1
|
Alasiri A, Zubair K, Rassel S, Ban D, Alshehri OD. Roles of surfactants in perovskite solar cells. Heliyon 2024; 10:e39141. [PMID: 39640711 PMCID: PMC11620044 DOI: 10.1016/j.heliyon.2024.e39141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024] Open
Abstract
In photovoltaics, perovskite solar cells (PSCs) have shown efficiency improvement with scalable and low-cost fabrication. This work investigates the additions of surfactants to PSCs during and after cell fabrication, and how these surfactants enhance the performance of both PSCs and hybrid PSCs. Various types of surfactants were surveyed, including amphoteric, cationic, and non-ionic, in addition to other chemicals that are showing surfactant-like behavior. Surfactants were found to improve coverage area, and reduce roughness, defects, oxygen, moisture and pinholes. They also provided better control over film thickness, grain/spherulite size, and crystal orientation. The mechanisms behind these improvements were explained, and different studies in literature were categorized based on common themes.
Collapse
Affiliation(s)
- Abdullah Alasiri
- Mechanical Engineering Department, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Zubair
- Mechanical Engineering Department, King Saud University, Riyadh, Saudi Arabia
| | - Shazzad Rassel
- Electrical and Computer Engineering Department, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Canada
| | - Dayan Ban
- Electrical and Computer Engineering Department, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Canada
| | - Omar D. Alshehri
- Industrial Engineering Department, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Yang C, Hu W, Liu J, Han C, Gao Q, Mei A, Zhou Y, Guo F, Han H. Achievements, challenges, and future prospects for industrialization of perovskite solar cells. LIGHT, SCIENCE & APPLICATIONS 2024; 13:227. [PMID: 39227394 PMCID: PMC11372181 DOI: 10.1038/s41377-024-01461-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/07/2024] [Accepted: 04/20/2024] [Indexed: 09/05/2024]
Abstract
In just over a decade, certified single-junction perovskite solar cells (PSCs) boast an impressive power conversion efficiency (PCE) of 26.1%. Such outstanding performance makes it highly viable for further development. Here, we have meticulously outlined challenges that arose during the industrialization of PSCs and proposed their corresponding solutions based on extensive research. We discussed the main challenges in this field including technological limitations, multi-scenario applications, sustainable development, etc. Mature photovoltaic solutions provide the perovskite community with invaluable insights for overcoming the challenges of industrialization. In the upcoming stages of PSCs advancement, it has become evident that addressing the challenges concerning long-term stability and sustainability is paramount. In this manner, we can facilitate a more effective integration of PSCs into our daily lives.
Collapse
Affiliation(s)
- Chuang Yang
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Wenjing Hu
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Jiale Liu
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Chuanzhou Han
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Qiaojiao Gao
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Anyi Mei
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Yinhua Zhou
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Fengwan Guo
- Collaborative Innovation Center for Advanced Organic Chemical Materials, Co-constructed by the Province and Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, Hubei, China.
| | - Hongwei Han
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| |
Collapse
|
3
|
Yu B, Xu Z, Liu H, Liu Y, Ye K, Ke Z, Zhang J, Yu H. Improved Air Stability for High-Performance FACsPbI 3 Perovskite Solar Cells via Bonding Engineering. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2408-2416. [PMID: 38166358 DOI: 10.1021/acsami.3c16643] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Despite the fact that perovskite solar cells (PSCs) are widely popular due to their superb power conversion efficiency (PCE), their further applications are still restricted by low stability and high-density defects. Especially, the weak binding and ion-electron properties of perovskite crystals make them susceptible to moisture attack under environmental stress. Herein, we report an overall sulfidation strategy via introduction of 1-pentanethiol (PT) into the perovskite film to inhibit bulk defects and stabilize Pb ions. It has been confirmed that the thiol groups in PT can stabilize uncoordinated Pb ions and passivate iodine vacancy defects by forming strong Pb-S bonds, thus reducing nonradiative recombination. Moreover, the favorable passivation process also optimizes the energy-level arrangement, induces better perovskite crystallization, and enhances the charge extraction in the full solar cells. Consequently, the PT-modified inverted device delivers a champion PCE of 22.46%, which is superior to that of the control device (20.21%). More importantly, the PT-modified device retains 91.5% of its initial PCE after storage in air for 1600 h and over 85% of its initial PCE after heating at 85 °C for 800 h. This work provides a new perspective to simultaneously improve the performance and stability of PSCs to satisfy their commercial applications.
Collapse
Affiliation(s)
- Bo Yu
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Zhiwei Xu
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Hualin Liu
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Yumeng Liu
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Kanghua Ye
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Zhiquan Ke
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Jiankai Zhang
- International School of Microelectronics, Dongguan University of Technology, Dongguan, Guangdong 523808, China
| | - Huangzhong Yu
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong 510640, China
| |
Collapse
|