1
|
Lin J, Wang Z, Hu J, Li T, Chen L, Hu X, Liu X, Luo Q, Wang P. Facile and straightforward fabrication of antimicrobial Cu-Ce oxide nanoagent for repair of acutely infected wounds. MATERIALS & DESIGN 2025; 253:113901. [DOI: 10.1016/j.matdes.2025.113901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
|
2
|
Román LE, Uribe C, Paraguay-Delgado F, Sutjianto JG, Navarrete-López AM, Gomez ED, Solís JL, Gómez MM. Physical and Surface Chemical Analysis of High-Quality Antimicrobial Cotton Fabrics Functionalized with CuO x Grown In Situ from Different Copper Salts: Experimental and Theoretical Approach. ACS APPLIED MATERIALS & INTERFACES 2025; 17:1869-1882. [PMID: 39681520 DOI: 10.1021/acsami.4c14948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The emergence of harmful microorganisms poses a public health challenge. Antimicrobial cotton textiles with semiconductor oxides offer a promising solution to mitigate pathogen spread. Here, we study the physicochemical interactions between copper oxides (CuOx) and cellulose in cotton fiber functionalized with these same oxides for antimicrobial properties. Fabrics were treated by an exhaust dyeing method using a 2% on-weight-of-fiber (owf) copper precursor with acetate, nitrate, and sulfate anions. Nonfunctionalized (NF) fabrics with a yellow hue turned reddish brown after the functionalization with CuOx. Copper (Cu) content in the functionalized fabrics increased by 27-40% compared to 0.009% in the NF fabric. The percentage of Cu exhaustion was higher with the acetate salt than nitrate and sulfate, resulting in darker fabrics according to colorimetry. XPS analysis of cotton suggests a chemical interaction between the hydroxyl groups of cellulose and CuOx. The nature and strength of potential interactions between Cu cations and the cellulose surface were investigated using the quantum theory of atoms in molecules and crystals. Based on topological parameters, the interaction between Cu and the hydroxyl groups of cellulose exhibits a covalent character. Furthermore, the XPS spectrum of functionalized fabrics exhibited peaks corresponding to Cu1+ and Cu2+ ions, assigned to the Cu2O and CuO phases, respectively. Electron diffraction patterns confirmed copper oxide crystalline phases, where Cu2O was indexed in the cuprite system and CuO in the tenorite system. Regarding morphology, no defined forms of CuOx were observed on the cotton surface, regardless of the salt used for treatment. Likewise, all fabrics functionalized with CuOx inhibited the growth of Escherichia coli and Pseudomonas aeruginosa strains by more than 99%. Therefore, cotton fabrics functionalized with a mixture of Cu2O and CuO have excellent antimicrobial properties that can be used in environments with a high bacterial load.
Collapse
Affiliation(s)
- Luz E Román
- Faculty of Science, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Lima 15333, Peru
| | - Carmen Uribe
- Facultad de Ingeniería Química y Textil, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Lima 15333, Peru
| | - Francisco Paraguay-Delgado
- Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Av. Miguel de Cervantes #120, Complejo Industrial Chihuahua, Chihuahua, Chih CP 31136, México
| | - James G Sutjianto
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Alejandra M Navarrete-López
- Departamento de Ciencias Básicas, DCBI, Universidad Autonoma Metropolitana, Unidad Azcapotzalco, Av. San Pablo 420, Col. Nueva el Rosario, Azcapotzalco, CDMX CP 02128, México
| | - Enrique D Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - José L Solís
- Faculty of Science, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Lima 15333, Peru
| | - Mónica M Gómez
- Faculty of Science, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Lima 15333, Peru
| |
Collapse
|
3
|
Gamonchuang J, Meeklinhom S, Muangnapoh T, Imhan C, Chantho V, Sillapaprayoon S, Pimtong W, Warin C, Isanapong J, Ratanatawanate C, Kumnorkaew P. Eco-Friendly and Low-Cost Synthesis of Transparent Antiviral- and Antibacterial-Coated Films Based on Cu 2O and MIL-53(Al). ACS APPLIED BIO MATERIALS 2024; 7:7280-7291. [PMID: 39450473 DOI: 10.1021/acsabm.4c00956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
This research presents the development of an innovative antimicrobial coating consisting of cuprous oxide (Cu2O) integrated with the metal-organic framework MIL-53(Al) through an eco-friendly and low-cost synthesis method that employs glucose as a reducing agent under mild conditions. The microstructural properties of the composite materials were characterized by using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The antibacterial efficacy of the Cu2O-MIL-53(Al) (CuM) composite was assessed against Escherichia coli and Staphylococcus aureus, achieving a reduction efficacy of 99.99% with 5% copper incorporated into the MIL-53(Al) framework within a contact time of 24 h. The incorporation of CuM into a macromolecular host matrix of polyurethane-carboxymethylcellulose (CuM/PUD-CMC), applied as a coating on a low-cost plastic film, produced a transparent film with 87.10% transparency. This coating demonstrated a 99.99% reduction in E. coli and S. aureus populations within a contact time of 24 h. The CuM/PUD-CMC coating demonstrated substantial antiviral efficacy, achieving inactivation rates of 99.35% for Human Coronavirus 229E, 99.40% for Influenza A virus, and 97.76% for Enterovirus 71 within a contact time of 5 min. The CuM nanoparticles exhibited low toxicity toward zebrafish while effectively eradicating bacteria and inactivating viruses. The proposed low-cost material and coating method demonstrate significant potential as a broad-spectrum antimicrobial and antiviral agent, highlighting its suitability for various applications in biomedical and healthcare formulations.
Collapse
Affiliation(s)
- Jirasak Gamonchuang
- Innovative Nanocoating Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Sorrawit Meeklinhom
- Innovative Nanocoating Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Tanyakorn Muangnapoh
- Innovative Nanocoating Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Chalida Imhan
- Environmental Nanotechnology Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Varissara Chantho
- Nano Safety and Bioactivity Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Siwapech Sillapaprayoon
- Nano Safety and Bioactivity Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Wittaya Pimtong
- Nano Safety and Bioactivity Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Choochart Warin
- Nanocharacterization Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Jantiya Isanapong
- Faculty of Applied Science, King Mongkut's University of Technology North Bangkok (KMUTNB), Bang Sue, Bangkok 10800, Thailand
| | - Chalita Ratanatawanate
- Environmental Nanotechnology Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Pisist Kumnorkaew
- Innovative Nanocoating Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| |
Collapse
|
4
|
Luceri A, Francese R, Perero S, Lembo D, Ferraris M, Balagna C. Antibacterial and Antiviral Activities of Silver Nanocluster/Silica Composite Coatings Deposited onto Air Filters. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3955-3965. [PMID: 38195426 DOI: 10.1021/acsami.3c13843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The indoor air quality should be better controlled and improved to avoid numerous health issues. Even if different devices are developed for air filtration, the proliferation of microorganisms under certain conditions must be controlled. For this purpose, a silver nanocluster/silica composite coating was deposited via a cosputtering technique onto fiber glass and polymeric based substrates. The aim of this work is focused on the evaluation of the antibacterial and antiviral effects of the developed coating. The preliminary results of the compositional and morphological tests showed an evenly distributed coating on filters surfaces. Several antibacterial tests were performed, confirming strong effect both in qualitative and quantitative methods, against S. epidermidis and E. coli. To understand if the coating can stop the proliferation of bacteria colonies spread on it, simulation of everyday usage of filters was performed, nebulizing bacteria solution with high colonies concentration and evaluating the inhibition of bacteria growth. Additionally, a deep understanding of the virucidal action and mechanism of Ag nanoclusters of the coating was performed. The effect of the coating both in aqueous medium and in dry methods was evaluated, in comparison with analysis on ions release. The virucidal performances are assessed against the human coronavirus OC43 strain (HCoV-OC43).
Collapse
Affiliation(s)
- Angelica Luceri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Rachele Francese
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Regione Gonzole 10, 10043 Orbassano (TO), Italy
| | - Sergio Perero
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - David Lembo
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Regione Gonzole 10, 10043 Orbassano (TO), Italy
| | - Monica Ferraris
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Cristina Balagna
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
5
|
Hosseini M, Huang J, Williams MD, Gonzalez GA, Jiang X, Falkinham JO, Ducker WA. Robust and Transparent Silver Oxide Coating Fabricated at Room Temperature Kills Clostridioides difficile Spores, MRSA, and Pseudomonas aeruginosa. Microorganisms 2023; 12:83. [PMID: 38257910 PMCID: PMC10818310 DOI: 10.3390/microorganisms12010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Antimicrobial coatings can inhibit the transmission of infectious diseases when they provide a quick kill that is achieved long after the coating application. Here, we describe the fabrication and testing of a glass coating containing Ag2O microparticles that was prepared from sodium silicate at room temperature. The half-lives of both methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa on this coating are only 2-4 min. The half-life of Clostridioides difficile spores is about 9-12 min, which is extremely short for a spore. Additional tests on MRSA demonstrate that the coating retains its antimicrobial activity after abrasion and that an increased loading of Ag2O leads to a shorter half-life. This coating combines the properties of optical transparency, robustness, fast kill, and room temperature preparation that are highly desirable for an antimicrobial coating.
Collapse
Affiliation(s)
- Mohsen Hosseini
- Department of Chemical Engineering, Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061, USA; (M.H.); (G.A.G.)
| | - Jinge Huang
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (J.H.); (X.J.)
| | - Myra D. Williams
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.D.W.); (J.O.F.III)
| | - Gerardo Alexander Gonzalez
- Department of Chemical Engineering, Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061, USA; (M.H.); (G.A.G.)
| | - Xiuping Jiang
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (J.H.); (X.J.)
| | - Joseph O. Falkinham
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.D.W.); (J.O.F.III)
| | - William A. Ducker
- Department of Chemical Engineering, Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061, USA; (M.H.); (G.A.G.)
| |
Collapse
|
6
|
Zhou F, Peng J, Tao Y, Yang L, Yang D, Sacher E. The Enhanced Durability of AgCu Nanoparticle Coatings for Antibacterial Nonwoven Air Conditioner Filters. Molecules 2023; 28:5446. [PMID: 37513318 PMCID: PMC10384833 DOI: 10.3390/molecules28145446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Antibacterial nonwoven fabrics, incorporated with Ag, have been applied as masks and air conditioner filters to prevent the spread of disease from airborne respiratory pathogens. In this work, we present a comparison study of Ag ions: Ag and AgCu nanoparticles (NPs) coated onto nonwoven fabrics intended for use as air conditioner antibacterial filters. We illustrate their color changes and durability running in air conditioners using antibacterial activity testing and X-ray Photoelectron Spectroscopic (XPS) analysis. We found that AgCu NPs showed the best antibacterial efficacy and durability. XPS analysis indicated that the Ag concentration, on both the AgCu and Ag- NP-coated fibers, changed little. On the contrary, the Ag concentration on Ag ion-coated fibers decreased by ~30%, and the coated NPs aggregated over time. The color change in AgCu NP-coated fabric, from yellow to white, is caused by oxide shell formation over the NPs, with nearly 46% oxidized silver. Our results, both from antibacterial evaluation and wind blowing tests, indicate that AgCu NP-coated fibers have higher durability, while Ag ion-coated fibers have little durability in such applications. The enhanced durability of the AgCu NP-coated antibacterial fabrics can be attributed to stronger NP-fiber interactions and greater ion release.
Collapse
Affiliation(s)
- Fang Zhou
- NanoTeX Lab, Solmont Technology Wuxi Co., Ltd., 228 Linghu Blvd., Tian'an Tech Park, A1-602, Xinwu District, Wuxi 214135, China
| | - Jiabing Peng
- NanoTeX Lab, Solmont Technology Wuxi Co., Ltd., 228 Linghu Blvd., Tian'an Tech Park, A1-602, Xinwu District, Wuxi 214135, China
| | - Yujie Tao
- NanoTeX Lab, Solmont Technology Wuxi Co., Ltd., 228 Linghu Blvd., Tian'an Tech Park, A1-602, Xinwu District, Wuxi 214135, China
| | - Longlai Yang
- NanoTeX Lab, Solmont Technology Wuxi Co., Ltd., 228 Linghu Blvd., Tian'an Tech Park, A1-602, Xinwu District, Wuxi 214135, China
| | - Dequan Yang
- NanoTeX Lab, Solmont Technology Wuxi Co., Ltd., 228 Linghu Blvd., Tian'an Tech Park, A1-602, Xinwu District, Wuxi 214135, China
- Engineering School, Dali University, 2 Hongsheng Rd., Dali 671003, China
| | - Edward Sacher
- Regroupement Québécois de Matériaux de Pointe, Département de Génie Physique, Polytechnique Montréal, Case Postale 6079, Succursale Centre-Ville, Montréal, QC H3C 3A7, Canada
| |
Collapse
|
7
|
Shigetoh K, Hirao R, Ishida N. Durability and Surface Oxidation States of Antiviral Nano-Columnar Copper Thin Films. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20398-20409. [PMID: 36947007 PMCID: PMC10141257 DOI: 10.1021/acsami.3c01400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Antiviral coatings that inactivate a broad spectrum of viruses are important in combating the evolution and emergence of viruses. In this study, nano-columnar Cu thin films have been proposed, inspired by cicada wings (which exhibit mechano-bactericidal activity). Nano-columnar thin films of Cu and its oxides were fabricated by the sputtering method, and their antiviral activities were evaluated against envelope-type bacteriophage Φ6 and non-envelope-type bacteriophage Qβ. Among all of the fabricated films, Cu thin films showed the highest antiviral activity. The infectious activity of the bacteriophages was reduced by 5 orders of magnitude within 30 min by the Cu thin films, by 3 orders of magnitude by the Cu2O thin films, and by less than 1 order of magnitude by the CuO thin films. After exposure to ambient air for 1 month, the antiviral activity of the Cu2O thin film decreased by 1 order of magnitude; the Cu thin films consistently maintained a higher antiviral activity than the Cu2O thin films. Subsequently, the surface oxidation states of the thin films were analyzed by X-ray photoelectron spectroscopy; Cu thin films exhibited slower oxidation to the CuO than Cu2O thin films. This oxidation resistance could be a characteristic property of nanostructured Cu fabricated by the sputtering method. Finally, the antiviral activity of the nano-columnar Cu thin films against infectious viruses in humans was demonstrated by the binding inhibition of the SARS-CoV-2 spike protein to the angiotensin-converting enzyme 2 receptor within 10 min.
Collapse
Affiliation(s)
- Keisuke Shigetoh
- Toyota Central R&D Labs.,
Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Rie Hirao
- Toyota Central R&D Labs.,
Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Nobuhiro Ishida
- Toyota Central R&D Labs.,
Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| |
Collapse
|
8
|
Fu J, Liu T, Binte Touhid SS, Fu F, Liu X. Functional Textile Materials for Blocking COVID-19 Transmission. ACS NANO 2023; 17:1739-1763. [PMID: 36683285 PMCID: PMC9885531 DOI: 10.1021/acsnano.2c08894] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
The outbreak of COVID-19 provided a warning sign for society worldwide: that is, we urgently need to explore effective strategies for combating unpredictable viral pandemics. Protective textiles such as surgery masks have played an important role in the mitigation of the COVID-19 pandemic, while revealing serious challenges in terms of supply, cross-infection risk, and environmental pollution. In this context, textiles with an antivirus functionality have attracted increasing attention, and many innovative proposals with exciting commercial possibilities have been reported over the past three years. In this review, we illustrate the progress of textile filtration for pandemics and summarize the recent development of antiviral textiles for personal protective purposes by cataloging them into three classes: metal-based, carbon-based, and polymer-based materials. We focused on the preparation routes of emerging antiviral textiles, providing a forward-looking perspective on their opportunities and challenges, to evaluate their efficacy, scale up their manufacturing processes, and expand their high-volume applications. Based on this review, we conclude that ideal antiviral textiles are characterized by a high filtration efficiency, reliable antiviral effect, long storage life, and recyclability. The expected manufacturing processes should be economically feasible, scalable, and quickly responsive.
Collapse
Affiliation(s)
- Jiajia Fu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Tianxing Liu
- Department of Cell and Systems Biology,
University of Toronto, Toronto, OntarioM5S1A1,
Canada
| | - S Salvia Binte Touhid
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Feiya Fu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Xiangdong Liu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| |
Collapse
|