1
|
Huo Q, Feng S, Wang D, Liu H. Daylight Visualization of Latent Fingerprints Exceeding Level 3 Details through Contradictory Electrostatic and Hydrogen-Bonding Interactions. ACS Sens 2025; 10:1166-1177. [PMID: 39937657 DOI: 10.1021/acssensors.4c03043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Daylight visualization of latent fingerprints (LFPs) is highly desirable due to its convenience and safety for inspectors. However, achieving this visualization with details exceeding level 3 using nontoxic materials presents a significant challenge. Here, we address this challenge by utilizing cyclosiloxane-linked fluorescent porous polymers (FPPs) as the developers. These FPPs were synthesized from 2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane and brominated monomers via Heck reactions. The resulting FPPs, available as powders in various colors, exhibit high porosity and strong fluorescence. By employing the classical powder dusting method with FPPs, LFPs with level 1-3 details become visible on various substrates, including copper, iron, aluminum, tinfoil, and wood, under daylight. This approach provides high resolution and contrast with strong resistance to background interference on colored substrates. The efficient visualization is attributed to contradictory electrostatic and hydrogen-bonding interactions between FPPs and fingerprint secretions, which ensure strong adhesion of the materials exclusively to the ridges of fingerprints rather than the furrows. Furthermore, the FPPs are noncytotoxic and do not impede DNA extraction and identification after LFP visualization. This study represents the first example of daylight visualization of LFPs with details surpassing level 3 using nontoxic developers, thereby mitigating the risks associated with material toxicity and light exposure for inspectors. These findings highlight the potential of FPPs as efficient developers for LFP visualization in crime scenes. This straightforward and broadly applicable protocol may pave the way for further advancements in daylight visualization methods for LFPs.
Collapse
Affiliation(s)
- Qiming Huo
- National Engineering Research Center for Colloidal Materials & Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Shengyu Feng
- National Engineering Research Center for Colloidal Materials & Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Dengxu Wang
- National Engineering Research Center for Colloidal Materials & Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Hongzhi Liu
- National Engineering Research Center for Colloidal Materials & Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
2
|
Wang H, Guo Z, He Z, Lin G, He C, Chen G, Peng Z. Flexible Alternating-Current Electroluminescent Devices for Reliable Identification of Fingerprints. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11888-11897. [PMID: 39950366 DOI: 10.1021/acsami.4c22178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Flexible bioelectronic devices, which can directly detect various external stimuli or biosignals and communicate the information to the users, have been broadly investigated due to the increasing demand for wearable devices. Among them, alternating-current electroluminescence (ACEL) devices are proposed as sensitive sensing systems for various targets, such as fingerprints. Herein, we propose a method for preparing high-performance ACEL devices by using an Ag electrode, polyethylene terephthalate (PET) substrate, FKM/EMI ionogel, and ZnS:Cu/BaTiO3/Ecoflex emissive layer. Their influence has also been studied for achieving high performances. The results demonstrate that the prepared ACEL devices can achieve high performances of emitting bright green and blue light when contacted with various ionic liquids. Significantly, they achieved good sensing performance for detecting Na+ with a limit of detection at 17.1 μM in the linear range of 100-800 mM. Moreover, the ACEL devices can be used for identity recognition, as they are capable of efficient collection and distinguishing of fingerprints. Even the characteristics of fingerprints collected from bending surfaces or contaminated fingers could be distinguished by the naked eyes. Compared with commercial fingerprint devices, our ACEL devices exhibit superior performance in fingerprint identification. High-resolution and three-dimensional image analysis further validates the reliability of our ACEL devices in fingerprint collection and identification. As such, we believe that the designed ACEL devices have very promising application prospects in many fields.
Collapse
Affiliation(s)
- Haifei Wang
- Center for Stretchable Electronics and NanoSensors, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zenan Guo
- Center for Stretchable Electronics and NanoSensors, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhaoqiang He
- Center for Stretchable Electronics and NanoSensors, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Guanhua Lin
- Strait Laboratory of Flexible Electronics (SLoFE), Fujian Key Laboratory of Flexible Electronics, and Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou 350117, China
| | - Chubin He
- Center for Stretchable Electronics and NanoSensors, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Gang Chen
- Strait Laboratory of Flexible Electronics (SLoFE), Fujian Key Laboratory of Flexible Electronics, and Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou 350117, China
| | - Zhengchun Peng
- Center for Stretchable Electronics and NanoSensors, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
3
|
Wei Y, Wang J. X-ray/γ-ray/Ultrasound-Activated Persistent Luminescence Phosphors for Deep Tissue Bioimaging and Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56519-56544. [PMID: 39401275 DOI: 10.1021/acsami.4c11585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Persistent luminescence phosphors (PLPs) can remain luminescent after excitation ceases and have been widely explored in bioimaging and therapy since 2007. In bioimaging, PLPs can efficiently avoid tissue autofluorescence and light scattering interference by collecting persistent luminescence signals after the end of excitation. Outstanding signal-to-background ratios, high sensitivity, and resolution have been achieved in bioimaging with PLPs. In therapy, PLPs can continuously produce therapeutic molecules such as reactive oxygen species after removing excitation sources, which realizes sustained therapeutic activity after a single dose of light stimulation. However, most PLPs are activated by ultraviolet or visible light, which makes it difficult to reactivate the PLPs in vivo, particularly in deep tissues. In recent years, excitation sources with deep tissue penetration have been explored to activate PLPs, including X-ray, γ-ray, and ultrasound. Researchers found that various inorganic and organic PLPs can be activated by X-ray, γ-ray, and ultrasound, making these PLPs valuable in the imaging and therapy of deep-seated tumors. These X-ray/γ-ray/ultrasound-activated PLPs have not been systematically introduced in previous reviews. In this review, we summarize the recently developed inorganic and organic PLPs that can be activated by X-ray, γ-ray, and ultrasound to produce persistent luminescence. The biomedical applications of these PLPs in deep-tissue bioimaging and therapy are also discussed. This review can provide instructions for the design of PLPs with deep-tissue-renewable persistent luminescence and further promote the applications of PLPs in phototheranostics, noninvasive biosensing devices, and energy harvesting.
Collapse
Affiliation(s)
- Yurong Wei
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, China
| | - Jie Wang
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
4
|
Shang R, Yang F, Gao G, Luo Y, You H, Dong L. Bioimaging and prospects of night pearls-based persistence phosphors in cancer diagnostics. EXPLORATION (BEIJING, CHINA) 2024; 4:20230124. [PMID: 39175886 PMCID: PMC11335470 DOI: 10.1002/exp.20230124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/13/2023] [Indexed: 08/24/2024]
Abstract
Inorganic persistent phosphors feature great potential for cancer diagnosis due to the long luminescence lifetime, low background scattering, and minimal autofluorescence. With the prominent advantages of near-infrared light, such as deep penetration, high resolution, low autofluorescence, and tissue absorption, persistent phosphors can be used for deep bioimaging. We focus on highlighting inorganic persistent phosphors, emphasizing the synthesis methods and applications in cancer diagnostics. Typical synthetic methods such as the high-temperature solid state, thermal decomposition, hydrothermal/solvothermal, and template methods are proposed to obtain small-size phosphors for biological organisms. The luminescence mechanisms of inorganic persistent phosphors with different excitation are discussed and effective matrixes including galliumate, germanium, aluminate, and fluoride are explored. Finally, the current directions where inorganic persistent phosphors can continue to be optimized and how to further overcome the challenges in cancer diagnosis are summarized.
Collapse
Affiliation(s)
- Ruipu Shang
- Key Laboratory of Rare EarthsChinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhouChina
- University of Science and Technology of ChinaHefeiChina
| | - Feifei Yang
- Key Laboratory of Rare EarthsChinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhouChina
| | - Ge Gao
- Division of Physical Science and Engineering (PSE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Yu Luo
- Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA Institute for Frontier Medical TechnologyCollege of Chemistry and Chemical EngineeringShanghai University of Engineering ScienceShanghaiChina
| | - Hongpeng You
- Key Laboratory of Rare EarthsChinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhouChina
- University of Science and Technology of ChinaHefeiChina
| | - Lile Dong
- Key Laboratory of Rare EarthsChinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhouChina
- University of Science and Technology of ChinaHefeiChina
| |
Collapse
|
5
|
Liu H, Guo L, Cui Z, Zeng G, Lu L, Zhu X, Peng S, Yue Y, Deng M, Qiu J, Xu X, Zhao F, Yu X, Wang T. Enhanced Storage Capacity via Anion Substitution for Advanced Delayed X-ray Detection. NANO LETTERS 2024; 24:3282-3289. [PMID: 38421230 DOI: 10.1021/acs.nanolett.4c00465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
X-ray radiation information storage, characterized by its ability to detect radiation with delayed readings, shows great promise in enabling reliable and readily accessible X-ray imaging and dosimetry in situations where conventional detectors may not be feasible. However, the lack of specific strategies to enhance the memory capability dramatically hampers its further development. Here, we present an effective anion substitution strategy to enhance the storage capability of NaLuF4:Tb3+ nanocrystals attributed to the increased concentration of trapping centers under X-ray irradiation. The stored radiation information can be read out as optical brightness via thermal, 980 nm laser, or mechanical stimulation, avoiding real-time measurement under ionizing radiation. Moreover, the radiation information can be maintained for more than 13 days, and the imaging resolution reaches 14.3 lp mm-1. These results demonstrate that anion substitution methods can effectively achieve high storage capability and broaden the application scope of X-ray information storage.
Collapse
Affiliation(s)
| | - Longchao Guo
- School of Mechanical Engineering, Institute for Advanced Materials, Deformation and Damage from Multi-Scale, Chengdu University, Chengdu 610106, China
| | - Zhenzhen Cui
- Faculty of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China
| | | | - Lan Lu
- Faculty of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China
| | | | - Songcheng Peng
- Faculty of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China
| | - Yang Yue
- School of Mechanical Engineering, Institute for Advanced Materials, Deformation and Damage from Multi-Scale, Chengdu University, Chengdu 610106, China
| | - Mao Deng
- School of Mechanical Engineering, Institute for Advanced Materials, Deformation and Damage from Multi-Scale, Chengdu University, Chengdu 610106, China
| | - Jianbei Qiu
- Faculty of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China
| | - Xuhui Xu
- Faculty of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China
| | - Feng Zhao
- School of Mechanical Engineering, Institute for Advanced Materials, Deformation and Damage from Multi-Scale, Chengdu University, Chengdu 610106, China
| | - Xue Yu
- School of Mechanical Engineering, Institute for Advanced Materials, Deformation and Damage from Multi-Scale, Chengdu University, Chengdu 610106, China
| | | |
Collapse
|
6
|
Dai W, Qi B, Li Z, Wang J. Bimodal persistent luminescence for autofluorescence-free ratiometric biosensing. Anal Bioanal Chem 2023; 415:6723-6731. [PMID: 37733257 DOI: 10.1007/s00216-023-04949-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
In optical biosensing, analyte-independent factors such as autofluorescence interference and excitation source fluctuation decrease the sensitivity and accuracy. Herein, we reported a bimodal persistent luminescence strategy to design dual-emissive persistent luminescence nanoparticles (PLNPs) with built-in self-calibration to preclude interference from analyte-independent factors in biosensing. As a proof of concept, ZnGa2O4:Cr PLNPs with emissions at both 490 nm and 695 nm were designed. The I490/I695 ratio of ZnGa2O4:Cr was readily adjusted by simply changing the doping concentration of Cr3+. The ZnGa2O4:Cr PLNPs were employed for the ratiometric detection of urinary mesna. A good linear relationship between the I490/I695 ratio of ZnGa2O4:Cr-based nanoprobe and the concentration of mesna was obtained in the range of 0-40 μM. The limit of detection was about 0.40 μM. Results showed that autofluorescence interference from urine was totally eliminated by collecting the persistent luminescence signal of ZnGa2O4:Cr after excitation ceased. Moreover, the built-in self-calibration feature of the ratiometric ZnGa2O4:Cr PLNPs efficiently suppressed the interference from fluctuations in instrumental parameters during urinary mesna detection. The recovery rates of mesna in the spiked urine samples are in the range of 99.1~109.0%, showing the reliability of the ratiometric ZnGa2O4:Cr PLNPs in urinary mesna detection. ZnGa2O4:Cr can further be expanded to the detection of other analytes in complex matrices. This study may open new opportunities for the design of dual-emissive PLNPs with tunable ratios of emission intensity, and it can further promote the applications of optical biosensing in disease diagnosis, food safety, and environmental monitoring.
Collapse
Affiliation(s)
- Wenjing Dai
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, China
| | - Bing Qi
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhihao Li
- Wuhan Academy of Agricultural Sciences, Wuhan, 430072, China.
| | - Jie Wang
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
7
|
Yang S, Dai W, Tang M, Wang J. Nonstoichiometric Nanocubes with a Controllable Morphology and Persistent Luminescence for Autofluorescence-Free Biosensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38644-38652. [PMID: 37527437 DOI: 10.1021/acsami.3c05895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Persistent luminescence nanoparticles (PLNPs) have shown special advantages in areas such as bioimaging, cancer therapy, stress sensing, and photo-biocatalysis. However, the lack of methods for controllable synthesis of PLNPs with uniform morphologies and strong persistent luminescence has seriously hindered the applications of PLNPs. Herein, we reported that modifying the electronic structures of zinc gallogermanate (ZGGO) PLNPs by nonstoichiometric reactions can produce highly uniform nanocubes with controllable size and persistent luminescence. By nonstoichiometric increase of the Ge/Ga ratio in ZGGO, the ZGGO PLNPs were transformed from a mixture of nanocubes and small nanospheres into highly symmetrical and uniform large nanocubes, accompanied by the enhancement of persistent luminescence intensity by about 3.7 times. Moreover, we found that ZGGO PLNPs were responsive to reactive oxygen species (ROS), that is, the persistent luminescence of ZGGO can be quenched by ROS. Autofluorescence-free serum ROS detection was achieved with the developed PLNPs. Further, a biosensing assay for glucose oxidase (GOx) was designed based on the responsiveness of ZGGO PLNPs to H2O2. This study may pave a new way for better control of PLNPs' size, morphology, and persistent luminescence, and it can further promote the applications of PLNPs in areas ranging from theranostics to solar energy utilization.
Collapse
Affiliation(s)
- Shuting Yang
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, China
| | - Wenjing Dai
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, China
| | - Man Tang
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Jie Wang
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
8
|
Zhang Y, Ci Y, Song J, Tong D, Song J, Zhang E, Wan H, Ma Z. Novel Red‐Emitting Gd
3
BW
1‐x
MoxO
9
: Eu
3+
Phosphor with High Thermal Stability for Application in UV‐Excited WLEDs and Rapid Visualization of Latent Fingerprints. ChemistrySelect 2023. [DOI: 10.1002/slct.202204438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
9
|
Sun M, Chen M, Wang J. Perspective and Prospects on persistent luminescent nanoparticles for biological imaging and tumor therapy. Curr Med Chem 2023; 31:CMC-EPUB-129402. [PMID: 36809957 DOI: 10.2174/0929867330666230210093411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 02/17/2023]
Abstract
Persistent luminescent nanoparticles (PLNPs) are photoluminescent materials that can still emit luminescence after the cessation of the excitation light source. In recent years, due to their unique optical properties, the PLNPs have attracted extensive attention in the biomedical field. Since the PLNPs effectively eliminate autofluorescence interference from biological tissues, many researchers have contributed a lot of work in the fields of biological imaging and tumor therapy. This article mainly introduces the synthesis methods of the PLNPs and their progress in the application of biological imaging and tumor therapy, as well as the challenges and development prospects.
Collapse
Affiliation(s)
- Minghui Sun
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, 30 Gaotanyan, Shapingba District, Chongqing 400038, China
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, 30 Gaotanyan, Shapingba District, Chongqing 400038, China
| | - Jun Wang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, 30 Gaotanyan, Shapingba District, Chongqing 400038, China
| |
Collapse
|
10
|
Hong Z, Chen Z, Chen Q, Yang H. Advancing X-ray Luminescence for Imaging, Biosensing, and Theragnostics. Acc Chem Res 2023; 56:37-51. [PMID: 36533853 DOI: 10.1021/acs.accounts.2c00517] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
X-ray luminescence is an optical phenomenon in which chemical compounds known as scintillators can emit short-wavelength light upon the excitation of X-ray photons. Since X-rays exhibit well-recognized advantages of deep penetration toward tissues and a minimal autofluorescence background in biological samples, X-ray luminescence has been increasingly becoming a promising optical tool for tackling the challenges in the fields of imaging, biosensing, and theragnostics. In recent years, the emergence of nanocrystal scintillators have further expanded the application scenarios of X-ray luminescence, such as high-resolution X-ray imaging, autofluorescence-free detection of biomarkers, and noninvasive phototherapy in deep tissues. Meanwhile, X-ray luminescence holds great promise in breaking the depth dependency of deep-seated lesion treatment and achieving synergistic radiotherapy with phototherapy.In this Account, we provide an overview of recent advances in developing advanced X-ray luminescence for applications in imaging, biosensing, theragnostics, and optogenetics neuromodulation. We first introduce solution-processed lead halide all-inorganic perovskite nanocrystal scintillators that are able to convert X-ray photons to multicolor X-ray luminescence. We have developed a perovskite nanoscintillator-based X-ray detector for high-resolution X-ray imaging of the internal structure of electronic circuits and biological samples. We further advanced the development of flexible X-ray luminescence imaging using solution-processable lanthanide-doped nanoscintillators featuring long-lived X-ray luminescence to image three-dimensional irregularly shaped objects. We also outline the general principles of high-contrast in vivo X-ray luminescence imaging which combines nanoscintillators with functional biomolecules such as aptamers, peptides, and antibodies. High-quality X-ray luminescence nanoprobes were engineered to achieve the high-sensitivity detection of various biomarkers, which enabled the avoidance of interference from the biological matrix autofluorescence and photon scattering. By marrying X-ray luminescence probes with stimuli-responsive materials, multifunctional theragnostic nanosystems were constructed for on-demand synergistic gas radiotherapy with excellent therapeutic effects. By taking advantage of the capability of X-rays to penetrate the skull, we also demonstrated the development of controllable, wireless optogenetic neuromodulation using X-ray luminescence probes while obviating damage from traditional optical fibers. Furthermore, we discussed in detail some challenges and future development of X-ray luminescence in terms of scintillator synthesis and surface modification, mechanism studies, and their other potential applications to provide useful guidance for further advancing the development of X-ray luminescence.
Collapse
Affiliation(s)
- Zhongzhu Hong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Zhaowei Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Qiushui Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, P. R. China
| |
Collapse
|
11
|
Yang S, Dai W, Zheng W, Wang J. Non-UV-activated persistent luminescence phosphors for sustained bioimaging and phototherapy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Jia X, Zhang C, Gao L, Yang X, Yu Z, Lou X, Jia G. Controllable Synthesis, Formation Process, and Luminescence Performances of Diverse Yttrium Compounds with Hollow Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11917-11928. [PMID: 36130199 DOI: 10.1021/acs.langmuir.2c01642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hollow spherical Y2O3 and YBO3 have been prepared by a facile template-directed strategy using phenol-formaldehyde (PF) resin spheres as templates. The PF@Y(OH)CO3 precursor can be fabricated by a simple precipitation route. The Y2O3 hollow spheres are obtained via a direct annealing process, and the hollow spherical YBO3 are fabricated via a hydrothermal route followed by an annealing process at the expense of the same PF@Y(OH)CO3 precursor. The whole synthesis procedure is performed in aqueous solution without any surfactant or catalyst. Moreover, YVO4 quasi-octahedral microcrystals with spherical holes are obtained. The formation mechanisms of the yttrium compounds with different morphologies have been discussed. By incorporating proper rare earth activator ions into the Y2O3, YBO3, and YVO4 hosts, the as-synthesized luminescent materials can exhibit eminent performances with both down-conversion and up-conversion luminescence. Furthermore, the as-fabricated light-emitting diode (LED) devices can emit dazzling characteristic emission light, which reveals that the phosphors have application potential in lighting and displays. This simple synthesis strategy may provide a new idea for the fabrication of inorganic compounds with perfect hollow structures and excellent properties.
Collapse
Affiliation(s)
- Xiaomeng Jia
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Cuimiao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Lan Gao
- Department of Biochemistry, Baoding University, Baoding 071000, P. R. China
| | - Xinjian Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Ziman Yu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Xiaomeng Lou
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Guang Jia
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
| |
Collapse
|