1
|
Zhang R, Zhao J, Ye J, Tian X, Wang L, Pan J, Dai J. Role of tea polyphenols in enhancing the performance, sustainability, and catalytic cleaning capability of membrane separation for water-soluble pollutant removal. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133793. [PMID: 38387181 DOI: 10.1016/j.jhazmat.2024.133793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
Tea polyphenols (TPs), like green tea polyphenol (GTP) and black tea polyphenol (BTP), with phenolic hydroxyl structures, form coordination and hydrogen bonds, making them effective for bridging inorganic catalysts and membranes. Here, TPs were employed as interface agents for the preparation of TPs-modified needle-clustered NiCo-layered double hydroxide/graphene oxide membranes (NiCo-LDH-TPs/GO). The incorporation of porous guest material, NiCo-LDH-TPs, facilitated water channel expansion, enhancing membrane permeability and resulting in the development of high-performance, sustainable catalytic cleaning membranes. The introduction of TPs through coordination weakened the surface electronegativity of NiCo-LDH, promoting a uniform mixed dispersion with GO and facilitating membrane self-assembly. NiCo-LDH-GTP/GO-5 and NiCo-LDH-BTP/GO-5 membranes demonstrated permeances of 85.98 and 90.76 L m-2 h-1 bar-1, respectively, with rejections of 98.73% and 99.54% for methylene blue (MB). Notably, the NiCo-LDH-BTP/GO-5 membrane maintained a high rejection of 97.11% even after 18 cycles in the catalytic cleaning process. Furthermore, the modification of GTP and BTP enhanced MB degradation through PMS activation, resulting in a 0.33% and 0.35% increase in the reaction rate constants of NiCo-LDH, respectively, while reducing metal ion spillover. These findings highlighted the potential of TPs in enhancing the efficiency and sustainability of catalytic cleaning GO membranes for water purification and separation processes.
Collapse
Affiliation(s)
- Ruilong Zhang
- Institute of Green Chemistry and Chemical Technology, Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; Department of Biology, Institute of Bioresource and Agriculture, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region of China
| | - Jun Zhao
- Department of Biology, Institute of Bioresource and Agriculture, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region of China.
| | - Jian Ye
- Institute of Green Chemistry and Chemical Technology, Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaohua Tian
- Institute of Green Chemistry and Chemical Technology, Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lulu Wang
- Institute of Green Chemistry and Chemical Technology, Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianming Pan
- Institute of Green Chemistry and Chemical Technology, Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Jiangdong Dai
- Institute of Green Chemistry and Chemical Technology, Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Gogoi A, Neyts EC, Peeters FM. Reduction-enhanced water flux through layered graphene oxide (GO) membranes stabilized with H 3O + and OH - ions. Phys Chem Chem Phys 2024; 26:10265-10272. [PMID: 38497764 DOI: 10.1039/d3cp04097f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Graphene oxide (GO) is one of the most promising candidates for next generation of atomically thin membranes. Nevertheless, one of the major issues for real world application of GO membranes is their undesirable swelling in an aqueous environment. Recently, we demonstrated that generation of H3O+ and OH- ions (e.g., with an external electric field) in the interlayer gallery could impart aqueous stability to the layered GO membranes (A. Gogoi, ACS Appl. Mater. Interfaces, 2022, 14, 34946). This, however, compromises the water flux through the membrane. In this study, we report on reducing the GO nanosheets as a solution to this issue. With the reduction of the GO nanosheets, the water flux through the layered GO membrane initially increases and then decreases again beyond a certain degree of reduction. Here, two key factors are at play. Firstly, the instability of the H-bond network between water molecules and the GO nanosheets, which increases the water flux. Secondly, the pore size reduction in the interlayer gallery of the membranes, which decreases the water flux. We also observe a significant improvement in the salt rejection of the membranes, due to the dissociation of water molecules in the interlayer gallery. In particular, for the case of 10% water dissociation, the water flux through the membranes can be enhanced without altering its selectivity. This is an encouraging observation as it breaks the traditional tradeoff between water flux and salt rejection of a membrane.
Collapse
Affiliation(s)
- Abhijit Gogoi
- PLASMANT, Department of Chemistry, University of Antwerp, Antwerp 2610, Belgium.
- Department of Physics, University of Antwerp, Antwerp 2020, Belgium
| | - Erik C Neyts
- PLASMANT, Department of Chemistry, University of Antwerp, Antwerp 2610, Belgium.
- NANOlab Center of Excellence, University of Antwerp, Belgium
| | - François M Peeters
- Department of Physics, University of Antwerp, Antwerp 2020, Belgium
- Departamento de Fisica, Caixa Postal 6030, Universidade Federal do Ceará, Fortaleza 60455-70, Ceará, Brazil
| |
Collapse
|
3
|
Soomro F, Ali A, Ullah S, Iqbal M, Alshahrani T, Khan F, Yang J, Thebo KH. Highly Efficient Arginine Intercalated Graphene Oxide Composite Membranes for Water Desalination. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18447-18457. [PMID: 38055936 DOI: 10.1021/acs.langmuir.3c02699] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Graphene oxide-based composite membranes have received enormous attention for highly efficient water desalination. Herein, we prepare arginine/graphene oxide (Arg/GO) composite membranes by surface functionalizing GO nanosheets with arginine amino acid. Arginine has a unique combination of hydroxyl and amino functional groups that cross-link GO nanosheets through hydrogen bonding and electrostatic interactions. The as-prepared Arg@GO composite membranes with different thicknesses are used to separate the salt and dye molecules. The 900-nm-thick Arg@GO composite membrane shows high rejection of 98% for NaCl and 99.8% for MgCl2, Ni(NO3)2, and Pb(NO3)2 with good water permeance. Such a membrane also shows a high separation efficiency (100%) for methylene blue, rhodamine B, and Evans blue dyes. At the same time, the ultrathin Arg@GO composite membrane (220 ± 10 nm) exhibits high water permeance of up to 2100 ± 10 L m-2 h-1 bar-1. Furthermore, the 900-nm-thick Arg@GO composite membrane is stable in an aqueous environment for 40 days with significantly less swelling. Therefore, these membranes can be utilized in future desalination and separation applications.
Collapse
Affiliation(s)
- Faheeda Soomro
- Department of Human and Rehabilitation Sciences, Faculty of Education, Linguists and Sciences, The Begum Nusrat Bhutto Women University, Rohri Bypass, Sukkur 65200, Pakistan
| | - Akbar Ali
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering (IPE), Chinese Academy of Sciences, Beijing 100F190, China
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Sami Ullah
- K.A.CARE Energy Research & Innovation Centre (ERIC), King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Muzaffar Iqbal
- Department of Chemistry, Faculty of Physical and Applied Sciences, The University of Haripur 22620 KPK, Pakistan
| | - Thamraa Alshahrani
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Firoz Khan
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Jun Yang
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering (IPE), Chinese Academy of Sciences, Beijing 100F190, China
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Khalid Hussain Thebo
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
4
|
Shaharudin MR, Williams CD, Achari A, Nair RR, Carbone P. Decoding the Interplay between Topology and Surface Charge in Graphene Oxide Membranes During Humidity Induced Swelling. ACS NANO 2023; 17:21923-21934. [PMID: 37917940 PMCID: PMC10655246 DOI: 10.1021/acsnano.3c08260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
Graphene oxide (GO) membranes are known to have a complex morphology that depends on the degree of oxidation of the graphene flake and the membrane preparation technique. In this study, using Grand Canonical Monte Carlo simulations, we investigate the mechanism of swelling of GO membranes exposed to different relative humidity (RH) values and show how this is intimately related to the graphene surface chemistry. We show that the structure of the GO membrane changes while the membrane adsorbs water from the environment and that graphene oxide flakes become charged as the membrane is loaded with water and swells. A detailed comparison between simulation and experimental adsorption data reveals that the flake surface charge drives the water adsorption mechanism at low RH when the membrane topology is still disordered and the internal pores are small and asymmetric. As the membrane is exposed to higher RH (80%), the flake acquires more surface charge as more oxide groups deprotonate, and the pores grow in size, yet maintain their disordered geometry. Only for very high relative humidity (98%) does the membrane undergo structural changes. At this level of humidity, the pores in the membrane become slit-like but the flake surface charge remains constant. Our results unveil a very complex mechanism of swelling and show that a single molecular model cannot fully capture the ever-changing chemistry and morphology of the membrane as it swells. Our computational procedure provides the first atomically resolved insight into the GO membrane structure of experimental samples.
Collapse
Affiliation(s)
- Mohd Rafie
bin Shaharudin
- Department
of Chemical Engineering, School of Engineering, The University of Manchester, Booth Street East, M13 9PL Manchester, United Kingdom
| | - Christopher D. Williams
- Division
of Pharmacy and Optometry, School of Health Sciences, The University of Manchester, Oxford Road, M13 9PT Manchester, United Kingdom
| | - Amritroop Achari
- Department
of Chemical Engineering, School of Engineering, The University of Manchester, Booth Street East, M13 9PL Manchester, United Kingdom
- National
Graphene Institute, The University of Manchester, Booth Street East, M13 9PL Manchester, United Kingdom
| | - Rahul R. Nair
- Department
of Chemical Engineering, School of Engineering, The University of Manchester, Booth Street East, M13 9PL Manchester, United Kingdom
- National
Graphene Institute, The University of Manchester, Booth Street East, M13 9PL Manchester, United Kingdom
| | - Paola Carbone
- Department
of Chemical Engineering, School of Engineering, The University of Manchester, Booth Street East, M13 9PL Manchester, United Kingdom
| |
Collapse
|