to 10 cycles boosts the MXene loading content (∼31 wt %) and electrical conductivity (∼86 S/cm) of MXene-coated PET fabrics, while maintaining constant porosity (∼95%). The addition of a Ni layer enhances hydrophobicity, achieving a high water contact angle of ∼114° compared to only MXene-coated PET fabrics (∼49°). Furthermore, the 30 μm thick MXene/Ni-coated PET fabric demonstrates superior electrical conductivity (∼113.8 S/cm) and EMI shielding effectiveness (∼35.7 dB at 8-12 GHz) compared to only MXene- or Ni-coated PET fabrics. The EMI shielding performance of the MXene/Ni-coated PET fabric remains more stable in an air environment than only MXene-coated fabrics due to the outer Ni layer with excellent hydrophobicity and oxidation stability. Additionally, the MXene/Ni-coated PET fabric exhibits impressive Joule heating performance, swiftly converting electrical energy into heat and reaching high steady-state temperatures (32-92 °C) at low applied voltages (0.5-1.5 V).
Collapse
Affiliation(s)
- Jin-Hyeok Park
- Department of Advanced Organic Materials Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jinho Park
- Department of Advanced Organic Materials Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
- Functional Composite Material Research Center, Korea Automotive Technology Institute, Cheonan-si 31214, Republic of Korea
| | - Feng Tang
- Department of Advanced Organic Materials Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Young-Gi Song
- Department of Advanced Organic Materials Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Young Gyu Jeong
- Department of Advanced Organic Materials Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
8
|
Tao D, Wen X, Yang C, Yan K, Li Z, Wang W, Wang D. Controlled Twill Surface Structure Endowing Nanofiber Composite Membrane Excellent Electromagnetic Interference Shielding. NANO-MICRO LETTERS 2024; 16:236. [PMID: 38963539 PMCID: PMC11224063 DOI: 10.1007/s40820-024-01444-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/14/2024] [Indexed: 07/05/2024]
Abstract
Inspired by the Chinese Knotting weave structure, an electromagnetic interference (EMI) nanofiber composite membrane with a twill surface was prepared. Poly(vinyl alcohol-co-ethylene) (Pva-co-PE) nanofibers and twill nylon fabric were used as the matrix and filter templates, respectively. A Pva-co-PE-MXene/silver nanowire (Pva-co-PE-MXene/AgNW, PMxAg) membrane was successfully prepared using a template method. When the MXene/AgNW content was only 7.4 wt% (PM7.4Ag), the EMI shielding efficiency (SE) of the composite membrane with the oblique twill structure on the surface was 103.9 dB and the surface twill structure improved the EMI by 38.5%. This result was attributed to the pre-interference of the oblique twill structure in the direction of the incident EM wave, which enhanced the probability of the electromagnetic waves randomly colliding with the MXene nanosheets. Simultaneously, the internal reflection and ohmic and resonance losses were enhanced. The PM7.4Ag membrane with the twill structure exhibited both an outstanding tensile strength of 22.8 MPa and EMI SE/t of 3925.2 dB cm-1. Moreover, the PMxAg nanocomposite membranes demonstrated an excellent thermal management performance, hydrophobicity, non-flammability, and performance stability, which was demonstrated by an EMI SE of 97.3% in a high-temperature environment of 140 °C. The successful preparation of surface-twill composite membranes makes it difficult to achieve both a low filler content and a high EMI SE in electromagnetic shielding materials. This strategy provides a new approach for preparing thin membranes with excellent EMI properties.
Collapse
Affiliation(s)
- Dechang Tao
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Xin Wen
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan Textile University, Wuhan, 430200, People's Republic of China
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Chenguang Yang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan Textile University, Wuhan, 430200, People's Republic of China.
| | - Kun Yan
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Zhiyao Li
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Wenwen Wang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan Textile University, Wuhan, 430200, People's Republic of China.
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan Textile University, Wuhan, 430200, People's Republic of China.
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China.
| |
Collapse
|
9
|
Yang Y, Shao L, Wang J, Ji Z, Zhang T, Wu M, He Y, Wang C, Ma J. An Asymmetric Layer Structure Enables Robust Multifunctional Wearable Bacterial Cellulose Composite Film with Excellent Electrothermal/Photothermal and EMI Shielding Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308514. [PMID: 38098438 DOI: 10.1002/smll.202308514] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/15/2023] [Indexed: 05/30/2024]
Abstract
Highly robust flexible multifunctional film with excellent electromagnetic interference shielding and electrothermal/photothermal characteristics are highly desirable for aerospace, military, and wearable devices. Herein, an asymmetric gradient multilayer structured bacterial cellulose@Fe3O4/carbon nanotube/Ti3C2Tx (BC@Fe3O4/CNT/Ti3C2Tx) multifunctional composite film is fabricated with simultaneously demonstrating fast Joule response, excellent EMI shielding effectiveness (EMI SE) and photothermal conversion properties. The asymmetric gradient 6-layer composite film with 40% of Ti3C2Tx possesses excellent mechanical performance with exceptional tensile strength (76.1 MPa), large strain (14.7%), and good flexibility. This is attributed to the asymmetric gradient multilayer structure designed based on the hydrogen bonding self-assembly strategy between Ti3C2Tx and BC. It achieved an EMI SE of up to 71.3 dB, which is attributed to the gradient "absorption-reflection-reabsorption" mechanism. Furthermore, this composite film also exhibits excellent low-voltage-driven Joule heating (up to 80.3 °C at 2.5 V within 15 s) and fast-response photothermal performance (up to 101.5 °C at 1.0 W cm-2 within 10 s), which is attributed to the synergistic effect of heterostructure. This work demonstrates the fabrication of multifunctional bacterial cellulose@Fe3O4/carbon nanotube/Ti3C2Tx composite film has promising potentials for next-generation wearable electronic devices in energy conversion, aerospace, and artificial intelligence.
Collapse
Affiliation(s)
- Yanlong Yang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Liang Shao
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Jie Wang
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Zhanyou Ji
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Tao Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Mingjie Wu
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Yingkun He
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Caiyun Wang
- Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Innovation Campus, North Wollongong, NSW, 2500, Australia
| | - Jianzhong Ma
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| |
Collapse
|
10
|
Zhu TY, Jiang WJ, Wu S, Huang ZJ, Liu YL, Qi XD, Wang Y. Multifunctional MXene/PEDOT:PSS-Based Phase Change Organohydrogels for Electromagnetic Interference Shielding and Medium-Low Temperature Infrared Stealth. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38494605 DOI: 10.1021/acsami.4c01001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Electromagnetic interference (EMI) shielding and infrared stealth technologies are essential for military and civilian applications. However, it remains a significant challenge to integrate various functions efficiently into a material efficiently. Herein, a minimalist strategy to fabricate multifunctional phase change organohydrogels (PCOHs) was proposed, which were fabricated from polyacrylamide (PAM) organohydrogels, MXene/PEDOT:PSS hybrid fillers, and sodium sulfate decahydrate (Na2SO4·10H2O, SSD) via one-step photoinitiation strategies. PCOHs with a high enthalpy value (130.7 J/g) and encapsulation rate (98%) could adjust the temperature by triggering a phase change of SSD, which can hide infrared radiation to achieve medium-low temperature infrared stealth. In addition, the PCOH-based sensor has good strain sensing ability due to the incorporation of MXene/PEDOT:PSS and can precisely monitor human movement. Remarkably, benefiting from the electron conduction of the three-dimensional conductive network and the ion conduction of the hydrogel, the EMI shielding efficiency (k) of PCOHs can reach 99.99% even the filler content as low as 1.8 wt %. Additionally, EMI shielding, infrared stealth, and sensing-integrated PCOHs can be adhered to arbitrary targets due to their excellent flexibility and adaptability. This work offers a promising pathway for fabricating multifunctional phase change materials, which show great application prospects in military and civilian fields.
Collapse
Affiliation(s)
- Ting-Yu Zhu
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Wan-Jun Jiang
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Shuang Wu
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Zi-Jie Huang
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Yu-Long Liu
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Xiao-Dong Qi
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Yong Wang
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
11
|
Wu M, Rao L, Ji Z, Li Y, Wang P, Liu L, Ying G. 3D Lightweight Interconnected Melamine Foam Modified with Hollow CoFe 2O 4/MXene toward Efficient Microwave Absorption. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9169-9181. [PMID: 38328874 DOI: 10.1021/acsami.3c17790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Considering the increasing severity of electromagnetic wave pollution, the development of high-performance low-filler-content microwave absorbers possessing wide frequency bands and strong absorption for practical applications is a demanding research hotspot. In this study, from the perspectives of the electromagnetic component coordination and structural design, a three-dimensional (3D) interconnected CoFe2O4/MXene-melamine foam (MF) was constructed via simple impregnation and a single freeze-drying step. By changing the absorber (CoFe2O4/MXene) concentration, the pore opening and electromagnetic properties of the 3D foams can be effectively adjusted. When the absorber concentration is sufficiently high to clog the internal pores, the microwave absorption is hindered. When the filler (CoFe2O4/MXene-MF) content is just ∼5.8 wt % (at a density of ∼33.3 mg cm-3), a minimum reflection loss (RLmin) of -72.1 dB is achieved at a matching thickness of 3.32 mm, and an effective absorption bandwidth (4.54 GHz) covering the whole X band is achieved at a thickness of 3 mm. CoFe2O4/MXene-MF, which possesses a 3D porous electromagnetic network structure, optimizes impedance matching and enhances multiple polarization relaxations and reflections/scattering, resulting in superior absorption capabilities. In particular, the continuous network structure ensures the uniform distribution of electromagnetic fields in the microstructure, achieving high absorption at low filler contents. This work provides a reference for subsequent 3D absorber concentration studies and a novel engineering strategy for preparing a low-filler-content, lightweight, and efficient electromagnetic wave absorber, which could be applied in the fields of radar security and information communications.
Collapse
Affiliation(s)
- Meng Wu
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China
| | - Lei Rao
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China
| | - Ziying Ji
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China
| | - Yuexia Li
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China
| | - Peng Wang
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China
| | - Lu Liu
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China
| | - Guobing Ying
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
12
|
Soomro RA, Zhang P, Fan B, Wei Y, Xu B. Progression in the Oxidation Stability of MXenes. NANO-MICRO LETTERS 2023; 15:108. [PMID: 37071337 PMCID: PMC10113412 DOI: 10.1007/s40820-023-01069-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
MXenes are under the spotlight due to their versatile physicochemical characteristics. Since their discovery in 2011, significant advancements have been achieved in their synthesis and application sectors. However, the spontaneous oxidation of MXenes, which is critical to its processing and product lifespan, has gotten less attention due to its chemical complexity and poorly understood oxidation mechanism. This perspective focuses on the oxidation stability of MXenes and addresses the most recent advancements in understanding and the possible countermeasures to limit the spontaneous oxidation of MXenes. A section is dedicated to the presently accessible methods for monitoring oxidation, with a discussion on the debatable oxidation mechanism and coherently operating factors that contribute to the complexity of MXenes oxidation. The current potential solutions for mitigating MXenes oxidation and the existing challenges are also discussed with prospects to prolong MXene's shelf-life storage and expand their application scope.
Collapse
Affiliation(s)
- Razium A Soomro
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Peng Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Baomin Fan
- College of Chemical and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Yi Wei
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Bin Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
13
|
Tan H, Gou J, Zhang X, Ding L, Wang H. Sandwich-structured Ti3C2Tx-MXene/reduced-graphene-oxide composite membranes for high-performance electromagnetic interference and infrared shielding. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|