1
|
Ullah B, Wang T, Cai R, Feng Y, Ming X, Hassanzadeh-Aghdam MK, Zeng L, Xi K, Tian L, Shen G. Design Principles of Flexible Substrates and Polymer Electrolytes for Flexible Zinc Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2501671. [PMID: 40130758 DOI: 10.1002/smll.202501671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/03/2025] [Indexed: 03/26/2025]
Abstract
Flexible ZIBs are gaining significant attention as a cost-effective and inherently safe energy storage technology with promising applications in next-generation flexible and wearable devices. The rising demand for flexible electronics has spurred the advancement of flexible batteries. However, the widespread adoption of liquid electrolytes in zinc-ion batteries has been hindered by persistent challenges, including liquid leakage, water evaporation, and parasitic water-splitting reactions, which pose significant obstacles to commercialization. Free-standing flexible substrates and solid-state polymer electrolytes are key to enhancing the energy density, ionic conductivity, power density, mechanical strength, and flexibility of ZIBs. Herein, this review highlights recent progress and strategies for developing high-efficiency flexible ZIBs as energy storage systems, focusing on advancements in flexibility (transitioning from rigid to flexible), electrolytes (shifting from liquid to solid), adaptability (from non-portable to portable designs), and the transition from laboratory research to practical industrial applications. Critical assessments of advanced modification approaches for flexible substrates and solid-state electrolytes are presented, emphasizing their role in achieving safe, flexible, stretchable, wearable, and self-healing ZIBs. Finally, future research directions and development strategies for designing effective solid-state polymer electrolytes and flexible substrates for next-generation flexible ZIBs are discussed.
Collapse
Affiliation(s)
- Badshah Ullah
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Tianyu Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Ruimin Cai
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Yuhe Feng
- School of Chemistry Engineering Research Center of Energy Storage Materials and Devices Ministry of Education National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, State Key Laboratory for Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaoqing Ming
- Xi'an Key Laboratory of Sustainable Polymer Materials School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710047, China
| | | | - Lingyou Zeng
- Engineering Research Center of Energy Storage Materials and Devices Ministry of Education School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Kai Xi
- School of Chemistry Engineering Research Center of Energy Storage Materials and Devices Ministry of Education National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, State Key Laboratory for Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Liang Tian
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
2
|
Wang Y, Jia Y, Li C, Cui H, Zhang R, Hong H, Li Q, Wang D, Zhi C. Progress in Developing Polymer Electrolytes for Advanced Zn Batteries. SMALL METHODS 2025:e2500031. [PMID: 40195887 DOI: 10.1002/smtd.202500031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/12/2025] [Indexed: 04/09/2025]
Abstract
Aqueous Zn batteries (ZBs) are promising candidates for large-scale energy storage, considering their intrinsically safe features, competitive cost, and environmental friendliness. However, the fascinating metallic Zn anode is subjected to severe issues, such as dendrite growth, hydrogen evolution, and corrosion. Additionally, traditional aqueous electrolytes' narrow electrochemical windows and temperature ranges further hinder the practical application of ZBs. Solid-state electrolytes, including solid polymer electrolytes and hydrogel electrolytes, offer distinct paths to mitigate these issues and simultaneously endow the ZBs with customizable functions such as flexibility, self-healing, anti-freezing, and regulated Zn deposition, etc, due to their tuneable structures. This review summarizes the latest progress in developing polymer electrolytes for ZBs, focusing on modifying the ionic conductivity, interfacial compatibility, Zn anode stability, electrochemical stability windows, and improving the environmental adaptability under harsh conditions. Although some achievements are obtained, many critical challenges still exist, and it is hoped to offer guidance for future research, accelerating the development and application of polymer electrolytes.
Collapse
Affiliation(s)
- Yanbo Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Yeyang Jia
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Chuan Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Huilin Cui
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Rong Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Hu Hong
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Qing Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Donghong Wang
- School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243032, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), NT, KSAR, Shatin, 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
3
|
Han Y, Liu Y, Zhang Y, He X, Fu X, Shi R, Jiao S, Zhao Y. Functionalized Quasi-Solid-State Electrolytes in Aqueous Zn-Ion Batteries for Flexible Devices: Challenges and Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412447. [PMID: 39466981 DOI: 10.1002/adma.202412447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/27/2024] [Indexed: 10/30/2024]
Abstract
The rapid development of wearable and intelligent flexible devices has posed strict requirements for power sources, including excellent mechanical strength, inherent safety, high energy density, and eco-friendliness. Zn-ion batteries with aqueous quasi-solid-state electrolytes (AQSSEs) with various functional groups that contain electronegative atoms (O/N/F) with tunable electron accumulation states are considered as a promising candidate to power the flexible devices and tremendous progress has been achieved in this prospering area. Herein, this review proposes a comprehensive summary of the recent achievements using the AQSSE in flexible devices by focusing on the significance of different functional groups. The fundamentals and challenges of the ZIBs are introduced from a chemical view in the first place. Then, the mechanism behind the stabilization of the flexible ZIBs with the functionalized AQSSE is summarized and explained in detail. Then the recent progress regarding the enhanced electrochemical stability of the ZIBs with the AQSSE is summarized and classified based on the functional groups on the polymer chain. The advanced characterization methods for the AQSSE are briefly introduced in the following sections. Last but not least, current challenges and future perspectives for this promising area are provided from the authors' point of view.
Collapse
Affiliation(s)
- Yinlong Han
- School of Nanoscience and Materials Engineering, Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Ye Liu
- School of Nanoscience and Materials Engineering, Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Yan Zhang
- School of Nanoscience and Materials Engineering, Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Xiaoxiao He
- School of Nanoscience and Materials Engineering, Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Xianwei Fu
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, 475004, P. R. China
| | - Ruijuan Shi
- School of Nanoscience and Materials Engineering, Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Shilong Jiao
- School of Nanoscience and Materials Engineering, Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Yong Zhao
- School of Nanoscience and Materials Engineering, Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| |
Collapse
|
4
|
Rakhman D, Batyrbekuly D, Myrzakhmetov B, Zhumagali K, Issabek K, Sultan-Akhmetov O, Umirov N, Konarov A, Bakenov Z. Polyacrylamide-based hydrogel electrolyte for modulating water activity in aqueous hybrid batteries. RSC Adv 2024; 14:40222-40233. [PMID: 39717802 PMCID: PMC11664367 DOI: 10.1039/d4ra07551j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024] Open
Abstract
While zinc-ion and hybrid aqueous battery systems have emerged as potential substitutes for expensive lithium-ion batteries, issues like side reactions, limited electrochemical stability, and electrolyte leakage hinder their commercialization. Due to their low cost, high stability, minimal leakage risks, and a wide variety of modification opportunities, hydrogel electrolytes are considered the most promising solution compared to liquid or solid electrolytes. Here, we synthesized a dual-function hydrogel electrolyte based on polyacrylamide and poly(ethylene dioxythiophene):polystyrene (PPP). This electrolyte reduces water content and enhances stability by minimizing side reactions while swelling in a binary ethylene glycol and water solution (EG 10%) further stabilizes the battery system. The developed hydrogel exhibits relatively good ionic conductivity (1.6 × 10-3 S cm-1) and excellent electrochemical stability, surpassing 2.5 V on linear sweep voltammetry tests. The PPP-based system reached a value of 119.2 mA g-1, while the aqueous electrolyte reached only 80.4 mA g-1 specific capacity. The rechargeable PPP hydrogel electrolyte-based hybrid aqueous battery with zinc anode achieved more than 600 cycles. Coulombic efficiency (CE) remained at 99%, indicating good electrochemical reaction stability and reversibility. This study highlights the potential of polyacrylamide-based hydrogel electrolytes with dual functionality as the electrolyte and separator, inspiring further development in hydrogel electrolytes for aqueous battery systems. This study highlights the potential of polyacrylamide-based hydrogel electrolytes with dual functionality as the electrolyte and separator, inspiring further development in hydrogel electrolytes for aqueous battery systems.
Collapse
Affiliation(s)
- Damira Rakhman
- National Laboratory Astana, Nazarbayev University Astana Kazakhstan
| | | | - Bauyrzhan Myrzakhmetov
- National Laboratory Astana, Nazarbayev University Astana Kazakhstan
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University Astana Kazakhstan
| | - Karina Zhumagali
- National Laboratory Astana, Nazarbayev University Astana Kazakhstan
- School of Mining and Geosciences, Nazarbayev University Astana Kazakhstan
| | - Kuralay Issabek
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University Astana Kazakhstan
| | - Orazaly Sultan-Akhmetov
- National Laboratory Astana, Nazarbayev University Astana Kazakhstan
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University Astana Kazakhstan
| | - Nurzhan Umirov
- National Laboratory Astana, Nazarbayev University Astana Kazakhstan
- Institute of Batteries, LLP Astana Kazakhstan
| | - Aishuak Konarov
- National Laboratory Astana, Nazarbayev University Astana Kazakhstan
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University Astana Kazakhstan
| | - Zhumabay Bakenov
- National Laboratory Astana, Nazarbayev University Astana Kazakhstan
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University Astana Kazakhstan
- Institute of Batteries, LLP Astana Kazakhstan
| |
Collapse
|
5
|
Chen W, Wang Y, Wang F, Zhang Z, Li W, Fang G, Wang F. Zinc Chemistries of Hybrid Electrolytes in Zinc Metal Batteries: From Solvent Structure to Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411802. [PMID: 39373284 DOI: 10.1002/adma.202411802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/11/2024] [Indexed: 10/08/2024]
Abstract
Along with the booming research on zinc metal batteries (ZMBs) in recent years, operational issues originated from inferior interfacial reversibility have become inevitable. Presently, single-component electrolytes represented by aqueous solution, "water-in-salt," solid, eutectic, ionic liquids, hydrogel, or organic solvent system are hard to undertake independently the task of guiding the practical application of ZMBs due to their specific limitations. The hybrid electrolytes modulate microscopic interaction mode between Zn2+ and other ions/molecules, integrating vantage of respective electrolyte systems. They even demonstrate original Zn2+ mobility pattern or interfacial chemistries mechanism distinct from single-component electrolytes, providing considerable opportunities for solving electromigration and interfacial problems in ZMBs. Therefore, it is urgent to comprehensively summarize the zinc chemistries principles, characteristics, and applications of various hybrid electrolytes employed in ZMBs. This review begins with elucidating the chemical bonding mode of Zn2+ and interfacial physicochemical theory, and then systematically elaborates the microscopic solvent structure, Zn2+ migration forms, physicochemical properties, and the zinc chemistries mechanisms at the anode/cathode interfaces in each type of hybrid electrolytes. Among of which, the scotoma and amelioration strategies for the current hybrid electrolytes are actively exposited, expecting to provide referenceable insights for further progress of future high-quality ZMBs.
Collapse
Affiliation(s)
- Wenyong Chen
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Yanyan Wang
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Fengmei Wang
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Zihao Zhang
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Wei Li
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Guozhao Fang
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, 410083, China
| | - Fei Wang
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
6
|
Li Z, Zhang H, Li C, Tian X, Liu S, Qin G, Yang J, Chen Q. Extreme condition-tolerant stretchable flexible supercapacitor and triboelectric nanogenerator based on carrageenan-enhanced gel for energy storage, energy collection and self-powered sensing. Int J Biol Macromol 2024; 273:132994. [PMID: 38862050 DOI: 10.1016/j.ijbiomac.2024.132994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
As flexible electronics devices for energy storage, mechanical energy collection and self-powered sensing, stretchable flexible supercapacitor and triboelectric nanogenerator (TENG) have attracted extensive attention. However, it is difficult to satisfy the requirements of high safety and resistance to extreme conditions. Dual roles of mechanical and electrical enhancement of inorganic salt are put forward, and a carrageenan (CG) enhanced poly (N-hydroxyethyl acrylamide)/CG/lithium chloride/glycerol (PCLG) conductive gel is prepared by designing hydrogen bonding self-crosslinking and chain entanglement. A high concentration and rapid deposition strategy is proposed to prepare a PCLG gel-based stretchable flexible all-in-one supercapacitor for energy storage, and a single electrode PCLG gel-based TENG is designed for mechanical energy collection, self-powered strain and tactile sensing. The supercapacitor has high capacitance, excellent cycling stability. The TENG possesses efficient energy harvesting with high and stable output voltage and power density, and sensitive and stable self-powered strain and tactile sensing without external power supply. Even under extreme conditions such as low temperatures, self-healing after damage, prolonged placement, deformation, post-deformation, multiple continuous work, pinprick and burning, the supercapacitor and TENG still have excellent properties. Therefore, we provide novel ideas to design flexible supercapacitor and TENG used under extreme conditions for future wearable electronics.
Collapse
Affiliation(s)
- Zhenyang Li
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, PR China
| | - Huijuan Zhang
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, PR China
| | - Chenyu Li
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, PR China
| | - Xiyu Tian
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, PR China
| | - Shuzheng Liu
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, PR China
| | - Gang Qin
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, PR China
| | - Jia Yang
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, PR China; Aeolus Tyre Co., Ltd., Jiaozuo 454003, PR China.
| | - Qiang Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, PR China.
| |
Collapse
|
7
|
Li X, Lv D, Ai L, Wang X, Xu X, Qiang M, Huang G, Yao X. Superstrong Ionogel Enabled by Coacervation-Induced Nanofibril Assembly for Sustainable Moisture Energy Harvesting. ACS NANO 2024; 18:12970-12980. [PMID: 38725336 DOI: 10.1021/acsnano.4c01179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Ionogels have grabbed significant interest in various applications, from sensors and actuators to wearable electronics and energy storage devices. However, current ionogels suffer from low strength and poor ionic conductivity, limiting their performance in practical applications. Here, inspired by the mechanical reinforcement of natural biomacromolecules through noncovalent aggregates, a strategy is proposed to construct nanofibril-based ionogels through complex coacervation-induced assembly. Cellulose nanofibrils (CNFs) can bundle together with poly(ionic liquid) (PIL) to form a superstrong nanofibrous network, in which the ionic liquid (IL) can be retained to form ionogels with high liquid inclusion and ionic conductivity. The strength of the CNF-PIL-IL ionogels can be tuned by the IL content over a wide range of up to 78 MPa. The optical transparency, high strength, and hygroscopicity enabled them to be promising candidates in moist-electricity generation and applications such as energy harvesting windows and wearable power generators. In addition, the ionogels are degradable and the ionogel-based generators can be recycled through dehydration. Our strategy suggests perspectives for the fabrication of high-strength and multifunctional ionogels for sustainable applications.
Collapse
Affiliation(s)
- Xin Li
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Dong Lv
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Liqing Ai
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Xuejiao Wang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Xiubin Xu
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, P. R. China
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Mengyi Qiang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Gongsheng Huang
- Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Xi Yao
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, P. R. China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, P. R. China
| |
Collapse
|
8
|
Huang C, Li H, Teng Z, Luo Y, Chen W. MOF-modified dendrite-free gel polymer electrolyte for zinc-ion batteries. RSC Adv 2024; 14:15337-15346. [PMID: 38741973 PMCID: PMC11089459 DOI: 10.1039/d4ra02200a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Zinc-ion batteries are promising candidates for large-scale energy storage, and gel polymer electrolytes (GPEs) play an important role in zinc-ion battery applications. Metal-organic frameworks (MOFs) are characterized by large specific surface areas and ordered pores. This highly ordered microporous structure provides a continuous transport channel for ions, thus realizing the high-speed transmission of ions. In this paper, an MOF-modified dendrite-free GPE was designed. The incorporation of MOF particles not only reduces the crystallinity of the polymer, increases the motility of the molecular chains, and facilitates the transfer of Zn2+, but also attracts anions to reduce polarization during electrochemical reactions. It was shown that this MOF-modified gel polymer electrolyte has a higher ionic conductivity compared to other PVDF-based polymer electrolytes (approximate range of 2 × 10-4 to 3 × 10-3 S cm-1), with a very high conductivity (1.63 mS cm-1) even at -20 °C. The Zn/Zn symmetric cell could maintain operation for more than 3600 h at a current density of 1 mA cm-2, and SEM showed that the MOF-modified gel electrolyte had uniform Zn2+ deposition.
Collapse
Affiliation(s)
- Changmiao Huang
- School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Hui Li
- School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Zixuan Teng
- School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Yushu Luo
- School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Wanyu Chen
- School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| |
Collapse
|
9
|
Bai S, Huang Z, Liang G, Yang R, Liu D, Wen W, Jin X, Zhi C, Wang X. Electrolyte Additives for Stable Zn Anodes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304549. [PMID: 38009799 PMCID: PMC10811481 DOI: 10.1002/advs.202304549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/28/2023] [Indexed: 11/29/2023]
Abstract
Zn-ion batteries are regarded as the most promising batteries for next-generation, large-scale energy storage because of their low cost, high safety, and eco-friendly nature. The use of aqueous electrolytes results in poor reversibility and leads to many challenges related to the Zn anode. Electrolyte additives can effectively address many such challenges, including dendrite growth and corrosion. This review provides a comprehensive introduction to the major challenges in and current strategies used for Zn anode protection. In particular, an in-depth and fundamental understanding is provided of the various functions of electrolyte additives, including electrostatic shielding, adsorption, in situ solid electrolyte interphase formation, enhancing water stability, and surface texture regulation. Potential future research directions for electrolyte additives used in aqueous Zn-ion batteries are also discussed.
Collapse
Affiliation(s)
- Shengchi Bai
- Research Institute of Petroleum Exploration & Development of China National Petroleum Corporation (RIPED)Beijing100083China
| | - Zhaodong Huang
- Department of Materials Science and EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong SARChina
| | - Guojin Liang
- Department of Materials Science and EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong SARChina
| | - Rui Yang
- Research Institute of Petroleum Exploration & Development of China National Petroleum Corporation (RIPED)Beijing100083China
| | - Di Liu
- Research Institute of Petroleum Exploration & Development of China National Petroleum Corporation (RIPED)Beijing100083China
| | - Wen Wen
- Research Institute of Petroleum Exploration & Development of China National Petroleum Corporation (RIPED)Beijing100083China
| | - Xu Jin
- Research Institute of Petroleum Exploration & Development of China National Petroleum Corporation (RIPED)Beijing100083China
| | - Chunyi Zhi
- Department of Materials Science and EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong SARChina
| | - Xiaoqi Wang
- Research Institute of Petroleum Exploration & Development of China National Petroleum Corporation (RIPED)Beijing100083China
| |
Collapse
|
10
|
Shinde SS, Wagh NK, Kim S, Lee J. Li, Na, K, Mg, Zn, Al, and Ca Anode Interface Chemistries Developed by Solid-State Electrolytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304235. [PMID: 37743719 PMCID: PMC10646287 DOI: 10.1002/advs.202304235] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/30/2023] [Indexed: 09/26/2023]
Abstract
Solid-state batteries (SSBs) have received significant attention due to their high energy density, reversible cycle life, and safe operations relative to commercial Li-ion batteries using flammable liquid electrolytes. This review presents the fundamentals, structures, thermodynamics, chemistries, and electrochemical kinetics of desirable solid electrolyte interphase (SEI) required to meet the practical requirements of reversible anodes. Theoretical and experimental insights for metal nucleation, deposition, and stripping for the reversible cycling of metal anodes are provided. Ion transport mechanisms and state-of-the-art solid-state electrolytes (SEs) are discussed for realizing high-performance cells. The interface challenges and strategies are also concerned with the integration of SEs, anodes, and cathodes for large-scale SSBs in terms of physical/chemical contacts, space-charge layer, interdiffusion, lattice-mismatch, dendritic growth, chemical reactivity of SEI, current collectors, and thermal instability. The recent innovations for anode interface chemistries developed by SEs are highlighted with monovalent (lithium (Li+ ), sodium (Na+ ), potassium (K+ )) and multivalent (magnesium (Mg2+ ), zinc (Zn2+ ), aluminum (Al3+ ), calcium (Ca2+ )) cation carriers (i.e., lithium-metal, lithium-sulfur, sodium-metal, potassium-ion, magnesium-ion, zinc-metal, aluminum-ion, and calcium-ion batteries) compared to those of liquid counterparts.
Collapse
Affiliation(s)
- Sambhaji S. Shinde
- Department of Materials Science and Chemical EngineeringHanyang UniversityAnsanGyeonggi‐do15588Republic of Korea
- FLEXOLYTE Inc.Ansan15588Republic of Korea
| | - Nayantara K. Wagh
- Department of Materials Science and Chemical EngineeringHanyang UniversityAnsanGyeonggi‐do15588Republic of Korea
- FLEXOLYTE Inc.Ansan15588Republic of Korea
| | - Sung‐Hae Kim
- Department of Materials Science and Chemical EngineeringHanyang UniversityAnsanGyeonggi‐do15588Republic of Korea
- FLEXOLYTE Inc.Ansan15588Republic of Korea
| | - Jung‐Ho Lee
- Department of Materials Science and Chemical EngineeringHanyang UniversityAnsanGyeonggi‐do15588Republic of Korea
- FLEXOLYTE Inc.Ansan15588Republic of Korea
| |
Collapse
|
11
|
Wang Y, Zhu J, Chen A, Guo X, Cui H, Chen Z, Hou Y, Huang Z, Wang D, Liang G, Cao SC, Zhi C. Spider Silk-Inspired Binder Design for Flexible Lithium-Ion Battery with High Durability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303165. [PMID: 37493625 DOI: 10.1002/adma.202303165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/11/2023] [Indexed: 07/27/2023]
Abstract
The development of flexible lithium-ion batteries (LIBs) imposes demands on energy density and high mechanical durability simultaneously. Due to the limited deformability of electrodes, as well as the flat and smooth surface of the metal current collectors, stable/durable/reliable contact between electrode materials and the current collectors remains a challenge, in particular, for electrodes with high loading mass and heavily deformed batteries. Binders play an essential role in binding particles of electrode materials and adhering them to current collectors. Herein, inspired by spider silk, a binder for flexible LIBs is developed, which equips a cross-linked supramolecular poly(urethane-urea) to the polyacrylic acid. The binder imparts super high elastic restorability originating from the meticulously engineered hydrogen-bonding segments as well as extraordinary adhesion. The developed binder provides excellent flexibility and intact electrode morphologies without disintegration even when the electrode is largely deformed, enabling a stable cycling and voltage output even when the batteries are put under tough dynamic deformation tests. The flexible LIBs exhibit a high energy density of 420 Wh L-1 , which is remarkably higher than reported numbers. The unique binder design is greatly promising and offers a valuable material solution for LIBs with high-loading mass and flexible designs.
Collapse
Affiliation(s)
- Yanbo Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Jiaxiong Zhu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Ao Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Xun Guo
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Huilin Cui
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Ze Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Yue Hou
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Zhaodong Huang
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, Hong Kong, SAR, 999077, China
| | - Donghong Wang
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan, Anhui, 243032, China
| | - Guojin Liang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Shan Cecilia Cao
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, Hong Kong, SAR, 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
12
|
Guo Y, Lim GJH, Verma V, Cai Y, Chua R, Nicholas Lim JJ, Srinivasan M. Solid State Zinc and Aluminum ion batteries: Challenges and Opportunities. CHEMSUSCHEM 2023; 16:e202202297. [PMID: 37424157 DOI: 10.1002/cssc.202202297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/05/2023] [Accepted: 07/08/2023] [Indexed: 07/11/2023]
Abstract
Solid-state zinc ion batteries (ZIBs) and aluminum-ion batteries (AIBs) are deemed as promising candidates for supplying power in wearable devices due to merits of low cost, high safety, and tunable flexibility. However, their wide-scale practical application is limited by various challenges, down to the material level. This Review begins with elaboration of the root causes and their detrimental effect for four main limitations: electrode-electrolyte interface contact, electrolyte ionic conductivity, mechanical strength, and electrochemical stability window of the electrolyte. Thereafter, various strategies to mitigate each of the described limitation are discussed along with future research direction perspectives. Finally, to estimate the viability of these technologies for wearable applications, economic-performance metrics are compared against Li-ion batteries.
Collapse
Affiliation(s)
- Yuqi Guo
- School of Materials Science and Engineering, Nanyang Technological University, 11 Faculty Ave, 639977, Singapore, Singapore
| | - Gwendolyn J H Lim
- School of Materials Science and Engineering, Nanyang Technological University, 11 Faculty Ave, 639977, Singapore, Singapore
| | - Vivek Verma
- School of Materials Science and Engineering, Nanyang Technological University, 11 Faculty Ave, 639977, Singapore, Singapore
- Energy Research Institute at Nanyang Technological University, Research Techno Plaza, 50, Singapore, Nanyang Drive, 637553, Singapore
| | - Yi Cai
- Energy Research Institute at Nanyang Technological University, Research Techno Plaza, 50, Singapore, Nanyang Drive, 637553, Singapore
| | - Rodney Chua
- Energy Research Institute at Nanyang Technological University, Research Techno Plaza, 50, Singapore, Nanyang Drive, 637553, Singapore
| | - J J Nicholas Lim
- School of Materials Science and Engineering, Nanyang Technological University, 11 Faculty Ave, 639977, Singapore, Singapore
| | - Madhavi Srinivasan
- School of Materials Science and Engineering, Nanyang Technological University, 11 Faculty Ave, 639977, Singapore, Singapore
- Energy Research Institute at Nanyang Technological University, Research Techno Plaza, 50, Singapore, Nanyang Drive, 637553, Singapore
| |
Collapse
|
13
|
Liu X, Li X, Yang X, Lu J, Zhang X, Yuan D, Zhang Y. Influence of Water on Gel Electrolytes for Zinc-Ion Batteries. Chem Asian J 2023; 18:e202201280. [PMID: 36632721 DOI: 10.1002/asia.202201280] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/13/2023]
Abstract
Gel electrolytes are being intensively explored for aqueous rechargeable zinc-ion batteries, especially towards high performance and multi-functionalities. Water plays a central role on the fundamental properties, interface reaction/interaction, and performance of the gel-type zinc electrolyte. In this review, the influence of water on the physiochemical properties of gel electrolytes is focused on. The correlation between water activity and the fundamental properties of zinc electrolytes is presented. Current approaches and challenges in manipulating water activity and the consequent influence on the electrochemical stability, transport, and interface kinetics of gel electrolytes are summarized. An outlook on approaches to tuning and investigating water activity is provided to shed light on the design of advanced gel electrolytes.
Collapse
Affiliation(s)
- Xiangjie Liu
- College of Materials Science and Engineering, Changsha University of Science and Technology, 960, 2nd Section, Wanjiali RD (S), Changsha, Hunan, 410004, P. R. China
| | - Xin Li
- College of Materials Science and Engineering, Changsha University of Science and Technology, 960, 2nd Section, Wanjiali RD (S), Changsha, Hunan, 410004, P. R. China
| | - Xiaotong Yang
- College of Materials Science and Engineering, Changsha University of Science and Technology, 960, 2nd Section, Wanjiali RD (S), Changsha, Hunan, 410004, P. R. China
| | - Jingqi Lu
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| | - Xuan Zhang
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| | - Du Yuan
- College of Materials Science and Engineering, Changsha University of Science and Technology, 960, 2nd Section, Wanjiali RD (S), Changsha, Hunan, 410004, P. R. China
| | - Yizhou Zhang
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| |
Collapse
|
14
|
Chen S, Wang H, Zhu M, You F, Lin W, Chan D, Lin W, Li P, Tang Y, Zhang Y. Revitalizing zinc-ion batteries with advanced zinc anode design. NANOSCALE HORIZONS 2022; 8:29-54. [PMID: 36268641 DOI: 10.1039/d2nh00354f] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Rechargeable aqueous zinc-ion batteries (AZIBs) have attracted significant attention in large-scale energy storage systems due to their unique merits, such as intrinsic safety, low cost, and relatively high theoretical energy density. However, the dilemma of the uncontrollable Zn dendrites, severe hydrogen evolution reaction (HER), and side reactions that occur on the Zn anodes have hindered their commercialization. Herein, a state-of-the-art review of the rational design of highly reversible Zn anodes for high-performance AZIBs is provided. Firstly, the fundamental understanding of Zn deposition, with regard to the nucleation, electro-crystallization, and growth of the Zn nucleus is systematically clarified. Subsequently, a comprehensive survey of the critical factors influencing Zn plating together with the current main challenges is presented. Accordingly, the rational strategies emphasizing structural design, interface engineering, and electrolyte optimization have been summarized and analyzed in detail. Finally, future perspectives on the remaining challenges are recommended, and this review is expected to shed light on the future development of stable Zn anodes toward high-performance AZIBs.
Collapse
Affiliation(s)
- Shuwei Chen
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Huibo Wang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau 999078, P. R. China
| | - Mengyu Zhu
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Fan You
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Wang Lin
- Army Logistics Academy, Chongqing 401311, P. R. China
| | - Dan Chan
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Wanxin Lin
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Peng Li
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Yuxin Tang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
- Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| | - Yanyan Zhang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| |
Collapse
|