1
|
Liu S, Yu M, Luo X, Liu J, Zou Z. One-Pot Construction of NHS-Activated Magnetic Particles for Chemoselective Capture of Carboxyl Metabolites. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413830. [PMID: 39932453 PMCID: PMC11967832 DOI: 10.1002/advs.202413830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/17/2025] [Indexed: 04/05/2025]
Abstract
Chemoselective probes immobilize on magnetic materials show great promise in simplifying sample handling and enhancing detection sensitivity. However, their complicated preparation and associated expense limit broader application. In this study, novel magnetic particles with abundant N-hydroxysuccinimide (NHS) esters on the surface are conveniently synthesized using a one-pot method without carbodiimide activation carboxylate molecules. Subsequently, multifunctional probes are synthesized by immobilizing high-density chemical probes on the surface of the magnetic materials through a postsynthetic modification strategy. This versatile probe facilitates the rapid capture of carboxylated compounds from complex matrices, with the labeled metabolites release from the magnetic materials subsequently analyzed using ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS). The advantages of this innovative chemical biological tool include the simplicity and low cost of the synthesis, as well as the capability to analyze polar and volatile carboxylated metabolites via LC-MS. This new strategy is successfully applied to analyze short-chain fatty acids (SCFAs) in rat cecal contents, demonstrating the reliability of the analytical method. This study presents a cost-effective and easy-to-implement approach for preparing NHS-activated magnetic particles and offers a versatile probe with chemoselective extraction and labeling capabilities, providing a practical tool for analyzing SCFAs in the gut.
Collapse
Affiliation(s)
- Shuai Liu
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193China
| | - Meng Yu
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193China
| | - Xin‐Yao Luo
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193China
| | - Jie Liu
- Tianjin University of Traditional Chinese MedicineTianjin300193China
| | - Zhong‐Mei Zou
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193China
| |
Collapse
|
2
|
Tian H, Lai Z, Zhang W, Zhang M, Yang X, Zhou J, Li Z. Isotope-Labeled Chemoselective Probes for Labeling, Separation, and Comprehensive Quantitative Analysis of Sub-Metabolome. SMALL METHODS 2024; 8:e2400529. [PMID: 39268786 DOI: 10.1002/smtd.202400529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/03/2024] [Indexed: 09/15/2024]
Abstract
The significance of small molecule metabolites as biomarkers for disease diagnosis and prognosis is growing increasingly evident, necessitating the development of highly sensitive qualitative and quantitative methods. Herein, multi-chemoselective probes are synthesized and applied for profiling metabolites, including carboxyl, phosphate, hydroxyl, amino, thiol, and carbonyl compounds. This approach seamlessly integrates magnetic solid-phase materials, orthogonal cleavage sites, isotopic tags, and selective coupling sites, minimizes matrix interference, and enhances quantitative accuracy. Meanwhile, a homemade program, High-Resolution Isotope-Assisted Identification and Quantitative (HRIAIQuant) is developed to process the data, which adeptly filters through 33,874 ion pairs present in human serum, leading to the identification of 701 known metabolites and a remarkable 1,062 potential novel ones. This method is successfully applied to analyze metabolites in multiple brain regions of SAMP8 and SAMR1 models, offering a novel tool for Alzheimer's disease research.
Collapse
Affiliation(s)
- Hongtao Tian
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Zhizhen Lai
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Wenjia Zhang
- Department of Biomedical Engineering, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Mo Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Xiaolin Yang
- Department of Biomedical Engineering, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Jiang Zhou
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhili Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| |
Collapse
|
3
|
Lin C, Li L, Liu S, Chen S, Yin L, Zhao C, Gu Y, Zhang T, Zou Z. Functionalized magnetic particles coupled with LC-MS strategy facilitated discovery of trace thioalkaloids with potent immunosuppressive activity. Bioorg Chem 2024; 149:107529. [PMID: 38850780 DOI: 10.1016/j.bioorg.2024.107529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Trace natural products (TNPs) are still the vital source of drug development. However, the mining of novel TNPs is becoming increasingly challenging due to their low abundance and complex interference. A comprehensive strategy was proposed in which the functionalized magnetic particles integrated with LC-MS for TNPs discovery. Under the guidance of the approach, fifteen trace Nuphar alkaloids including seven new ones, cyanopumiline A sulfoxide (1), cyanopumiline C sulfoxide (8) and cyanopumilines A-E (4-5, 10, 12-13) featuring an undescribed nitrile-containing 6/6/5/6/6 pentacyclic ring system were isolated from the rhizomes of Nuphar pumila. Their structures and absolute configurations were determined on the basis of detailed spectroscopic data analysis and single-crystal X-ray diffraction analysis. Notably, a concise method based on 13C NMR spectroscopy was established to determine the relative configurations of spiroatoms. Biologically, compounds 1-12 exhibited potent immunosuppressive activities with IC50 values ranging from 0.1-12.1 μM against anti-CD3/CD28 induced human peripheral T cell proliferation. Mechanistic studies revealed that 4 could dose-dependently decrease pro-inflammatory cytokines and the expression levels of CD25 and CD71.
Collapse
Affiliation(s)
- Chunyu Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Lingyu Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Shuai Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Shilin Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Luying Yin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Chenxu Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yucheng Gu
- Syngenta, Jealott's Hill International Research Centre, Berkshire RE42 6EY, U.K
| | - Tao Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Zhongmei Zou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
4
|
Yuan Y, Ren M, Zhu C, Lou Y, Liang Q, Xiong Z. Chemoselectivity Strategy Based on B-Label Integrated with Tailored COF for Targeted Metabolomic Analysis of Short-Chain Fatty Acids by UHPLC-MS/MS. Anal Chem 2024; 96:6575-6583. [PMID: 38637908 DOI: 10.1021/acs.analchem.3c05590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Chemoselective extraction strategy is an emerging and powerful means for targeted metabolomics analysis, which allows for the selective identification of biomarkers. Short-chain fatty acids (SCFAs) as functional metabolites for many diseases pose challenges in qualitative and quantitative analyses due to their high polarity and uneven abundance. In our study, we proposed the B-labeled method for the derivatization of SCFAs using easily available 3-aminobenzeneboronic acid as the derivatization reagent, which enables the introduction of recognition unit (boric acid groups). To analyze the B-labeled targeted metabolites accurately, cis-diol-based covalent organic framework (COF) was designed to specifically capture and release target compounds by pH-response borate affinity principle. The COF synthesized by the one-step Schiff base reaction possessed a large surface area (215.77 m2/g), excellent adsorption capacity (774.9 μmol/g), good selectivity, and strong regeneration ability (20 times). Combined with ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis, our results indicated that the detection sensitivities of SCFAs increased by 1.2-2500 folds compared with unlabeled method, and the retention time and isomer separation were improved. Using this strategy, we determined twenty-six SCFAs in the serum and urine of rats in four groups about osteoporosis and identified important biomarkers related to the tricarboxylic acid cycle and fatty acid metabolism pathways. In summary, UHPLC-MS/MS based on B-labeled derivatization with tailored COF strategy shows its high selectivity, excellent sensitivity, and good chromatographic behavior and has remarkable application prospect in targeted metabolomics study of biospecimens.
Collapse
Affiliation(s)
- Yue Yuan
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, Benxi, Liaoning 117004, PR China
| | - Mengxin Ren
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, Benxi, Liaoning 117004, PR China
| | - Chengze Zhu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, Benxi, Liaoning 117004, PR China
| | - Yanwei Lou
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, Benxi, Liaoning 117004, PR China
| | - Qinghua Liang
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, Benxi, Liaoning 117004, PR China
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, Benxi, Liaoning 117004, PR China
| |
Collapse
|
5
|
Liu S, Lai Z, Zhang M, Tian H, Zhou J, Li Z. Facile synthesis of amino-functionalized magnetic materials for efficient enrichment of anionic metabolites from biological samples. Anal Chim Acta 2023; 1250:340977. [PMID: 36898822 DOI: 10.1016/j.aca.2023.340977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023]
Abstract
The analysis of biological samples is often affected by the background matrix. Proper sample preparation is a critical step in the analytical procedure for complex samples. In this study, a simple and efficient enrichment strategy based on Amino-functionalized Polymer-Magnetic MicroParticles (NH2-PMMPs) with coral-like porous structures was developed to enable the detection of 320 anionic metabolites, providing detailed coverage of phosphorylation metabolism. Among them, 102 polar phosphate metabolites including nucleotides, cyclic nucleotides, sugar nucleotides, phosphate sugars, and phosphates, were enriched and identified from serum, tissues, and cells. Furthermore, the detection of 34 previously unknown polar phosphate metabolites in serum samples demonstrates the advantages of this efficient enrichment method for mass spectrometric analysis. The limit of detections (LODs) were between 0.02 and 4 nmol/L for most anionic metabolites and its high sensitivity enabled the detection of 36 polar anion metabolites from 10 cell equivalent samples. This study has provided a promising tool for the efficient enrichment and analysis of anionic metabolites in biological samples with high sensitivity and broad coverage, facilitating the knowledge of the phosphorylation processes of life.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Zhizhen Lai
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Mo Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Hongtao Tian
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Jiang Zhou
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Beijing, 100871, China.
| | - Zhili Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
6
|
Qiu Y, Zhang M, Lai Z, Zhang R, Tian H, Liu S, Li D, Zhou J, Li Z. Profiling of amines in biological samples using polythioester-functionalized magnetic nanoprobe. Front Bioeng Biotechnol 2023; 10:1103995. [PMID: 36686230 PMCID: PMC9846243 DOI: 10.3389/fbioe.2022.1103995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction: The metabolic balance of amines is closely related to human health. It remains a great challenge to analyze amines with high-throughput and high-coverage. Methods: Polythioester-functionalized magnetic nanoprobes (PMPs) have been prepared under mild conditions and applied in chemoselective capture of amides. With the introduction of polythioester, PMPs demonstrate remarkably increased capture efficiency, leading to the dramatically improved sensitivity of mass spectrometry detection. Results: The analysis method with PMPs treatment has been applied in rapid detection of more than 100 amines in lung adenocarcinoma cell lines, mouse organ tissues, and 103 human serum samples with high-throughput and high-coverage. Statistical analysis shows that arginine biosynthesis differed between lung adenocarcinoma cell lines. Discussion: Phenylalanine, tyrosine and tryptophan biosynthesis differed between tissues. The combination indicators demonstrate a great diagnostic accuracy for distinguishing between health and lung disease subjects as well as differentiating the patients with benign lung disease and lung cancer. With powerful capture ability, low-cost preparation, and convenient separation, the PMPs demonstrate promising application in the intensive study of metabolic pathways and early diagnosis of disease.high-throughput and high-coverage. Here, polythioester-functionalized magnetic nanoprobes (PMPs) have been prepared under mild conditions and applied in chemoselective capture of amides. With the introduction of polythioester, PMPs demonstrate remarkably increased capture efficiency, leading to the dramatically improved sensitivity of mass spectrometry detection. The analysis method with PMPs treatment has been applied in rapid detection of more than 100 amines in lung adenocarcinoma cell lines, mouse organ tissues, and 103 human serum samples with high-throughput and high-coverage. Statistical analysis shows that arginine biosynthesis differed between lung adenocarcinoma cell lines. Phenylalanine, tyrosine and tryptophan biosynthesis differed between tissues. The combination indicators demonstrate a great diagnostic accuracy for distinguishing between health and lung disease subjects as well as differentiating the patients with benign lung disease and lung cancer. With powerful capture ability, low-cost preparation, and convenient separation, the PMPs demonstrate promising application in the intensive study of metabolic pathways and early diagnosis of disease.
Collapse
Affiliation(s)
- Yuming Qiu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mo Zhang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhizhen Lai
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Renjun Zhang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongtao Tian
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuai Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Li
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiang Zhou
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China,*Correspondence: Zhili Li, ; Jiang Zhou,
| | - Zhili Li
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,*Correspondence: Zhili Li, ; Jiang Zhou,
| |
Collapse
|
7
|
Zhang M, Lai Z, Zhang R, Liu S, Tian H, Qiu Y, Li D, Zhou J, Li Z. Polyurea-Modified Magnetic Particles with Versatile Probes for Chemoselective Capture of Carbonyl Metabolites and Biomarker Discovery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204734. [PMID: 36354199 DOI: 10.1002/smll.202204734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Playing a great role in human physiologies and pathologies, carbonyl metabolites are intimately associated with a variety of diseases, though the effective analysis method of them remains a challenge. A hydrazide-terminated polyurea-modified magnetic particle (HPMP) with versatile probes is developed to address this issue. The capture ability of HPMPs for carbonyl metabolite is more than 1200 µmol g-1 , which is increased by 4 orders of magnitude via the introduction of polyurea. With a broad linear range of over 4 orders of magnitude, remarkably improved sensitivity, and limit of detection at attomole quantities, HPMPs are applied in relative quantification of more than 1500 carbonyl metabolites in 113 human serum samples with high throughput and high coverage. The combined indicators of these metabolites demonstrates a great diagnostic accuracy for distinguishing between health and disease subjects as well as differentiating the patients with benign lung disease and lung cancer. Combining powerful capture ability, low-cost preparation, and convenient operation, the HPMPs demonstrate extensive application in biomarker discovery and the detailed study of the biochemical landscape.
Collapse
Affiliation(s)
- Mo Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Zhizhen Lai
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Renjun Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Shuai Liu
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Hongtao Tian
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Yuming Qiu
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Dan Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Jiang Zhou
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Beijing, 100871, China
| | - Zhili Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| |
Collapse
|
8
|
Lu RQ, Yuan W, Feng H, Lennon Luo SX, Mason Wu YC, Etkind SI, Kumar M, Swager TM. Porous Polymers Containing Metallocalix[4]arene for the Extraction of Tobacco-Specific Nitrosamines. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:10623-10630. [PMID: 37323159 PMCID: PMC10262809 DOI: 10.1021/acs.chemmater.2c02713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We designed porous polymers with a tungsten-calix[4]arene imido complex as the nitrosamine receptor for the efficient extraction of tobacco-specific nitrosamines (TSNAs) from water. The interaction between the metallocalix[4]arene and the TSNA, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (nicotine-derived nitrosamine ketone, NNK) was investigated. We found that the incorporation of the nitrosamine receptor into porous polymers increased their selectivity toward NNK over nicotine. The polymer with an optimal ratio of calixarene-containing and porosity-inducing building blocks showed a high maximum adsorption capacity of up to 203 mg/g toward NNK under sonication, which was among the highest values reported. The adsorbed NNK could be removed from the polymer by soaking it in acetonitrile, enabling the adsorbent to be reused. A similar extraction efficiency to that under sonication could be achieved using the polymer-coated magnetic particles under stirring. We also proved that the material could efficiently extract TSNAs from real tobacco extract. This work not only provides an efficient material for the extraction of TSNAs but also offers a design strategy for efficient adsorbents.
Collapse
Affiliation(s)
- Ru-Qiang Lu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Weize Yuan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Haosheng Feng
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shao-Xiong Lennon Luo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - You-Chi Mason Wu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Samuel I Etkind
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mohanraja Kumar
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Timothy M Swager
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|